III-V Compounds

Heterojunctions

- Φ are the work functions(vacuum to Fermi level)
- Electrical Potential is continuous;
- **D** = *\varepsilon E* normal is continuous; (without charge traps)
- Energy LevelsE-V(x)
- Energy spacing AB, BC, CD are fixed;

Heterojunction

- Electron accumulation and barrier for hole injection on the pside;
- Barrier on N-p is only the built-in potential
- E(-dV/dx) is not continuous ;
- Barrier depends on the gap and work function differences;
- In general, one has depletion, accumulation, inversion using heterojunctions

- Barrier for hole and electron injection to N and P sides, respectively;
- Electron and Hole accumulation in the i-layer

Heterojunction (Quantum well)

- Very thin layer sandwiched between larger gap materials. (Neglect built-in potential)
- Quantum confinement (ΔE_c) in the conduction band and (ΔE_{vlh}) for light holes and (ΔE_{vhh}) for heavy holes.
- The quantum confinement can be 1D(this case); 2D (quantum wires); and 3D (quantum dots)
- Material properties start to depend on the geometry of the confinement nanotecnology.

Materials

- Crystalline layer sequence with abrupt and defect less interfaces;
- Demands crystal growth;
 - Crystal growth with same crystal orientation: epitaxy;
 - Demands materials with same lattice constant;
- High Mobility, speed and strong light matter interaction (Direct band-gap);
- Most important materials III-V compounds

1	Periodic Table																	
2	э Ц	₄ Be		0]	t t	he	E	le	m	en	US		s B	е С	N	o	9 F	¹⁰ Ne
s	11 Na	12 Mg	шв	IVB	٧В	мв	мів		— VIII -		• IB	IIВ	13 Al	14 / Si	15 P	ie S	17 CI	18 Ar
4	19 K	zo Ca	21 Sc	^{zz} Ti	23 V	²⁴ Сг	zs Mn	^{z6} Fe	27 Co	z8 Ni	29 Cu	30 Zn	Э1 Ga	³² Ge	39 As	94 Se	≫s Br	≫ Kr
5	37 Rb	38 Sr	39 Y	4⊡ Zr	41 ND	42 Mo	43 Tc	44 Ru	₄s Rh	₄s Pd	47 Ag	48 Cd	49 In	sо Sn	51 Sb	न्य Te	ຣ ເ	54 Xe
6	ss Cs	se Ba	57 ∙La	72 Hf	^{7Э} Та	74 W	75 Re	76 05	77 Ir	78 Pt	79 Au	so Hg	81 TI	82 Pb	83 Bi	84 Po	≋5 At	≋б Rл
7	87 Fr	88 Ra	≋9 +Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110				I - V	′			

• Lanthanide	58	59	®⊐	61	ब्य	ි	⁶⁴	es	ee	೯७	68	ଞ	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
 Actinide Series 	90	91	92	99	94	≫	≫	97	98	99	100	101	102	108
	Th	Pa	U	Np	Ри	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Lattice constant a (Angstrom)

Energy gap [eV]

Heterojunction Engineering

- Binary compounds:
 - A point in the $E_G vs. a$ plot.
- Alloys:
 - Allows an almost continuous control of the material properties between its constituents;
 - Segregation and ordering limits alloy formation.
 - Examples:
 - Ternary: $Al_{1-x}Ga_xAs$; almost fixed a with varying E_G .
 - Quaternary: In_{1-x}Ga_xAs_yP_{1-y} (can be used to control a and EG) can be made lattice matched to InP and emit at 1550 nm)
 - Quaternary In_{1-x-y}Ga_xAl_yAs Add In to the ternary above; allows matching to InP.
 - Quaternary: In_{1-x-y}Ga_xAl_yN (large lattice constant variation but bandgap reaching entire visible spectrum and UV)

Aplications

Newton C. Frateschi (LPD - IFGW -UNICAMP)

Nitrides (High brightness LED's

as functions of lattice parameter, a, for a uniform (a) and clustered (b) distribution of cations. The triangle formed by dashed lines corresponds to a

linear approximation of the relation between band gaps and lattice param-

eters. The shaded area covers the region where the experimental points are

Limitations to band gap tuning in nitride semiconductor alloys

- I. Gorczyca, 1, a T. Suski, 1 N. E. Christensen, 2 and A. Svane2
- II. APPLIED PHYSICS LETTERS 96, 101907 2010

Newton C.

2/25/16

UNICAMP)

lying.

III- V Growth

- Epitaxy : crystal growth following same orientation as the substrate;
- In general requires same lattice constant for the substrate and over layer. Difference in lattice constant leads to strain that limits thickness.
- Most used substrates (telecom and optical storage): GaAs e InP
- Nitrides: Safire e SiC (Large mismatch; requires thick dislocation relieve buffer layers)
- Techniques:
 - LPE: Liquid Phase Epitaxy
 - MBE: Molecular Beam Epitaxy
 - GSMBE: Gas Source MBE
 - CBE: Chemical Beam Epitaxy
 - MOCVD (OMVPE) : Metalorganic Chemical Vapor deposition (Organomettalic Vapor Phase Epitaxy)

MBE; GSMBE; CBE

Sources (III, V, dopants):

MBE: all solid; heated cells

GSMBE: group V gas (arsine and phosphine through crackers); group III and dopants are solids

CBE: : group V gas (arsine and phosphine through crackers); group III organometalics and bublers; dopants are usually solid

UHV free mean path larger than chamber dimensioin: balistic flux of source; Temperature: 400° C to 800° C (resistive heating) Over pressure of group V (group V does not deposit on group V terminated crystal)

MOCVD

- Low vacuum system;
- Creates a stagnant layer;
- Group V source is phosphine and arsine
- Group III are organometalic (TMG, TEG, TMI, etc)
- Dopants: organometalic (DMZn, etc.) or gases (silane);
- Hydrogen carrier gas

Compounds Material Properties *

- Linear interpolation between binary compounds ;
- Given the binary compounds AB, AC, BC and BD; one can obtain the quaternary alloy A_xB_{1-x}CyD_{1-y}:
- A given property P of the alloy can be obtained as a linear average (interpolation) of the binaries:
- $P(A_x B_{1-x} C_y D_{1-y}) = P(AC)xy + P(AD)x(1-y) + P(BC)(1-x)y + P(BD)(1-x)(1-y)$
- Bandgap energy is an exception (usually quadratic interpolation)

* J. Minch et al, IEEE JQE, 35 (5),p.771, 1999

$In_{1-x}Ga_xAs_yP_{1-y}$

- $P(In_{1-x}Ga_xAs_yP_{1-y})=P_{GaAs}xy+P_{GaP}x(1-y)+P_{InAs}(1-x)y+P_{InP}(1-x)(1-y);$
- Lattice constant

5.8688;
5.4505;
6.0584;
5.6533;

$In_{1-x}Ga_xAs_yP_{1-y}$ iso lattice constant plot

- If we look for a family of In_{1-x}Ga_xAs_yP_{1-y} with a given binary property P we obtain a function x(y):
- $P(In_{1-x}Ga_xAs_yP_{1-y})=P(InP)$:
- $P(In_{1-x}Ga_xAs_yP_{1-y})=P_{GaAs}xy+P_{GaP}x(1-y)+P_{InAs}(1-x)y+P_{InP}(1-x)(1-y)=P_{InP}$, then:

$$x(y) = \frac{y(P_{InP} - P_{InAs})}{(P_{GaAs} - P_{GaP} - P_{InAs} + P_{InP}) + (P_{GaP} - P_{InP})}$$

• If P is the lattice constant:

$$x(y) = \frac{0.1896y}{0.4183 - 0.0132y} \approx 0.45y$$
_{Blue}

Blue dashed line on page 19

• For the matching with a GaAs property:

•
$$P(In_{1-x}Ga_{x}As_{y}P_{1-x}) = P_{GaAs}xy + P_{GaP}x(1-y) + P_{InAs}(1-x)y + P_{InP}(1-x)(1-y) = P_{GaAs}; \text{ then:}$$

$$I - x = \frac{(1-y)(P_{InP} - P_{InAs})}{(P_{GaAs} - P_{GaP} - P_{InAs} + P_{InP})(1-y) + (P_{GaP} - P_{InP})}$$

• If P is the lattice constant:

$$1 - x = \frac{0.1896(1 - y)}{0.4183 - 0.0132(1 - y)} \Rightarrow x(y) = 0.55 + 0.45y$$
$$x > 0.55$$

Red dashed line on page 19

 For the bandgap energy the interpolation is quadratic In_{1-x}Ga_xAs_yP_{1-y} (Vegard's law):

$$\begin{split} & \mathsf{E}_{\mathsf{G}}(\mathsf{x},\mathsf{y}) = 1.35 + 0.642 \mathsf{x} - 1.101 \mathsf{y} \\ & + 0.758 \mathsf{x}^2 + 0.101 \mathsf{y}^2 - 0.159 \mathsf{x} \mathsf{y} - 0.28 \mathsf{x}^2 \mathsf{y} + 0.109 \mathsf{x} \mathsf{y}^2 \\ & \mathsf{(eV)}; \end{split}$$

This is obtained indirectly from E_G[a(x,y)] for a given family of alloys. And E_G(a) is quadratic (Vegard's law)

- $P(In_{1-x-y}Ga_xAl_yAs) = (1-x-y)P_{InAs} + xP_{GaAs} + yP_{AIAs}$
- Lattice Constant

- If we look for In_{1-x-y}Ga_xAl_yAs alloys matched to InP, we obtain x(y:
- a(In_{1-x-y}Ga_xAl_yAs)=a(InP), então:

$$(1 - x - y)P_{InAs} + xP_{GaAs} + yP_{AlAs} = P_{InP} \Rightarrow$$
$$x = 0.468 - 0.985y$$
Blue line on p. 22

- E_G for $(In_{1-x-y}Ga_xAl_yAs)$:
- Also quadratic:

E_G(x,y)=0.36+2.093y+0.629x +0.577y²+0.436x²+1.013xy-2xy(1-x-y) (eV);

 $Al_xGa_{1-x}As/GaAs$

Energy gap: x<0.45 1.424+1.247x eV (direto)

x>0.45 1.9+0.125x+0.143x² (indireto)

Effective electron mass m_e $0.063+0.083 \times m_o (x<0.45)$ Density-of-states electron mass
 m_{cd} $0.85-0.14 \times m_o (x>0.45)$

Conductivity effective mass m_{cc} 0.26 m_o (x>0.45)

Effective hole masses m_h 0.51+0.25x m_o

Effective hole masses m_{lp}

0.082+0.068x m_o

$$x < 0.41$$
 $\Delta E_c = 0.79x \ (eV)$ $x > 0.41$ $\Delta E_c = 0.475 - 0.335x + 0.143x^2 \ (eV)$

 $Al_{x}Ga_{1-x}As/GaAs$

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/

 $Al_xGa_{1-x}As/GaAs$

Conduction band discontinuity is always higher at the conduction band for x < 0.5

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/

$\Delta Ec e \Delta ev InGaAsP$ and InGaAlAs

- As descontinuidades em função da composição podem ser obtidas pelos modelos (Harrison e Model-Solid) e também por fitting dos dados. Os dados para estes parâmetros se encontram na referência citada (Minch et al.). Para o caso de parâmetro de rede casado com InP temos os resultados (do artigo):
- InGaAsP/InP ($\Delta E_{c}/\Delta E_{G} \approx 0.4$)
- InGaAlAs/InP $\Delta E_c / \Delta E_g \sim 0.3$ -1.5y

Fig. 3. The conduction band offset for (a) $In_{1-x}Ga_xAs_yP_{1-y}$ and (b) $In_{1-x-y}Ga_xAl_yAs$ lattice-matched to InP. The solid lines show empirical results [14], [15] obtained from experimental data. Dashed lines show calculations using the model-solid theory and Harrison's model.

J. Minch et al, IEEE JQE, 35 (5),p.771, 1999

InGaAsP/InP

InGaAsP/InP heterojunction has always Δ Ec smaller that Δ Ev; worse electron confinement : electron leakage and excessive hole confinement : hole pilling

In_{1-x-v}Ga_xAl_vAs /InP

InGaAlAs / InGaAlAs has always larger Δ Ec than Δ Ev; (better electron confinement)

x = 0.468 - 0.985y

Strain

- When the growth layer has a different lattice constant from the substrate there appears a biaxial pressure or strain (compressive or tensile) :
- $\varepsilon = \varepsilon_{xx} = \varepsilon_{yy} = (a_0 a)/a$; a_0 is the substrate lattice constant and
- $\varepsilon > 0$ tensile
- $\varepsilon < 0$ compressive
- The orthogonal strain is ε_{zz}=-2C₁₂ε/C₁₁; C₁₂ and C₁₁ are elastic constants (distortion), the strain in z over the strain in x is the Poisson ratio:

$$\varepsilon_{zz} = -\frac{2\eta}{1-\eta} \varepsilon_{xx};$$

$$\frac{\eta}{1-\eta} = \frac{C_{12}}{C_{11}} \Longrightarrow \eta = \frac{C_{12} / C_{11}}{1+C_{12} / C_{11}}$$

Strain

- The conduction and vallence bands energy are affected by the strain which depends on composition.
- One has:

$$\delta E_c(x,y) = a_c(x,y)(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) = 2a_c(x,y)(1 - \frac{C_{12}(x,y)}{C_{11}(x,y)})\varepsilon(x,y);$$

$$\delta E_{vhh}(x, y) = -P_{\varepsilon} - Q_{\varepsilon};$$

$$\delta E_{vlh}(x, y) = -P_{\varepsilon} + Q_{\varepsilon};$$

$$P_{\varepsilon} = -a_{v}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}); Q_{\varepsilon} = -\frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz})$$

Strain

- In order toor the strain to affect the bands there can't be relaxation.
- There is a critical thickness where relaxation occurs leading to misfit dislocation.

Crictical Thickness (Mathews and Blakslee)

• *h_c* is given by the transcendental equation:

$$\frac{h_C}{a} = \frac{1}{k\sqrt{2\pi\varepsilon}} \frac{(1-0.25\eta)}{(1+\eta)} \left[\ell n \left(\frac{h_C}{a}\right) + 1 \right]$$

 where *a* is the strained layer lattice parameter, ε is the strain, η is the Poisson ratio and k = 4 for an overlayer and k = 2 for a sandwich.

- η = .32 e K=2;
- In0.2Ga0.8As/GaAs has a strain of 0.014 and lattice constant of 5.734. hc= ٠ 29x5.734 = 166.286 Angstroms for a quantum well.

Quantum Well

- Para podermos resolver o poço quântico temos que ter:
 - Potential barrier (ΔE_c) for electrons
 - Potential barrier for holes ΔE_v (heavy and light) a;
 - Effective masses;
- For the alloys this needs to be interpolated as a fucntion of the composition (x,y);
- In the presence of slight mismatch , one needs to include strain effects on these parameters.

Effective Mass

• Effective mass can be obtained from interpolation

	GaAs	InAs	InP	GaP	AIAs
m _c /m ₀	0.067	0.023	0.077	0.25	0.15
m _{hh} /m ₀	0.5	0.4	0.6	0.67	0.79
m _{lh} /m ₀	0.082	0.026	0.089	0.14	0.15

Quantum Wells

 Considering the thicknes comparable to the deBroglie wavelength but much larger than the lattice parameter we can ude the effective mass approach:

$$\Psi_{k,n}(r) = \frac{e^{ik_{//}.\rho}}{2\pi} fn(z)U_{k_{//}}(\rho)$$
$$\left[-\frac{\hbar^2}{2m_{c(v)}}\frac{\partial^2}{\partial z^2} + V_{c(v)}(z) - E_n\right]f_n(z) = 0$$

• Neglecting (here for simplicity) the valence band mixing, we use the Kane model:

$$E_{c}(k,n) = E_{G} + \frac{\hbar^{2}k^{2}}{2m_{c}} + E_{cn};$$

$$E_{vhh}(k,n) = -\frac{\hbar^{2}k^{2}}{2m_{vhh}} - E_{vhhn};$$

$$E_{vlh}(k,n) = -\frac{\hbar^{2}k^{2}}{2m_{vhh}} - E_{vlhn};$$

• The quantum confinemetn already lifts the degeneracy at the gama point between heavy and light holes. because $E_{vhhn} \neq E_{vlhn}$.

QW Examples

- $Al_{0.6}Ga_{0.4}As/Al_{0.2}Ga_{0.8}As$
- 5 nm
- No strain

(higher barrier)

- $Al_{0.6}Ga_{0.4}As/Al_{0.2}Ga_{0.8}As$
- 5 nm
- No strain

- $In_{0.43}Ga_{0.27}Al_{0.2}As/In_{0.45}Ga_{0.45}Al_{0.1}As$
- 5 nm
- Tensile strain
- LH raises

Summary

- Heterojunctions are fundamental for electronics and optoelectronics;
 - Control o carrier injection and distribution
 - Control of optoelectronic properties
 - Quantum confinement: use of geometry for the control of optoelectronic properties;
- III-V compounds allow a complete set of materials for bandgap-strain engineering;
 - Light sources with efficient carrier injection and light emission (direct bandgap)
 - Engineering of mobility;
 - Material properties obtained by interpolation
 - InGaAsP or InGaAlAs /InP TELECOM
 - Nitrides: illumination blue ray
- III-V are obtained by crystal growth (MBE or MOCVD)
- Incompatibility to Silicon