LISTA 06 – ELETRICIDADE

1) Determine: (a) a massa de um grupo de prótons com uma carga total de 1 C e (b) a carga total de 1 kg de prótons.

Resposta: (a) $1,06 \times 10^{-8} kg$ (b) $9,5 \times 10^{7} C$

2) Qual é a razão entre a força elétrica e gravitacional para: (a) dois elétrons e (b) dois prótons.

Resposta: (a) 4, 2 \times 10⁴² (b) 1, 6 \times 10³⁶

3) Determine o valor do campo elétrico a uma distância de 0,2 m, 0,5 m e 0,8 m de uma carga de 2×10^{-10} C.

Resposta: (a) 45 N/C (b) 7,2 N/C (c) 2,8 N/C

4) Qual é a energia potencial de um elétron que está a 20 cm de uma carga com 6 × 10⁻⁸ C. Quanto trabalho é necessário para levar o elétron para bem longe da carga?

Resposta: (a) $U = -4.32 \times 10^{-16} J$ (b) $W = 4.32 \times 10^{-16} J$

5) A energia potencial U de um próton é de 3×10^{-18} J em um ponto particular. Qual é o potencial elétrico V neste ponto?

Resposta: V = 18,75 V

6) O campo elétrico em uma membrana celular de 8 nm de espessura é de 7.5×10^6 N/C. O sentido de **E** é para o interior da célula. Estime a ordem de grandeza da relação existente entre a força elétrica sobre um íon K^+ no interior da membrana e o peso deste íon.

Resposta: $Raz\tilde{a}o = 1$, 9×10^{12}

- 7) O campo elétrico em uma membrana celular de 8 nm de espessura é de 7.5×10^6 N/C. O sentido de **E** é para o interior da célula. Calcule:
 - a) O potencial de repouso desta célula;
 - b) As variações da energia potencial de um íon K^+ , quando entra e sai dela;
 - c) As mesmas variações para um íon $\mathcal{C}l^-;$ e
 - d) Os sentidos das forças elétricas sobre estes íons.

Resposta: (a) 60 mV (b) $9,6 \times 10^{-18}$ (c) $-9,6 \times 10^{-18}$

8) Um capacitor de placas paralelas tem uma separação de 0,1 mm entre as placas. Qual deve ser a área das placas para que alcance uma capacitância de 1 F?

Resposta: Á $rea = 11, 3 km^2$

- 9) Um capacitor com 150 pF consiste em placas de 7 cm^2 de área, separadas por uma lâmina plástica de 0,2 mm de espessura. Qual é a permissividade elétrica do plástico? **Resposta:** $\epsilon = 4,8\epsilon_0$
- 10) Os fluidos intracelular e extracelular são condutores ou isolantes? E a membrana celular? Justifique suas respostas.

Resposta: Fluidos Intra/Extra condutores; membrana isolante

- 11) O potencial de repouso da membrana de um axônio é de -80mV. Sua capacitância C por unidade de área A é de $2 \times 10^{-2} F/m^2$.
 - a) Calcule a densidade de carga superficial sobre este axônio.
 - b) Explique como, a partir dos valores citados no enunciado, podemos concluir que a densidade de carga na superfície interna dessa membrana é negativa.

Resposta: (a) 1, $6 \times 10^{-3} C/m^2$ (b) 80 mV de fora para dentro.

12) A capacitância de muitas membranas biológicas é da ordem de $1\mu F/cm^2$. A membrana é essencialmente lipídica com permissividade relativa 3,0. Qual é a espessura efetiva da membrana?

Resposta: d = 2.7 nm

- 13) Medidas realizadas em um axônio detectaram um potencial de repouso V = -70 mV. A espessura da membrana desse axônio é de 6 nm e sua permissividade relativa é 6,0.
 - a) Calcule a intensidade do campo elétrico na membrana.
 - b) Determine a densidade de cargas σ nas superfícies da membrana.
 - c) Considere x como uma coordenada na direção perpendicular à membrana; faça os gráficos de E, σ e V em função de x, mostrando como essas grandezas variam na membrana e dentro/fora do axônio.

Resposta: (a) 11,7 N/C (b) 6, $2 \times 10^{-10} C/m^2$

14) Admita que, em uma célula, a concentração intracelular de íon Cl^- seja 0,025 M/l. Qual será a concentração extracelular, se o potencial de Nernst para o Cl^- for de - 72mV?

Resposta: 0,43 M/litro

- 15) Medidas realizadas em um axônio, mantido em um meio a 17°C, mostraram a existência de um potencial de repouso de -75 mV. A capacitância desta membrana por unidade de área é $2 \times 10^{-2} F/m^2$.
 - a) Calcule a razão entre as concentrações de K^+ no interior da célula e nesse meio.
 - b) O resultado obtido no item anterior é exato? Justifique.
 - c) É possível obtermos, com os dados do enunciado, a razão entre as concentrações de Na^+ ? Justifique.

Resposta: (a) 20 (b) Não é exato (c) 20