Experimento 2

VELOCIDADE DE BOMBEAMENTO DE UMA BOMBA MECÂNICA

1. Introdução

O objetivo deste experimento é determinar a velocidade de bombeamento de uma bomba mecânica de palhetas rotativas e o volume da câmara de Bombeamento. Para isso injetaremos um fluxo contínuo e constante de gás admitido numa câmara fechada (isolada da bomba) que se encontra numa pressão inicial P₀, e em seguida, estudaremos o decaimento da pressão numa câmara de vácuo bombeada pela bomba mecânica. Todos os conceitos envolvidos estão detalhados nos slides das aulas nos textos sugeridos. Muito cuidado com as unidades!

2. Fundamentos

Quando um fluxo contínuo e constante de gás é admitido numa câmara fechada (isolada da bomba) que se encontra numa pressão inicial P₀, a pressão sobe linearmente com o tempo conforma a equação:

$$P = P_0 + (Q/V)t$$
 (3)

Determina-se V a partir do gráfico P x t.

Em seguida, acompanha-se o decaimento da pressão *P*, na câmara associada à bomba a partir de uma pressão previamente estabelecida, *P*o. O decaimento da pressão é regido pela equação:

$$P = Po \exp[-(S/V)t] + Peq \qquad (2)$$

onde V é o volume da câmara, S a velocidade de bombeamento, *t* o tempo, e *Peq* é a *pressão final de equilíbrio* na câmara, também chamada de *pressão residual*. Portanto, a partir de um gráfico semi-log (*P-Peq*) x *t*, determina-se, desde que se conheça V, o valor de S.

3. Sistemas experimentais

Os dois sistemas experimentais neste experimento encontram-se representados esquematicamente na Fig. 1. Os sistemas I e II serão usados para medir as velocidades de bombeamento das respectivas bombas pelos métodos da corrente molecular e do decaimento da pressão, respectivamente. Um osciloscópio de armazenamento (Tektronix TBS 1062) pode ser usado no sistema II para a aquisição de dados de pressão na câmara em função do tempo.

Figura 1. Representação esquemática dos dois sistemas de vácuo para medidas de velocidade debombeamento.

É extremamente importante lembrar que, de um modo geral, as medidas de velocidade de bombeamento não são, devido a dificuldades de montagem, feitas na boca das bombas, mas sim numa região próxima à boca, onde se encontra o sensor de pressão. Nos dois sistemas, entre o sensor de pressão e a boca da bomba rotativa, existe uma tubulação ao qual está associada uma impedância e, portanto, a velocidade de bombeamento, na seção do tubo onde se encontra o sensor, é menor que a velocidade na boca da bomba. Se esta impedância for pequena em relação à velocidade de bombeamento da bomba, então o valor de *S* medido será aproximadamente igua lao *S* verdadeiro.

4. Procedimento experimental

No que se segue, para simplificar, os termos fluxo de gás e corrente molecular serãousados como sinônimos.

Etapa 1. Calibração do manômetro capacitivo

O manômetro de membrana capacitiva será empregado nas medidas de 3 pressão em função do tempo, e deverá ser calibrado no sistema da Fig.1 conforme comentado acima. Dê parida na bomba, abra a válvula gaveta e, mantedo as bombas em funcionamento, admita ar no sistema com a válvula agulha fazendo variar a pressão entre 1 x 10-3 e cerca de 6 Torr (6 Torr = 7,98 mbar) aproximadamente. Chame de P e PP as pressões nos manômetros capacitivo e Pirani respectivamente, e tome pares de valores

(P,PP) suficientes para se ter uma curva de calibração com uma alta densidade de pontos de modo a corrigir efetivamente as leituras do manômetro capacitivo.

Etapa 2 - Determinação do volume, V, da câmara.

O Sistema II deverá ser usado. A determinação de *V* é necessária para que se determine *S*. Inicialmente, conecte o canal 1 do osciloscópio na saída do controle eletrônico do sensor de membrana capacitiva de modo a prepará-lo para a aquisição dos dados de pressão na câmara em função do tempo. A seguir, com VC e VA fechadas, ligue a bomba, fazendo vácuo na câmara através de VR até a pressão se estabilizar. Feche VR, isolando a câmara da bomba e, abrindo cuidadosamente a válvula agulha (VA), admita ar na câmara através do fluxômetro. Estabeleça uma corrente molecular fixa (algum valor entre 15 e 20 sccm, mas sem ultrapassar 20 sccm, que é o valor máximo que pode ser medido com confiabilidade pelo aparelho). Inicie em seguida a aquisição de dados com o osciloscópio ou como preferir. Interrompa a aquisição e feche VA antes que a pressão chegue a 10 mbar (fundo de escala do sensor de membrana capacitiva). A correte molecular e os pares de valores (P,t), t=tempo, são o que é preciso para determinar *V*.

Etapa3 - Medida de S pelo método de decaimento da pressão.

O Sistema II será usado. O osciloscópio (ou filmagem, etc) será empregado da mesma forma que no item anterior. Com VC e VA fechadas, faça vácuo na câmara até a pressão se estabilizar. Feche VR e através de VA admita ar na câmara até a pressão chegar a algum valor perto de 5 mbar, fechando VA em seguida. Inicie então a aquisição dos dados de pressão em função do tempo e logo após abra VR. A pressão vai cair enquanto o osciloscópio registra P x t. Interrompa a aquisição pela interface quando a pressão chegar em 1 mbar, aproximadamente. Desligue a bomba. Os dados armazenados no osciloscópio são o que é preciso para a determinação de S.

IMPORTANTE: Como as pressões que deve ter medido são muito maiores que a pressão de equilíbrio na câmara, P_{eq} (verifique) esta última pode ser desprezada na Eq. 2, e no cálculo acima.

Repita os passos 1 a 4 para três valores de Pressão inicial (5 mbar, 1 mbar, 0,5 mbar, digamos).

RELATÓRIO

(seguir o modelo do Plano de Desenvolvimento da Disciplina)

Resumo – Faça um resumo do relatório (em poucas linhas)

- I Introdução destaque os objetivos e a motivação para o estudo do experimento.
- II Descrição do experimento descreva como fez o experimento com informações de dados utilizados.

III - Resultados - Apresente os resultados em tabelas de forma clara com unidades e descrição dos parâmetros utilizados. Qual o volume da câmara? Apresente todos os gráficos pertinentes. Parte 1: calibração; Parte 2: P x t; parte 3: P x t

IV - Discussão - . Explique claramente o procedimento que usou nas suas determinações de V e S, indicando os cálculos. Provavelmente, os gráficos log(P – Peq) x t que obteve não são retilíneos em todo intervalo de pressão embora você tenha utilizado os trechos retilíneos para determinar S. Como você justifica (caso ocorra) a falta de linearidade de trechos de seus gráficos? 5. Deve ser lembrado que a velocidade de bombeamento na boca da bomba de seu experimento não é necessariamente a mesma que a velocidade de bombeamento na boca da câmara. Explique porquê. Explique também em que condições essas velocidades seriam iguais.

V – **Conclusão** – apresente as principais conclusões

APÊNDICE

COMO TRABALHAR COM O OSCILOSCÓPIO DE ARMAZENAMENTO DIGITAL TEKTRONIX TBS 1062 E SALVAR DADOS NO PENDRIVE

1. Conectar a saída do medidor de membrana capacitiva no canal 1 do osciloscópio. (Ver observação 2, abaixo).

2. Inserir o pendrive no osciloscópio.

3. Acertar a varredura e o ganho. (O traço deve aparecer).

3. Para iniciar a aquisição de dados, pressionar o botão Stop/Run. (O traço começa a aparecer do lado esquerdo da tela).

4. Para parar a aquisição, pressionar Stop/Run.

5. Depois que parar a aquisição, os dados podem ser salvos no pendrive. Pressionar então o botão que tem o desenho de uma impressora. Esperar até que a transferência para o pendrive seja realizada (vários segundos, o desenho de um pequeno relógio surge na tela). O nome da pasta salva (com o arquivo dos dados) aparece por poucos segundos na tela assim que a transferência termina.

Obs. 1. Os dados salvos correspondem exatamente ao conteúdo da tela.

Obs. 2. O osciloscópio não aceita pendrive com mais de 4GB.

Obs. 3. O pendrive pode ser inserido/retirado do osciloscópio sem acionar previamente nenhum comando neste último.

COMO TRABALHAR COM ARQUIVOS DE DADOS TOMADOS PELO OSCILOSCÓPIO DE ARMAZENAMENTO DIGITAL TEKTRONIX TBS 1062 NO POGRAMA ORIGIN 8.1

Nota: O Origin 8.1 do laboratório foi configurado de modo a trabalhar com ponto (ao invés de vírgula) e feitos outros ajustes. Tendo salvo no pendrive os dados adquiridos no osciloscópio (ver arquivo "Como trabalhar com o osciloscópio de armazenamento digital Tektronix"), trazê-lopara o computador e abrir o Origin 8.1.

Clicar: File. > Import > Import Wizard Na caixa de dálogo que aparece:

a). Em Import Files for Current Data Type, colocar: User Files Folder: filtro 1.

b). Em Data Source, clicar no pequeno quadrado com pontinhos e, na nova tela, escolher o arquivo dando 2 cliques em cima. Deve aparecer uma outra tela com três nomes de arquivo. Escolher o que tem extensão CH1.

[Se, ao se clicar duas vezes no nome do arquivo e o arquivo com

extensãoCH1 não aparecer, selecionar em Tipo: All Files (*.*)].

c). Clicar: Add Files > OK.

d). A caixa de diálogo anterior volta, e nela clicar em Finish. Aa caixa some e aparecem ascolunas do worksheet do Origin com as medidas.

Obs.: Se o filtro 1 não estiver disponível siga as instruções abaixo:

Clicar: File. > Import > Import Wizard

a) Em file: selecione o arquivo, e click em Add Files > OK

b) Click: Next, next, next, next (ou seja, até aparece a aba de "Data Columns")

c) escolha "comma" como divisor de colunas, pois o osciloscópio TBS 1062
cria colunas com vírgulas. Altere também a forma de apresentar número para 1,000.00.
ClickNext (para ver o resultado) e Next (pode-se salvar e adotar o filtro criado)
d) Finish (que inclui a importação de dados para o origin com a formatação escolhida

pelo filtroacima.