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Abstract: A hydrostatic pressure sensor based on morphology dependent 
resonances in a polymeric tube is presented. By internal pressurization, 
normal tensions will increase the device's size and shrink its wall thickness, 
inducing a shift in the resonant wavelengths of the resonator. Numerical 
simulations indicate that there are two modal regimes of sensitivity and a 
maximum achievable sensitivity, related to the device's geometry, 
constitutive material and analysed mode order. A sensitivity as high as 0.36 
± 0.01 nm/bar has been experimentally found for a 1.8mm diameter PMMA 
tube with wall thickness of 80µm. 
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1. Introduction 

Whispering-Gallery Mode (WGM) based devices have found application in a wide range of 
fields, from which can be cited laser cavity, spectroscopy, sensing and filters, amongst others 
[1–6]. The geometry of such devices is generally spherical or cylindrical, although other 
geometries such as bottles [7], bubbles [8], toroids [9] and more complex structures [10] have 
been successfully introduced which have found interesting applications in specific areas. As 
an example, micro disks were suggested for studying nonlinear effects [11] and, more 
recently, optomechanical interactions [12]. 

Great efforts have been directed to this class of photonic devices in order to understand its 
field dynamics and inherent effects, such as its morphological dependency, its leaky character, 
and further manipulation of the resonant fields. The studies carried out by B. R. Johnson, Lam 
et al. and Yang et al. clarify in detail the phenomenological interpretation and fundamental 
concepts of WGMs in spherical and cylindrical resonators [13–15]. 

Likewise, it is important to note the contributions given by Knight et al. and Little et al. 
describing the theory of excitation of WGMs through tapered fibers [16,17], a method that 
enhanced the power coupling efficiency up to 95% [2]. 

For sensing purposes, WGM based devices have been applied in many ways to measure 
environmental changes such as refractive index, chemical substances, and pressure [2,6,18–
20]. The latter has been exploited in many different forms, such as for flow pressure 
measurement [20] or hydrostatic pressure [19]. Ioppolo and Ötügen have modelled and 
experimentally demonstrated the spectral behaviour of the resonant modes of a WGM 
resonator under an applied pressure [21]. 

This present article contributes to the analysis of cylindrical cavities by introducing a 
theoretical study and experimental confirmation of polymethylmethacrylate (PMMA) 
capillary resonators applied as a pressure sensor. Basically, the sensor will be internally 
pressurized and a specific spectral response is expected since it will be related to the device's 
morphology. To investigate such a response, we shall first introduce the elastic behaviour of 
the polymeric capillary when it is internally pressurized, the dependency of the refractive 
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index through the elasto-optic effect and the mode response to the stimulus. Next, the 
experimental analysis for capillaries with different geometries will be discussed, including the 
fabrication process and possible drawbacks inherent to the excitation method and data 
acquisition. 

2. Theoretical model 

The presence of resonant fields in curvilinear geometries introduces a powerful concept of 
photon confinement, as it is not compulsory to have a well-defined refractive index step 
design, which is, au contraire, needed in Fabry-Perot based cavities, for instance. Such 
confinement, though, comes with a fundamental condition of scattering, which is clearly 
observed when Maxwell's equations are rearranged in such a way that allows comparison with 
Schrodinger's equation [13,15]. In cylindrical coordinates, {ρ, φ, z}, by a suitable change of 
variables, Maxwell’s equation for a TMz leads to a Schrodinger-like equation, as follows [15], 
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where m is the azimuthal mode order number; ( ) ( ) 2 2
0 0,  ,  (4 1) / 4m

TM TMV k U k mρ ρ ρ= + − , 

which can be interpreted as an effective potential with applied 

potential ( ) ( )2 2
0 0, 1TMU k k nρ ρ = −  . The term n(ρ) stands for the refractive index of the 

capillary, evaluated with n1 = 1.48 inside the capillary wall, defined as a ≡ ρout – ρint, or ρint < ρ 
< ρout, where ρint and ρout are the inner and outer capillary radii - as depicted in Fig. 1(a) -, and 

2n  elsewhere and 2
0kΠ ≡ , being the system eigen energy, where 0 02 /k π λ≡  the wave 

vector, with 0λ  being the associated wavelength. ( )0,zE kρ  is the scalar function for TMz 

mode and is represented by a suitable set of Bessel functions and Bessel-related functions. Its 
continuity over the entire space is taken implicitly by Eq. (1) and the following continuity 
conditions derived from Maxwell's equations: n(ρ)Ez(ρ,k0) and [1/n(ρ)]dEz(ρ,φ)/dρ. The 
derivation of the TEz mode equation is similar to the above mentioned despite on boundary of 
the guide, where the effective potential 0( , )m

TEV kρ diverges from ( )0,m
TMV kρ  by 

( ) ( ) [ ]2 n dn d d dρ ρ ρ ρ   , in modulus [15]. 

From the point of view of Eq. (1) as a Schrodinger-like equation, the existence of surface 
modes (SMs) emerges naturally, as the azimuthal correction - 2 2(4 1)4m ρ− - brings a 

geometrical, and fundamental, condition of confinement by which the wave is bound not just 
by a positive refractive index contrast - as it should be in Cartesian coordinates - but also by 
the geometry and the mode azimuthal correction as well. In this way, the wave could cease its 
harmonic form and exhibit an evanescent form even inside the waveguide. Because of such a 
condition, solid rods, spheres or any other curvilinear devices are capable of supporting a 
resonant field. Such superficial modes are the so-called Whispering Gallery Modes (WGMs). 
For capillaries - and other hollow devices - a second kind of mode is present as well, which is 
closely related to the wall thickness or, in other words, the Cartesian definition of bound 
waves. For such modes, named in this article as bulk modes (BMs), the confinement 
condition, as expected, is defined by both the inner and outer surfaces of the capillary, ρint and 
ρout, rather than the azimuthal correction: (4m2 - 1)/4ρ2. Figure 1(b) presents both TMz modes: 
surface and bulk, found in such devices. As usual in Quantum Mechanics, all state turning 
points are obtained by equalling the state energy, Π, to the effective potential, ( )0,m

TMV kρ . 
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Doing so for ( )2
0 0,m

TMk V kρ= , it will lead to a set of three turning points {ρ1, ρ2, ρ3}, as seen in 

Fig. 1(b). The first two points, {ρ1, ρ2}, delimit the bound state region, or the confined 
resonant field. Note that in SMs, the first turning point lies inside the wall, squeezing the 
mode against the external wall interface as long as m is increased. The third turning point, ρ3, 
brings the fundamental scattering condition to the device, where even a strongly confined 
mode has probability to couples to the vacuum, implying in curvature losses, since the 
azimuthal correction, (4m2 - 1)/4ρ2, vanishes for greater values of radial distance. For 
simplicity, the discussion of fundamental losses will be avoided, as this study just aims the 
resonant wavelength dependency on the internally applied pressure in a capillary resonator. 
Discussions in depth of curvature losses is found in [11] and its references. 

 

Fig. 1. a) Capillary describing the inner and outer radii - ρint and ρout -, the pressure applied, p - 
and its morphology response. b) Effective potential and turning points of surface modes SM, 
and bulk modes BM. The parameter ξ lies as the distance between the first two turning points, 
ρ1 and ρ2. 

By experiencing changes in the internal pressure, the effective potential shifts according to 
the applied strain over the wall, which yields both shape and refractive index change. The 
displacement, u(ρ,p), of a point with radial position ρ , inside the wall, for an applied internal 

pressure - p -, according to the Hooke law, in the plane stress approach, is given by [22] 

 ( ) ( ) ( ) ( )
22

2 2
, . . 1 1 .  ,int out

out int

p
u p

E

ρ ρρ ρ υ υ
ρρ ρ
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 (2) 

where the influence of the chosen material took place as the Young's modulus, E, and the 
Poisson's ratio, ν. For PMMA capillaries, the value of the these parameters are, respectively, 
2.2 × 104 bar (2.2GPa) and 0.37 [23]. The dynamics of both inner and outer radii, defined 
from Eq. (2) are, 
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as depicted in Fig. 1(a). 
The elasto-optic effect is proportional to the applied strain and, in the case of an internal 

pressurization, must have higher influence on the inner radius as u(ρint,p)>u(ρout,p) and 
equalling to the bulk at the outer radius, where is found under environment pressure. For a 
weak approximation in plane stress approach, the following expression models such effect, 

 ( ) ( )( ) 2 23
11 121

1

1
, ,

2 2
out int

out int

c cn
n p n p

E

υ ρ ρ ρρ
ρ ρ ρ

+ −   −  = +     −    
 (4) 

where c11 and c12 are the elasto-optic coefficients, being 0.3 and 0.297, respectively [24], and 
n1 = 1.48, for PMMA. From the averaged value of Eq. (4), 
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where n(ρ,p) - n1 → p.(4.7 × 10−7), when ρint → ρout. Therefore, in practical conditions, the 
elasto-optic effect may be considered as a secondary effect, yielding that the resonant 

dependency might be purely morphological, since it would be necessary higher pressure p  

10 bar) applied in a very thin capillary, and in such a condition, the device is likely being 
blown up before any perceptible wavelength motion due to the elasto-optic effect. 

From a heuristic approach, the normalized infinitesimal resonant wavelength deviation 

would vary according to the normalized mode confinement, ξ (see Fig. 1(b)), and resonant 

radial position shift, ρ, or explicitly, δλ¤λ = δξ¤ξ + δρ¤ρ . The mode confinement can be 

defined roughly as the distance between the two turning points, ξ ≡ ρ2 - ρ1, and the radial 

position as 
2

1

2

0( , )zd E k
ρ

ρ
ρ ρ ρ ρ=    [15]. Such expression has a limit when ρ1 tends to ρ2 = 

ρout, of which will lead to a closed expression, since, when ρ1→ρout, 0δξ →  and ρ → ρout. 

Therefore, δλ¤λ ≈δρout/ρout and, substituting (3) into, it yields, 
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where the dimensionless parameter γ  is defined as the ratio of the outer diameter, D = 2ρout 

and wall thickness, a – γ ≡ D/a - and shall be considered as a fundamental geometrical 
parameter from here so on. Note that the equation found approaches asymptotically to S∞ = 
λ0(γ-3)/2E. 

In addition, Eq. (6) lies as a morphological limitation over the achievable sensitivity. 
Analysing such infinitesimal displacement for BMs, the distance between the two turning 
points becomes the wall thickness, ξ → a, and, as an implication of the elastic behaviour, δξ = 

δa = u(ρout,p) - u(ρint,p) <0  Such result is expected by analogy to a quantum well, where the 
eigen energy, Π, depends on the inverse of the square well length, Π ∝ a−2, leading to a blue 
shift in the resonant wavelength. In that case, the sensitivity will, by definition, be lower than 
the one found in SMs, which is already asymptotically limited by Eq. (6). 

In order to calculate the resonant wavelength shift as function of the applied pressure, it is 
just necessary to include the moving radii positions for an applied pressure, expressed in Eqs. 
(2) and (3), in the two continuity condition already mentioned, evaluated at each turning point 
{ρ1, ρ2}, of which yield a four degrees of freedom homogeneous system. Solving numerically 
the its determinant for a given value of the azimuthal mode order number m, its roots should 
lead to a series of resonant wavelengths of the given effective potential ( )0,m

TMV kρ , where 

each resonant wavelength found can be indexed by two numbers, (q,m), where q represents 
the qth resonant wavelength of a given order mode m. Alternatively, by fixing k0 in a small 
spectral window, q would vary implicitly due to the uniqueness condition of the solution. 
Figure 2 depicts the numerical sensitivity data obtained for a series of values of γ for SMs and 
BMs (location in the effective potential indicated in the inset) at wavelengths near 1.5µm, 
which are also listed in the table beside the Fig. 2. The numerical simulation indicated that 
SMs might have sensitivity as high as the one given by Eq. (6) and BMs should have their 
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associated sensitivities scattered just below the curve, increasing with the azimuthal mode 
order number m. 

 

Fig. 2. Sensitivity dependence of resonant modes near 1500 nm of capillaries resonators 
surrounded by air for surface modes (i) and bulk modes (ii). Numerical data are listed in 
embedded table. 

The sensitivity dependency on the mode number m were investigated, where a resonator 
with γ = 10 (D = 2mm and a = 0.2mm) had its resonant modes simulated for various values of 
m, as shown in Fig. 3. The model states that the azimuthal mode order should play an 
important role in the sensitivity of bulk modes, as its values scale with m. However, the values 
found for SMs fluctuated around the analytical one, evaluated with Eq. (6), S(γ = 10) = 0.242 
nm/bar, with λ0 = 1.5µm. Such fluctuation could be explained by the resonant field form and 
its contribution to the sensitivity, since the mode radius ρ depends directly on its shape. 

 

Fig. 3. Sensitivity as function of the azimuthal mode number - m - for a capillary resonator 

with geometrical parameter γ = 10 (D = 2mm and a = 0.2mm). 

3. Sensor fabrication and experimental analysis 

The chosen method for suitably obtaining samples for pressure sensing is based on drawing of 
PMMA's capillaries preforms through a polymer optical fiber drawing tower. Important 
geometrical parameters such as external diameter and wall thickness can be monitored and 
tuned directly by changing the furnace temperature, feed and pulling velocities and internally 
applied pressure [25]. 

Capillary preforms with external diameter of few millimetres and dimensionless parameter 
γ ≡ D/a ≈7.7 were pulled at 210°C with tension of 60g. With these parameters, a standard 
diameter deviation of 1.8% through a 15m long capillary was measured and the levels of 
partial hole collapse were kept bellow 10%. The hole deformation, in this case, is influenced 
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mainly due to the polymer surface tension [26]. Since a single capillary is being fabricated 
instead of a complex structure with adjacent holes - such as microstructured polymeric optical 
fibres -, there is no deformation due to the existence of adjacent holes and the partial hole 
collapse is minimized. Then, by varying the internal pressure and pulling velocity during the 
drawing, a variety of suitably samples was produced from this method, covering a wide range 
of outer diameter from about few hundreds of micrometres to 3 millimetres, and γ spanning 
from 2 to 25. A 4 × optical microscopy of a typical capillary is shown in Fig. 4(a). The typical 
value of the quality factor, Q-Factor, found for all produced PMMA capillaries with sub 
millimetric outer diameter is about 104. It is a poor value compared to other structures such as 
microspheres and bottles produced in silica (Q < 108) [1,27]. Such low value is due, 
fundamentally, to scattering induced by internal and external surface roughness and intrinsic 
material absorption at working range wavelengths - around 1.5 μm [6]. 

 

Fig. 4. a) A 4x optical microscopy of a typical capillary WGR used during the investigation. b) 
Diagram of the experimental apparatus used to investigate the device. 

Furthermore, the fabrication process limits the theoretical achievable sensitivity, as it is 
difficult to obtain reliable samples with wall as thin as 30µm, below which the fiber has its 
toughness strongly affected. In addition, the measurable pressure range might decrease 
(10bar) by the fact that thinner walls would no longer support higher pressure, being broken 

under such condition. 
A 2 µm thick silica fiber taper was used during all experiments to excite resonant modes 

in the capillary and collect the perturbed signal. The perpendicularly alignment of taper to the 
sample is essential to avoid possible coupling of helical modes in the capillary, maximizing 
the power exchange between the fiber taper fundamental mode and all phase-matched 
capillary resonant modes. An interrogation unit constituted by a tuneable laser system and a 
spectrometer with maximum resolution of 10 pm was used to launch an input signal and 
analyse the output signal coming from the sample via fiber taper. 

The pressurization system designed to perform all try-outs is depicted in Fig. 4(b). A 
pressure cell connected to a Nitrogen cylinder was used in order to control efficiently the 
capillary pressure. All experiments were performed in depressurization regime, because of 
better control over the applied pressure values. Figures 5(a) and (b) present, respectively, the 
resonant output sensitive for internal pressurization and three resonance displacement of three 
analysed samples with different values of γ, found in Table 1. 
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Fig. 5. a) Spectral output of a typical pressurized capillary resonator. b) Sensitivity range 
obtained experimentally. 

The reported capillary sensors here present higher-pressure range (1-10 bar) than those 
found in [19–21] where the applied pressure is in the mbar regime. Their sensitivity [19,20], 
however, is far greater than the reported values in this letter mainly due the material choice 
with lower Young Modulus - PDMS and silicone instead of PMMA. On the other hand, the 
sensitivity achieved in PMMA’s micro-sphere, (~0.2 nm/bar) [21], is agreement with those 
reported in this present study. As can be noted, therefore, the resonator’s material indeed 
plays a fundamental role in the device sensitivity. 

Table 1. Experimental sensitivity of samples with different γ. 

# 
D 

(µm)
a 

(µm)
γ 

D/a
S 

(nm/bar) 
1 308 82.8 3.7 0.02 ± 0.01 

2 711 58.9 12.1 0.15 ± 0.01 

3 1888 146.1 12.9 0.16 ± 0.01 

4 688 57.1 12.0 0.16 ± 0.01 

5 2161 157.5 13.7 0.17 ± 0.01 

6 2337 178.0 13.1 0.19 ± 0.01 

7 2624 193.0 13.6 0.21 ± 0.01 

8 1367 91.5 14.9 0.28 ± 0.01 

9 1638 85.2 19.2 0.30 ± 0.01 

10 1370 59.0 23.2 0.32 ± 0.01 

11 1826 79.9 22.8 0.36 ± 0.01 

 
The hypothesis that the sensitivity, despite the Young's modulus and mode order, should 

increase as function of the geometrical parameter γ , is experimentally supported as could be 

noticed in Table 1, where it is found all data from all samples analysed, and depicted in Fig. 
6(a). Possible fluctuations could be found, as the sensitivity depends on other physical 
parameters as well, such as the order mode and Young's Modulus, in which could be seen at 
samples #2, #3 and #4 in the Table 1. Moreover, the reproducibility was investigated using 
the sample #11. As could be seen in Fig. 6(b) and its inset, the sample was tested three times 
consecutively, and was found a slight modification on the sensitivity, (0.01nm/bar), of which 
is inside the device's deviation. It suggests that the morphology dependence of all geometrical 
attributes should be under elastic regime for the applied pressure range in question, rather than 
in a plastic regime, where structural deformations are likely to happen, evolving to a spectral 
accumulated hysteresis after several measurement attempts. 

Furthermore, as the pressure measurements usually do not exceed 10 minutes, thermal 
variations are not taken into account, and were not observed, since no hysteresis were noticed, 
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although for longer measurements it is indeed necessary to be aware of possible temperature-
induced wavelength displacement. As an example, in the limit case for a tight confined 
surface mode, the device's thermal sensitivity is given as ST ≈λ0(αT + βT), where αT≈5.05 × 
10−5 K−1 and βT ≈-1 × 10−4 K−1 [28] are the PMMA's linear expansion and bulk refractive 
index thermal coefficients, respectively. At λ0 = 1.55µm, the theoretical thermal sensitivity is 
around −0.05 nm/K, which clearly would become an issue, implying in considerably 
fluctuations over the spectral for long-time measurements. 

The fundamental limitation of the sensitivity pointed out in the theory still holds, as all 
experimental sensitivity data lies under the Eq. (6), even for Young's modulus of 3.1GPa 
(about the maximum achieved in the literature for PMMA [23]). Moreover, note that as long 
as γ increases, the deviation to the theoretical one rises. In fact, this effect may occur due to an 
eventual mismatching between the fundamental mode in the fiber taper and resonator's lower 
order modes [16,17,29], since each component (taper fiber and capillary) is made of different 
material with different refractive index - silica and PMMA. As reported in the literature, the 
selectiveness of resonant modes is closely related to the phase-matching and overlap of those 
with the fundamental mode of the fiber taper used [16,17]. Wang et al. concluded that, for 
high refractive index microsphere excited from 2 µm thick tapered SMF fiber, the phase-
matching benefits higher order resonant modes and this property can be tuned by changing the 
surrounding medium, resulting that the fundamental mode travelling through the fiber taper 
would increase its effective index, as well as the microsphere would have some higher order 
modes suppressed from the output spectrum, as their resonant conditions are no longer 
satisfied [29]. Hence, the taper dimensions and the surrounding medium - together the 
capillary's material and geometry - plays an important role to achieve higher sensitivity in the 
present device as well. 

 

Fig. 6. a) Dependence of the sensitivity as function of γ, of all samples listed in Table 1, 
compared with the analytical sensitivity (Eq. (6)) for two values of Young's modulus (2.2 and 
3.1GPa). b) Fitting of the reproducibility (at the inset) of consecutive measurements for the 
sample 11. Note that no hysteresis has been observed through the try-out, as indicated by each 
sensitivity value found at each test. 

The effective range of pressure measurements should be limited a priori by the rupture 
modulus of the PMMA, (0.7- 2.0) × 103 bar [23]. The wall thickness and the process of 
closure the capillary end, however, should decrease greatly this number. In fact, some samples 
have been tested until break, which usually happened around 10 to 15 bar, decreasing for 
capillary with thinner wall. Such issue can be overcome by fabricating greater resonators, 
with bigger wall's size, while maintaining higher values of γ. The bigger the resonator, 
however, the greater the mode density and the Q-factor, being necessary higher resolution 
(<10pm) optical characterization setup. 
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By employing other constitutive material, such as silica, it may improve the modal 
selectivity, since both fiber taper and capillary would be made by the same material. Worse 
sensitivity, however, must be expect, as silica has Young's modulus far greater than PMMA's 
one (about 73GPa, which yields 33 times greater than PMMA's one) [30], since the sensitivity 
is proportional to the inverse of the Young's Modulus. In the practical point of view, with 
such high Young modulus, the motion of the resonant wavelength would just be perceptible 
whether high pressure is applied, leading to a pressure insensitive device. 

This new pressure sensing approach can be applied to in-line multi-resonators for higher 
dynamic range pressure measurements. In this situation, distinct regions of the capillary can 
be processed to have different γ  parameter, spanning the operational range of sensitivity and 

applied pressure. This potential multiplexing capability is not easily performed with other 
resonators devices reported in literature [19–21]. 

4. Conclusion 

We have studied and demonstrated a pressure sensor based on the morphology dependent 
resonant modes of an internally-pressurized PMMA capillary. A theoretical model was 
described and analysed, showing two sensitivity regimes: for surface modes (SMs) and bulk 
modes (BMs) that interact with both the internal and external surfaces. The fundamental 
sensitivity upper limit was found to depend on the material's Young's modulus, resonant 
wavelength and the ratio of the outer diameter to wall thickness, γ. Numerical simulations 
indicate that SMs can offer sensitivities as high as the fundamental value and BMs would be 
less sensitive due to the wall width shrinkage and modal position within the capillary wall. 

Experimental results indicate that the device sensitivity indeed increases with increasing γ. 
A sensitivity as high as (0.36 ± 0.01) nm/bar was found for a capillary with γ = 22. The 
resonant mode excitation might be considered as well, since its order would influence directly 
the achievable sensitivity. 

Further studies are being directed to better understand the role of the phase-matching 
between the fiber taper mode and the capillary WGMs, as changing the geometry of the 
tapered fiber would change its fundamental mode’s propagation constant as well, thus 
permitting some engineering of the capillary modes spectra for better achievable sensitivity. 
Inherent to the powerful simplicity of the present device, it could be post processed in order to 
perform as an in-line multi resonator array, spanning the pressure and sensitivity range 
greatly. 
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