Introduçã

Física da Radiología-F852. Aula 3-4

Mário Antônio Bernal Rodríguez 1

¹Departamento de Física Aplicada-DFA Universidade Estadual de Campinas-UNICAMP Local-DFA 68 email: mabernal@ifi.unicamp.br url pessoal: www.ifi.unicamp.br∖ ∼mabernal

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X

Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo

Carga térmica do tubo

colimação Gerador de Rajos-X Circuitos do gerador

Fatores que afetam a emissão de

Potência do tubo

Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores. Produção de raios-X

Tubo de raios-X

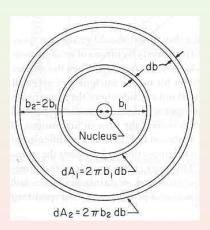
Gerador de Raios-X

Fatores que afetam a emissão de raios-X

Produção de

Produção raios-X

Tubo de raios-X Filtragem e


Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de

Potência do tubo Carga térmica do tubo

Produção de raios-X

Espectro de bremsstrahlung puro

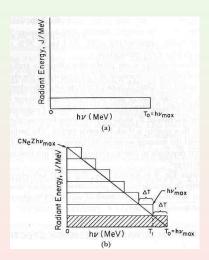
Intensidade da emissão (num film)

- N ∝ σ = 2πbdb
- $E \propto \frac{Z}{b}$
- I = k(constante)

Produção de rains-X

Tubo de raios-X

Gerador de Rajos-X


Circuitos do

Fatores que afetam a emissão de

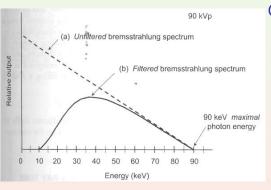
Carga térmica do

Produção de raios-X

Espectro de bremsstrahlung puro

Intensidade da emissão (foil e lâmina)

- $N \propto \sigma = 2\pi bdb$
- E ∝ Z/2
- I = k(constante)


Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de raios-X

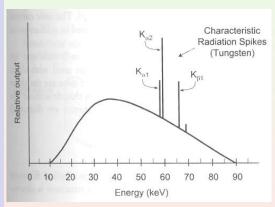
Potência do tubo Carga térmica do

Produção de raios-X

Espectro de bremsstrahlung puro

Características

- Espectro contínuo
- Energia
 máxima=potencial
 acelerador
- Auto-filtrado pelo próprio tubo (para energias baixas)


Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

Produção de raios-X

Espectro de raios-X

Características

- Espectro discreto superposto sobre espectro contínuo
- As linhas de emissão características correspondem ao alvo
- Para Tungstênio: $E_{K_{\alpha}1} = 59.32 keV$ $E_{K_{\alpha}2} = 57.98 keV$ $E_{K_{\beta}1} = 67.24 keV$

Produção de

raios-X

Tubo de raios-X Filtragem e colimação

Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de

Potência do tubo Carga térmica do

Tubo de raios-X

Eficiência de emissão

•

- $(\frac{d\sigma}{dW})_{Brem}/(\frac{d\sigma}{dW})_{Exc,lon} = \frac{E_k Z}{820}$, E_k en MeV
- Para Z=74 (Tungstênio) e elétrons de 100 keV,>99% da energia dos elétrons é convertido em calor
- Para Z=74 (Tungstênio) e elétrons de 6 MeV, esta razão é 54%

Filtragem e

colimação Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X

Tubo de raios-X

Filtragem e colimação Gerador de Raios-X Circuitos do gerador

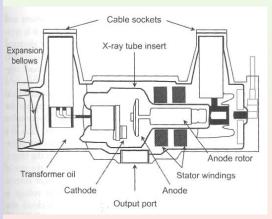
Fatores que afetam a emissão de raios-X

Potência do tubo

Carga térmica do tubo

Filtragem e

Gerador de Raios-X Circuitos do


Fatores que afetam a emissão de

a emissão de raios-X

Carga térmica do tubo

Tubo de raios-X

Diagrama de tubo rotatório real

Componentes mínimos

- Anodo
- Catodo
- Tubo ao vácuo
- Transformador de al voltagem
- Motor do alvo
- Janela de saída
- Potencial acelerador 20-150 kV
- Corrente 1-1000 mA

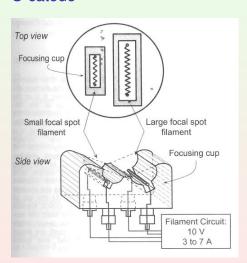
Produção de

Tubo de raios-X

Tubo de raios-

Filtragem e colimação

Gerador de Raios-X Circuitos do


Fatores que afetam

a emissão de raios-X

Carga térmica do

Tubo de raios-X

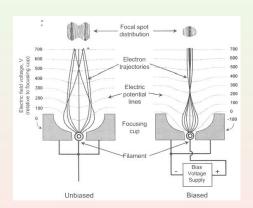
O catodo

- Dois filamentos de diferentes tamanhos
- Taça de focado
- Polarização ∼10 V
- Corrente de alimentação ∼ 3-7 A
- Emissão termo-iônica

Filtragem e

colimação Gerador de Raios-X Circuitos do

Fatores que afetam


a emissão de raios-X

Potència do tubo

Carga térmica do tubo

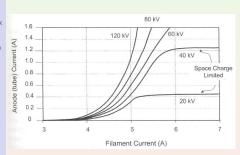
Tubo de raios-X

Focalização

- Mediante campo eletrostático
- $V_f = V_t$
- V_f >V_t (melhor focado)

Filtragem e

colimação Gerador de Rajos-X Circuitos do


Fatores que afetam a emissão de

Potência do tubo

Carga térmica do

Tubo de raios-X

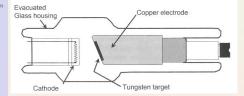
Itubo. VS. I filamento

 Ocorre saturação para V_{tubo} baixo. V_{tubo} baixo não tira suficientes elétrons e a nuvem de elétrons ao redor do filamento apantalha o campo gerado pelo potencial do tubo.

Filtragem e

Gerador de Raios-X

Circuitos do gerador


Fatores que afetam a emissão de raios-X

raios-X Potência do tubo

Potencia do tubo
Carga térmica do tubo

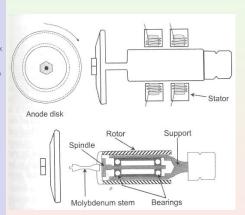
Tubo de raios-X

Anodo

- Fixo ou rotatório
- Material com Z alto inserido em cobre para suporte mecânico e extração do calor.
- Produz raios-X mediante bremsstrahlung e fluorescência
- Produz muito calor (baixa eficiência de raios-X). Tem que ser refrigerado

Filtragem e colimação

Gerador de Rajos-X Circuitos do


Fatores que afetam a emissão de

Potência do tubo

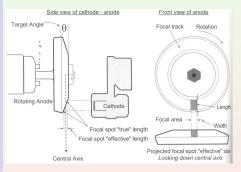
Carga térmica do

Tubo de raios-X

Anodo rotatório

- 3000-3600 rpm, motor monofásico
- 9000-1000 rpm, motor trifásico
- Melhora a dissipação do calor por maior área e massa do alvo
- $A=2\pi r \wedge r$

Filtragem e


colimação
Gerador de Raios-X
Circuitos do
gerador

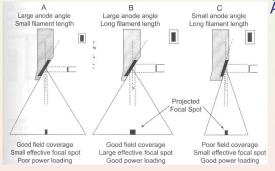
Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

Tubo de raios-X

Ponto focal

- Obtém-se por projeção
- Depende do ângulo do alvo e do tamanho do cátodo e da sua focalização
- Muito importante para a resolução espacial da imagem


Filtragem e colimação Gerador de Rajos-X Circuitos do

Fatores que afetam a emissão de

Potência do tubo Carga térmica do

Tubo de raios-X

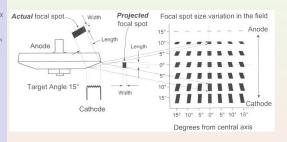
Ângulo do alvo-tamanho do cátodo

Ângulo do alvo

- 7-9° para campos pequenos (p.e. angiografia)
- 12-15° para campos grandes (p.e. radiografia)

Filtragem e

colimação Gerador de Raios-X


Circuitos do Fatores que afetam

a emissão de

Potência do tubo Carga térmica do

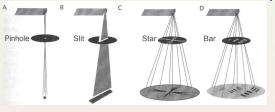
Tubo de raios-X

Ponto focal

- Tamanho varia com a posição no campo radiográfico
- Aumenta na direção anodo→ catodo

gerador

tubo


colimação Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de

raios-X

Potência do tubo Carga térmica do

Medição do Ponto focal

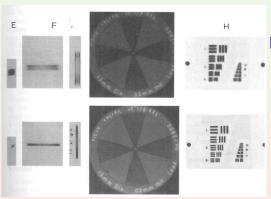
Padrões

Tubo de raios-X

- Pin-hole
- Ranhura ou fenda
- Estrela
- Barra

Filtragem e

colimação Gerador de Raios-X Circuitos do


gerador Fatores que afetam a emissão de

a emissão de raios-X

Carga térmica do tubo

Tubo de raios-X

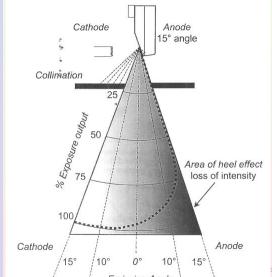
Medição do Ponto focal

Padrões

- Pinhole
- Ranhula
- Estrela
- Barra

Efeito de calcanhar

Tubo de raios-X


Filtragem e

Gerador de Rajos-X

Circuitos do

Fatores que afetam a emissão de

Potência do tubo Carga térmica do

Causa

Tubo de raios-X

Ocorre uma atenuação diferencial do feixe dependendo da direcção dos raios.

Filtragem e colimação

Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de raios-X

raios-X
Potência do tubo

Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X
Circuitos do gerador
Fatores que afetam a emissão de raios-X
Potência do tubo
Carga térmica do tubo

colimação Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de

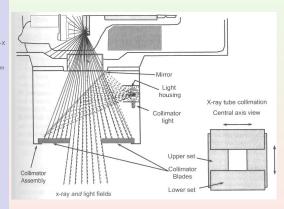
raios-X
Potência do tubo

Potência do tubo
Carga térmica do
tubo

Tubo de raios-X

Filtragem

- Inerente: Devido à janela de saída do tubo.
 Convencional: alumínio ou vidro. Mammografia:
 Berílio (para obter mais fótons de baixa energia).
- Adicional Agregado para endurecer (aumentar energia e o HVL) o feixe e assim diminuir a dose no paciente.
- O HVL é regulamentado por normas, segundo o kVp to tubo (trade-off dose qualidade de imagem).


Fatores que afetam a emissão de

a emissão de raios-X

Potência do tubo Carga térmica do tubo

Tubo de raios-X

Colimadores

Causa

- Definem o campo de irradiação
- Uma lâmpada é usada junto com um espelho para simular o campo de radiação
- Ajuda a evitar irradiação não necessário de tecidos

Capitulo

Produção de

Tubo de raios-X Filtragem e colimação

Gerador de Raios-X

Gerador de Raios

gerador

Fatores que afetam a emissão de raios-X

raios-X Potência do tubo

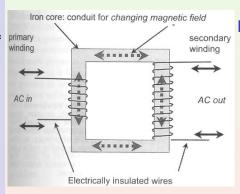
Carga térmica do tubo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X Filtragem e colimação

Gerador de Raios-X

Circuitos do gerador Fatores que afetam a emissão de raios-X Potência do tubo Carga térmica do tubo Gerador de Raios-X Circuitos do


Fatores que afetam a emissão de

raios-X Potência do tubo

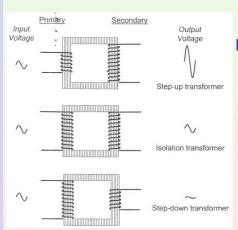
Carga térmica do tubo

Geração de raios-X

Transformadores

Funcionamento

- Permitem elevar o reduzir a voltagem de uma corrente alternada
- Baseiam-se no fenômeno da indução eletromagnética


Fatores que afetam a emissão de

Potência do tubo

Carga térmica do

Geração de raios-X

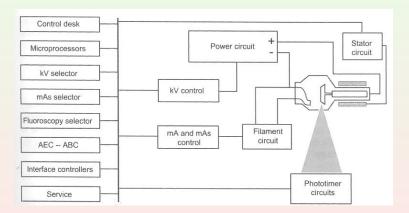
Transformadores

Propriedades

- A frequência da corrente não muda, só a sua amplitude
- $\frac{V_P}{V_S} = \frac{N_P}{N_S}$
- $V_PI_P = V_SI_S$ (transformador ideal)

Filtragem e colimação

Gerador de Raios-X Circuitos do gerador


Fatores que afetam a emissão de

a emissão de raios-X

Carga térmica do tubo

Geração de raios-X

Componentes de um gerador de raios-X

colimação

Gerador de Raios-X Circuitos do

gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X Filtragem e colimação Gerador de Raios-X

Circuitos do gerador

Fatores que afetam a emissão de raios-X Potência do tubo Carga térmica do tubo

Capítulo !

Produção de

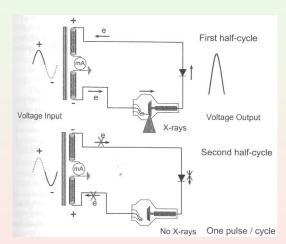
raios-X Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X

Circuitos do

gerador


Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

tubo

Circuitos do gerador

Rectificador de meia onda. Monofásico

Capítulo 5

Produção de

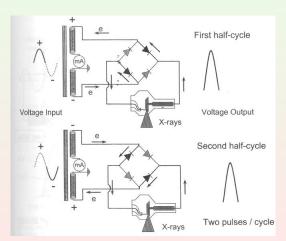
raios-X Tubo de raios-X

Filtragem e

colimação Gerador de Rajos-X

dorador do ridioo

Circuitos do gerador


Fatores que afetam a emissão de raios-X

raios-X Potência do tubo

Carga térmica do tubo

Circuitos do gerador

Rectificador de onda completa. Monofásico

Capítulo 5

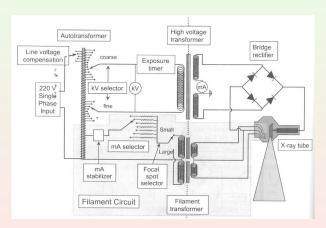
Produção de

Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X

Circuitos do gerador


Fatores que afetam a emissão de raios-X

raios-X Potência do tubo

Carga térmica do tubo

Circuitos do gerador

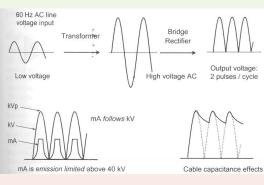
Diagrama de gerador monofásico

Produção de

Tubo de raios-X

Filtragem e Gerador de Rajos-X

Circuitos do


gerador

Fatores que afetam a emissão de

Potência do tubo Carga térmica do

Circuitos do gerador

Corrente alternada monofásica

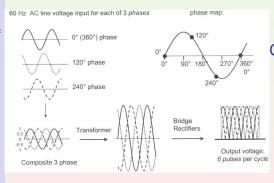
Características

- Só uma onda
- Corrente do tubo nã linear com a voltage para <40 kV
- Mínimo tempo de exposição limitado a 1/120 s

Produção de

Tubo de raios-X Filtragem e colimação

Gerador de Rajos-X


Circuitos do gerador

Fatores que afetam a emissão de

Potência do tubo Carga térmica do tubo

Circuitos do gerador

Corrente alternada trifásica

Características

 Três ondas defasadas 120° entr si

Filtragem e colimação Gerador de Rajos-X

Circuitos do

gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

tubo

Circuitos do gerador

Formas de ondas

Generator type	Typical voltage waveform	kV <u>ripple</u>
Single-phase 1-pulse (self rectified)	\bigcap	100%
Single-phase 2-pulse (full wave rectified)	\bigcap	100%
3-phase 6-pulse		13% - 25%
3-phase 12-pulse		3% - 10%
Mediumhigh frequency inverter		4% - 15%
Constant Potential		<2%

Fator de ondulação (Ripple factor)

- $R = \frac{V_{max} V_{min}}{V_{max}} 100\%$
- Menor com corrente trifásica

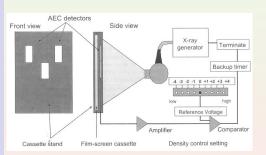
Capítulo !

Produção de

Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X


Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

Controle do tempo de exposição

Circuito de controle

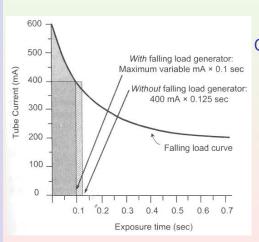
Características

- Usa detector (câmara de ionização ou diodo) para medir a exposição perto da película
- Un circuito compara a exposição com um valor previamente escolhido

M. A. B. Rodríguez

Capítulo : Produção de

raios-X
Tubo de raios-X
Filtragem e
colimação
Gerador de Bajos-X


Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do tubo

Controle do tempo de exposição

Circuito de carga decrescente

Características

- A carga começa pelo valor máximo que suporta o tubo
- Reduz o tempo de exposição com respeito à carga constante

Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de

raios-X Potência do tubo

Carga térmica do

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X Filtragem e colimação Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do tubo

Produção de

Tubo de raios-X Filtragem e Gerador de Rajos-X Circuitos do

Fatores que afetam a emissão de raine.X

Carga térmica do

Principais fatores

- Material do anodo: determina a eficiência de bremsstrahlung $(\propto Z)$ e a influi na qualidade da radiação (pelos raios-X característicos).
- Potencial do tubo: Determina a energia máxima do espectro o raios-X.
 - Exposição $\propto kVp^2$. Sem presença do paciente. Exposição $\propto kVp^5$. Com presença do paciente.
- Corrente do tubo: Influi na fluência de fótons
- Tempo de exposição: Exposição
 x tempo

Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

Principais factores

Exposição detrás do paciente

Capitulo

Produção de

Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X Circuitos do

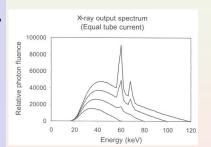
Fatores que afetam a emissão de raios-X

Potência do tubo Carga térmica do

Principais fatores

- Filtração do feixe: Modifica o espectro do feixe e atenua a flué de fótons. Os fótons de baixa energia são eliminados preferencialmente. O feixe se endurece.
- Forma de onda: O fator de ripple influi na qualidade do feixe. Maior ripple da onda diminui a energia média do feixe.

Gerador de Rajos-X Circuitos do


Fatores que afetam a emissão de raine.X

Carga térmica do

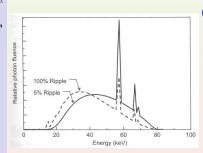
Fatores que afetam a emissão de raios-X

Influência do potencial no Comportamento espectro

- Determina a energia máxima
- Com altos kVp aparecem os pico característicos.
- Para uma filtragem, a energia mínima do espectro é independente do potencial do tubo
- A fluência de fótons aumenta. com o kVp

Tubo de raios-X

Gerador de Rajos-X Circuitos do


Fatores que afetam

a emissão de raine.X

Potência do tubo Carga térmica do

Fatores que afetam a emissão de raios-X

Influência da forma da onda

Comportamento

 Maior ripple diminui o potencial acelerador médio e assim, a energia média do feixe. Também diminui a fluência de fótons

colimação Gerador de Raios-X

Circuitos do gerador Fatores que afetam

a emissão de raios-X

Potência do tubo

Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X Tubo de raios-X Filtragem e colimação Gerador de Raios-X

Fatores que afetam a emissão de raios-X

Potência do tubo

Carga térmica do tubo

M. A. B. Rodríguez

Produção de

Produção o raios-X

Tubo de raios-X Filtragem e

Gerador de Raios-X Circuitos do

gerador Fatores que afetam

a emissão de raios-X

Potência do tubo

Carga térmica do

Cálculo da potência do tubo

- P_{ele} = VI
- Definição: P_{tubo} = kVpA_{max}, durante 0.1 s (devido a limitaçõe térmicas)
- Grandes pontos focais, altas velocidades de rotação do ânodo grandes massas e diâmetros do ânodo e pequenos ângulos o ânodo, contribuem a altas potências do tubo.

colimação Gerador de Raios-X

Circuitos do gerador Fatores que afetam

a emissão de

Potência do tubo

Carga térmica do tubo

Potência do tubo

Raiz quadrada da voltagem quadrática média

Generator Type	V_{rms} as a fraction of V_{peak}
Single-phase	0.71
Three-phase six-pulse	0.95
Three-phase 12-pulse	0.99
High-frequency	0.95-0.99
Constant-potential	1.00

Cálculo da potência do tubo

• $P_{tubo} \propto V_{rms}$

Tubo de raios-X Filtragem e

colimação Gerador de Rajos-X

Circuitos do gerador

Fatores que afetam a emissão de rains-X

Potência do tubo

Carga térmica do tubo

Potência do tubo

Uso de raios-X e seu demanda de potência

Generator Type	Power Level Usage	Applications	Typical Power Requirements (kW)
Single-pulse, one-phase	Very low	Dental and handheld fluoroscopy units	≤2
Two-pulse, one-phase	Low to medium	General fluoroscopy and radiography	≥10 and ≤50
Six-pulse, three-phase	Medium to high	Light special procedures	≥30 and ≤100
Twelve-pulse, three-phase	High	Interventional and cardiac angiography	≥50 and ≤150
Constant-potential	High	Interventional and cardiac angiography	≥80 and ≤200
High-frequency	All ranges	All radiographic procedures	≥2 and ≤150

M. A. B. Rodríguez

Capítulo

Produção de raios-X
Tubo de raios-X

Filtragem e colimação Gerador de Rajos-X

Circuitos do gerador Fatores que afetam

a emissão de

Potência do tubo

Carga térmica do tubo

Potência do tubo

Demanda de potência e tamanho do ponto focal

Nominal X-ray Tube Focal Spot Size (mm)	Typical Power Rating (kW)	
1.2–1.5	80–125	
0.8-1.0	50-80	
0.5-0.8	40-60	
0.3-0.5	10-30	
0.1-0.3	1-10	
<0.1 (micro-focus tube)	<1	

Maiores pontos focais produzem maiores correntes e demandam maiores potências

Gerador de Raios-X Circuitos do gerador

Fatores que afetam a emissão de

raios-X Potência do tubo

Carga térmica do tubo

Resumo

1 Produção de raios-X. Tubos e geradores.

Produção de raios-X

Tubo de raios-X

Filtragem e colimação

Gerador de Raios-X

Circuitos do gerador

Fatores que afetam a emissão de raios-X

Potência do tubo

Carga térmica do tubo

Produção de

Produção d raios-X

Tubo de raios-X Filtragem e

Filtragem e colimação

Gerador de Raios-X Circuitos do

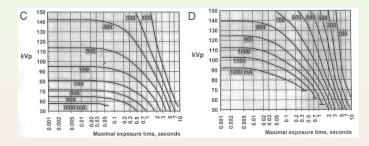
Fatores que afetam a emissão de

raios-X

Carga térmica do tubo

Definição da unidade de calor (HU)

- Energy(HU) = f V_{tubo}(kVp) I_{tubo}(mA) t_{exp}(s) f=1, corrente monofásica f=1.35, corrente trifásica f=1.40, corrente constante
- Energy(J) = $f V_{tubo}^{rms}(kVp) I_{tubo}(mA) t_{exp}(s)$ 1 HU=1.4 J (corrente monofásica)


Gerador de Raios-X Circuitos do

Fatores que afetam a emissão de raios-X

Carga térmica do tubo

Carga térmica

Curvas de carga térmica permitida

- C) ponto focal de 1.2 mm, carga=120 kW, w_{anodo} =3000 rpm
- D) ponto focal de 1.2 mm, carga=120 kW, w_{anodo}=10000 rpm