M. A. B. Rodríguez

Física da Radiología-F852. Aulas Cap. 10-2.

Mário Antônio Bernal Rodríguez¹

¹Departamento de Física Aplicada-DFA Universidade Estadual de Campinas-UNICAMP Local-DFA 68 email: mabernal@ifi.unicamp.br url pessoal: www.ifi.unicamp.br∖ ~mabernal Livro de texto fonte: J. T. Bushberg et al. The essential physics of medical imaging.

< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

M. A. B. Rodríguez

Resumo

M. A. B. Rodríguez

Capítulo 10

Resolução espacial Ruído

M. A. B. Rodríguez

O domínio da freqüência

Um ciclo de ranhura

Resolução espacial Buído

- A espessura da ranhura e a separação entre ranhura são iguais.
- O pulso quadrado simula um ciclo de um padrão de ranhuras
- A freqüência espacial é medida em ciclos/mm ou pares de linhas/mm
- Freqüências altas estão associadas a objetos pequenos

M. A. B. Rodríguez

Capítulo 10

Resolução espacial

Ruído

Diferentes componentes de freqüência (f)

Efeitos

transferência

Função de modulação da

- A amplitude dos sinais diminui depois de passar pelo sistema de formação de imagem.
- Os sinais com maior freqüência são mais atenuados.
- Um objeto qualquer está formado por estruturas com diferentes freqüência espacial.

ъ

・ロット (雪) ・ (日) ・ (日)

M. A. B. Rodríguez

Capítulo 10

Resolução espacial

Ruído

Função de modulação da transferência

Exemplo de MTF

- Esta função corresponde aos sinais mostrado na lâmina anterior.
- Quanto maior é a freqüência espacial da estrutura, menor é a eficiência de transmissão dessa informação para a imagem.

M. A. B. Rodríguez

Função de modulação da transferência

Capítulo 10

Resolução espacial Buído

Componentes da MTF

 A cada componente do sistema de formação de imagem lhe corresponde uma função MTF

•
$$MTF_{sist.l} = \prod_i MTF_i$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

M. A. B. Rodríguez

Exemplos

Capítulo 10

Ruído

MTF e Transformada de Fourier

M. A. B.

Testes

Rodríguez

Resolução espacial Ruido

Padrões de resolução espacial

				ш
		≣	≡	H

Line Pair Test Phantom

Section of a Star Pattern

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Ruído

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Ruído

Representação gráfica do ruído

- O ruído introduz uma componente aleatória ou estocástica na imagem. Tem a ver com a flutuação das grandezas associadas à imagem.
- Afeta a resolução espacial "subjetiva"

Ruído

Ruído

Professor Doutor. IFGW-UNICAMP

M. A. B. Rodríguez

Capítulo 10

Resolução espacial

Ruído

Distribuição Gaussiana

- A Radiología trabalha com radiações ionizantes. Sua interação com a matéria é de natureza estocástica.
- O desvio padrão de uma distribuição é uma medida das flutuações do sistema.

Ruído

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Ruído

Um pouco sobre distribuições

• Média;
$$\bar{x} = \frac{1}{N} \sum_{i+1}^{N} x_i$$

• Desvio padrão da distribuição:
$$\sigma = \sqrt{rac{\sum_{i=1}^{N}(ar{x}-x_i)^2}{N-1}}$$

M. A. B. Rodríguez

Capítulo 10

Resolução espacial

Ruído

Distribuições Gaussianas

Ruído

Características

 São simétricas ao redor da média

•
$$G(x) = ke^{-\frac{1}{2}(\frac{\bar{x}-x}{\sigma})^2}$$

•
$$FWHM = 2.35\sigma$$

 A moda coincide com a média

Ruído

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Buído

Distribuições Gaussianas

Intervalo de confiança

- 68% dos valores $\in (\bar{x} \pm \sigma)$
- 95% dos valores $\in (ar{x}\pm 2\sigma)$
- 99% dos valores $\in (ar{x} \pm 3\sigma)$

(日)

M. A. B. Rodríguez

Buído

Outras distribuições

- Esquerda: Distribuição homogênea •
- Direita: Distribuição angular de Compton

Ruído

M. A. B. Rodríguez

Capítulo 10

Resolução espacial

Ruído

Distribuição de Poisson

Propriedades

Descreve o processo de detecção da radiação.

Ruído

$$P(x) = \frac{m^x}{x!}e^{-m}$$

 $\sigma = \sqrt{\bar{x}}$

Quanto maior é a contagem de fótons, menor é o ruído.

Ruído relativo: σ/N

 $\begin{array}{l} {}^{l}_{80} \\ Razão sinal/ruído: \\ N/\sigma = \sqrt{N} \end{array}$

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Buído

Exemplos de ruído versus número de fótons

Photons/Pixel (N)	Noise (σ) ($\sigma = \sqrt{N}$)	Relative Noise (ơ/N) (%)	SNR (Ν/σ)
10	3.2	32	3.2
100	10	10	10
1.000	31.6	3.2	32
10,000	100	1.0	100
100.000	316.2	0.3	316

Ruído

(日)

 Quanto maior é o número de fótons detectados, menor é o ruído relativo e maior a razão sinal/ruído

Ruído

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Ruído

Eficiência quântica de detecção

•
$$QDE = rac{N_{detectados}}{N_{incidentes}}$$

•
$$SNR = \sqrt{N_{detected}} = \sqrt{(QDE \times N_{incidentes})}$$

Outras fontes de ruído

M. A. B. Rodríguez

Diagrama e gráfica

Capítulo 10 Resolução espacial Buido

Análise quântica

Stage	Description	System P	System Q
1	Incident x-ray photon	1	1
2	Detected x-ray photons	0.6	0.6
3	Light photons emitted by screen	30	300
4	Photons entering camera lens	0.3	3
5	Electrons generated in CCD	1.5	15

M. A. B. Rodríguez

Curvas características de análise (ROC)

Capítulo 10

Resolução espacial Ruído

Curvas de decisão

- t define o limiar de decisão e influi nas frações FN e FP
- $TPF = \frac{TP}{TP+FN} = Sensibilidade$
- $FPF = \frac{FP}{FP+TN}$
- Especifidade = $\frac{TN}{TN+FP}$

M. A. B. Rodríguez

Capítulo 10 Resolução espacial Ruído

Curvas características de análise (ROC)

Matriz de decisão

	Actually Abnormal	Actually Normal
Diagnosed as Abnormal	True Positive (TP)	False Positive (FP)
Diagnosed as Normal	False Negative (FN)	True Negative (TN)

M. A. B. Rodríguez

Curvas características de análise (ROC)

(ロ) (同) (三) (三) (三) (○) (○)

Capítulo 10 Resolução espacial Ruído

Curvas de desição

Curva A- SNR→0 Curva C- Quase- perfeição