Física da Radiologia-F852. Aulas Cap. 16-5.

Mário Antônio Bernal Rodríguez 1

¹Departamento de Física Aplicada-DFA
Universidade Estadual de Campinas-UNICAMP Local-DFA 68
email: mabernal@ifi.unicamp.br
url pessoal: www.ifi.unicamp.br∖ ∼mabernal
Livro de texto fonte: J. T. Bushberg et al. The essential physics of medical imaging.

M. A. B. Rodríguez

1 Ultrassom

Modalidade Doppler Controle de qualidade em ultrassom

Resumo

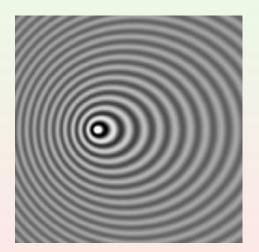
1 Ultrassom Modalidade Doppler

Controle de qualidade em ultrassom

Efeito Doppler

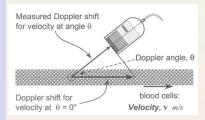
Fundamentos

- O efeito Doppler consiste em um aumento ou diminuição da frequência emitida por um objecto reflector em movimento
- Na área do ultrassom médico, este efeito é usado para estudar o fluxo sanguíneo através das artérias e veias
- Só consideraremos emissores fixos
- Para reflector se afastando $\Delta f = f_i f_r = \frac{v_r}{v_r + v_s} 2f_i$


M. A. B. Rodríguez

Capítulo 16 Modalidade

Doppler Controle de qualidade em ultrassom


Efeito Doppler

Fonte em movimento

Efeito Doppler

Diagrama

Fundamentos

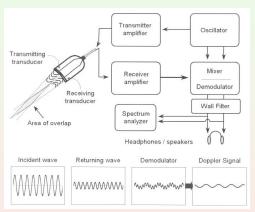
- No Doppler diagnóstico, a onda normalmente não se propaga na direcção do fluxo sanguíneo
- Nestas condições:

$$\Delta f = \frac{2f_i \ v \ cos(\theta)}{v_s}$$

- Para θ < 20 graus, a reflexão total interna e a refracção podem causar artefatos
- O Δf fica na parte audível do espectro, pode ser convertida em sinal audível

Efeito Doppler

Erros na velocidades do fluído


TABLE 16-7. DOPPLER ANGLE AND ERROR ESTIMATES OF BLOOD VELOCITY FOR A +3-DEGREE ANGLE ACCURACY ERROR

Angle (degrees)	Set Angle (degree)	Actual Velocity (cm/sec)	Estimated Velocity (cm/sec)	Error (%)
0	3°	100	100.1	0.14
25	28°	100	102.6	2.65
45	48°	100	105.7	5.68
60	63°	100	110.1	10.1
80	83°	100	142.5	42.5

Controle de qualidade er

Modo Doppler contínuo

Diagrama

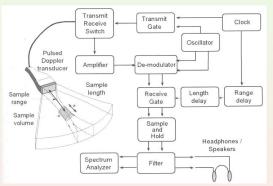
- No Doppler contínuo requer-se de um transdutor para emissão e um outro recepção
- Um filtro passa-baixo extrai o deslocamento de frequência
 Doppler

Modo Doppler contínuo

Características

- Tem alta dependência com a profundidade e o movimento das estruturas em estudo afetam a sua exatidão
- A superposição de várias estruturas impedem distinguir o sinal Doppler.
- O espectro Doppler é alargado quando a secção transversal do vaso é grande (devido ao perfil de velocidades).
- Vantagem: grande exatidão devido à estreita largura de banda usada.

M. A. B. Rodríguez


Capitulo

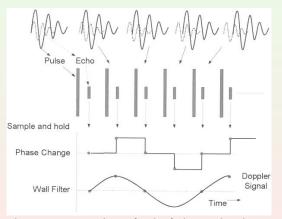
Modalidade Doppler

Controle de qualidade em ultrassom

Modo Doppler pulsado

Diagrama

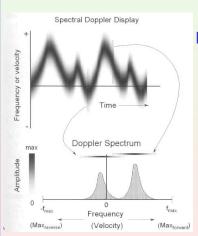
 Combina o uso de onda contínua para determinar a velocidade do fluxo com a resolução espacial de um pulso Controle de qualidade er ultrassom


Modo Doppler pulsado

Características

- Usa pulsos de 5-25 ciclos (em imagem usam-se 3) para melhorar a determinação do deslocamento de frequência a costa de perder resolução espacial
- A profundidade de estudo é escolhida mediante discriminação temporal dos ecos
- A PRF tem que ser duas vezes maior do que a frequência do deslocamento Doppler

Modo Doppler pulsado


Diagrama

 O deslocamento em frequência é determinado para vários pulsos

Modo Doppler pulsado

Espectro Doppler

Descripção

- Como o sangue tem um perfil de velocidade variável, o deslocamento em frequência (ou em velocidade) flutua
- O espectro de amplitude do deslocamento pode dizer se a fluxo é laminar (estreito) ou turbulento (largo)

Controle de qualidade em ultrassom

Modo Doppler pulsado

Diagrama

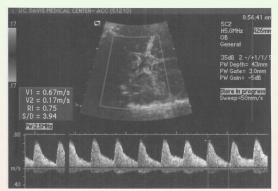


 Imagem Doppler com o correspondente espectro em deslocamento de frequência

Resumo

1 Ultrassom Modalidad

Modalidade Doppler

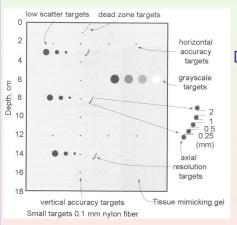
Controle de qualidade em ultrassom

6

Controle de qualidade

Fundamentos

- Principais parâmetros a controlar: sensibilidade, intervalo dinâmico, resolução espacial e de contraste, exatidão em medidas de distância, profundidade máxima de estudo, etc.
- Um programa de QA periódico é recomendado


TABLE 16-8. RECOMMENDED QC TESTS FOR AMERICAN COLLEGE OF RADIOLOGY (ACR) ACCREDITATION PROGRAM

Test (Gray Scale Imaging Mode) for Each scanner	Minimum Frequency
System sensitivity and/or penetration capability	Semiannually
Image uniformity	Semiannually
Photography and other hard copy	Semiannually
Low-contrast detectability (optional)	Semiannually
Assurance of electrical and mechanical safety	Semiannually
Horizontal and vertical distance accuracy	At acceptance
Transducers (of different scan format)	Ongoing basis

ultrassom

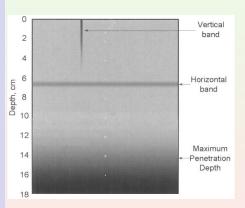
Controle de qualidade

Fantoma

Descripção

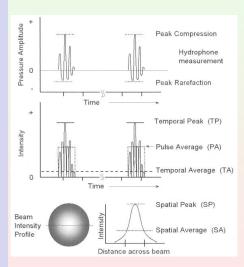
 Fantoma para avaliar resolução espacial e de contraste, exatidão de medidas de distâncias, entre outros parâmetros

Controle de qualidade


Fantoma

 Fantoma para avaliar resolução espacial elevacional. Na figura da esquerda pode-se apreciar o efeito de volume parcial com a profundidade.

Controle de qualidade


Fantoma

 Simulação de transdutor com problemas: barras vertical é horizontal. A profundidade máxima de resposta uniforme pode ser determinada (~ 12cm)

Controle de qualidade

Potencia de ultrassom

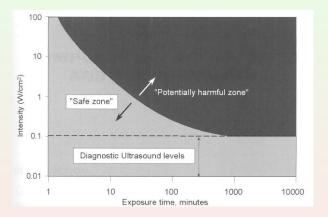
- Com ajuda de um hidrofone, pode se determinar a potência dos pulso de ultrassom
- O ultrassom pode esquentar o tecido e produzir efeitos biológicos indesejáveis

ultrassom

Potências típicas segundo o estudo

TABLE 16-9. TYPICAL INTENSITY MEASURES FOR ULTRASOUND DATA **COLLECTION MODES**

Mode	Pressure Amplitude (MPa)	I _{SPTA} (mW/cm ²)	I _{SPPA} (W/cm ²)	Power (mW)
B-scan	1.68	19	174	18
M-mode	1.68	73	174	4
Pulsed doppler	2.48	1.140	288	31
Color flow	2.59	234	325	81


Controle de qualidade

M. A. B. Rodríguez

Modalidade Doppler Controle de qualidade er ultrassom

Efeitos biológicos

Curva limite

A quantidade de energia entregue ao paciente deve ser limitada. Para $I < 0.1 W/cm^2$, não precisa-se limitar o tempo do estudo.