M. A. B. Rodríguez

Introdução

Física da Radiología-F852. Aulas Cap. 8-1.

Mário Antônio Bernal Rodríguez¹

¹Departamento de Física Aplicada-DFA Universidade Estadual de Campinas-UNICAMP Local-DFA 68 email: mabernal@ifi.unicamp.br url pessoal: sites.ifi.unicamp.br\ ~mabernal

(ロ) (同) (三) (三) (三) (○) (○)

Resumo

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

M. A. B. Rodríguez

Introdução

1 Mamografia

Introdução Disenho do tubo de raios-X Qualidade do feixe

Resumo

(日)

M. A. B. Rodríguez

Capítulo 8

Introdução

Disenho do tubo de raios-X Qualidade do feixe

Mamografia Introdução

Disenho do tubo de raios-X Qualidade do feixe

M. A. B.

Introdução

(日)

Rodríguez

Introdução

Disenho do tubo de raios-X Qualidade do feixe

Mudanças principais

A mamografia surgiu nos anos 50 mas tinha pouca validez diagnóstica devido ao pobre contraste e requeria de altas doses.

M. A. B. Rodríguez

Capítulo 8

Introdução

Disenho do tubo de raios-X Qualidade do feixe

Imagens com 10 anos de diferença

Same breast imaged 10 years apart

- •High kVp •Hard beam
- Early screen-film technology
- •Minimal compression

Lower kVp "Tuned"

- energy beam
- Current screen-film technology
- Better
 compression

Mudanças principais

- Diminuição do kVp
- Melhor espectro energético
- Maior compressão

Introdução

M. A. B. Rodríguez

Capítulo 8

Introdução

Disenho do tubo de raios-X Qualidade do feixe

Introdução

Atenuação pelos tecidos

- Pouco contraste entre os tecidos tumoral e glandular
- Melhor contraste ente 10 e 15 kVp (devido ao fotoefeito)
- A dose na mama deve ser limitada

(日)

M. A. B. Rodríguez

Capítulo 8

Introdução Disenho do tubo de raios-X Qualidade do feixe

> Mamografia Introdução Disenho do tubo de raios-X Qualidade do feixe

M. A. B. Rodríguez

Capítulo 8 Introdução

Disenho do tubo de raios-X Qualidade do feixe

Diagrama do aparelho

Tubo de raios-X

Cátodo e filamentos

- Tem dois pontos focais: 0.3 e 0.1 mm
- V_{tubo} <35 kVp
- I_{tubo}: 100 mA (ponto focal grande) e 25 mA (ponto focal pequeno)

Capítulo 8

Introdução Disenho do tubo de raios-X Qualidade do feixe

Ângulos do ânodos e tubo

O ânodo

Mudanças principais

- Ânodo de Molibdeno, Rhodio e Tungstênio
- Picos característicos: Mo (17.5, 19.6 keV), Rh (20.2, 22.7 keV)
- Ânodo rotatorio
- SID=65cm.
- Ângulo do ânodo: -9 a 16^o
- Pode-se inclinar o tubo para ajustar cobertura de campo

M. A. B. Rodríguez

Capítulo 8

Introdução Disenho do tubo de raios-X Qualidade do feixe

Efeito do calcanhar

O ánodo

Não sempre é negativo!

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

 Ajuda a alcanzar uma transmissão mais homogénea através da mama

M. A. B. Rodríguez

Projeção do ponto focal

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Ponto focal

Ponto focal

- 0.3-0.4 mm para mamografia sin magnificação
- 0.1-0.15 mm para mamografia com magnificação
- SID grande reduz a magnificação

 Diminui na direção cátodo-ánodo

・ロト・日本・日本・日本・日本・日本

 $tan(\theta - \phi)$

tanθ

Ponto focal

M. A. B. Rodríguez

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Pontos focais nominais e limites de tolerância

Nominal Focal Spot Size (mm)	Width (mm)	Length (mm)
0.10	0.15	0.15
0.15	0.23	0.23
0.20	0.30	0.30
0.30	0.45	0.65
0.40	0.60	0.85
0.60	0.90	1.30

Resumo

(日)

M. A. B. Rodríguez

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

 Mamografia Introdução Disenho do tubo de raios-X Qualidade do feixe

Espectros e qualidade do feixe

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Qualidade de imagem

- Feixe para relação dose-contraste ideal: 15-25 keV monoenergético (depende do espessura e composição da mama)
- Baixas energias→ aumentam a dose
- Altas energias→ diminuem o contraste

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

(a) Linear Attenuation Coefficient 2.0 1.8 Mo 1.6 д (ст¹) х 10³ 1.4 Rh 1.2 1.0 0.8 0.6 0.4 0.2 0.0 5 10 15 20 25 30 Energy (keV)

Atenuação linear para Mb e Rh

- Há um mínimo local antes do borde-K (K-edge)
- Os filtros do mesmo material do alvo reduzem os fótons de baixa e altas energía, em quanto atenuam pouco os picos característicos

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

Espectro sem filtragem

Espectro filtrado

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

Como otimizar o espectro?

- Bremsstrahlung
 → Raios-X característicos
- Filtrar as baixas e altas energias
- Usar o mesmo material para o ânodo e filtro adicionado

- Altas energias→ diminuem o contraste
- Bremsstrahlung→Raios-X característicos

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

Rh target -- 30 kVp 35 ---- unfiltered 30 --- 0.030 mm Mo x 10⁶ photons/mm² 25 - 0.025 mm Rh 20 15 10 5 5 10 15 20 25 30 Energy, keV

Espectros de Rh

- O Rh tem maior μ para baixas e altas energias
- Melhor espectro energético
- O filtro de Mo absorve bem os picos do Rh

UNICAMP M. A. B.

M. A. B. Rodríguez

Espectros e qualidade do feixe

Capítulo 8

Introdução Disenho do tubo de raios-X Espectros de Rh e Mo filtrados com Rh

 Os picos do Mo têm menor energia que a camada K do Rh (menos absorbidos)

・ロット (雪) ・ (日) ・ (日)

-

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

Espectro do Tungstênio

- Os picos correspondem à camada L
- Têm energia muito baixas, não desejáveis

・ コット (雪) (小田) (コット

ъ

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

Espectro do Tungstênio filtrado

 Precisa-se de 0.05 mm de Rh para atenuar o suficiente os picos da camada L do W

・ロット (雪) ・ (日) ・ (日)

-

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

HVL for Mo/Mo and Mo/Rh 0.50 Mo/Rh 0 45 HVL(mm AI) 0.40 0.35 Mo/Mo 0.30 0.25 20 25 30 35 40 kVp

Camada semiredutora

HVL

- Oscilam entre 0.3 e 0.4 mm de Al o 1-2 cm de mama
- Geralmente, aumentam com o kVp e Z do material do alvo
- Aumenta devido à filtragem do compressor de mama
- Influi na dose e qualidade de imagem

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

HVL mínimo

TABLE 8-2. REQUIREMENTS FOR MINIMUM HALF VALUE LAYER (HVL) MQSA: 21 CFR (FDA REGULATIONS) PART 1020.30; ACR: WITH COMPRESSION PADDLE

Tube Voltage (kV)	MQSA—FDA kVp/100	ACR kVp/100 + 0.03	
24	0.24	0.27	
26	0.26	0.29	
28	0.28	0.31	
30	0.30	0.33	
32	0.32	0.35	

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Espectros e qualidade do feixe

HVL máximo

TABLE 8-3.	ACR RECO	OMMENDATION	S FOR MAXIMUM	HVL: N	MAXIMUM HVL
(mm AI) =	kVp/100 +	C FOR TARGET	FILTER COMBINA	TIONS	

Tube Voltage (kV) Mo/Mo C = 0.12	Mo/Rh C = 0.19	Rh/Rh C = 0.22	W/Rh C = 0.30
24	0.36	0.43	0.46	0.54
26	0.38	0.45	0.48	0.56
28	0.40	0.47	0.50	0.58
30	0.42	0,49	0.52	0.60
32	0.44	0.51	0.54	0.62

O HVL alto pode indicar ânodo danificado.

M. A. B. Rodríguez

Rendimento do tubo

Capítulo 8

Introdução Disenho do tubo de raios-X

Qualidade do feixe

Dependência com o kVp para duas filtragens

Rendimento do tubo

- Aumenta quase linearmente com o kVp
- A filtragem produz um corrimento da curva toda