Models for transport

Surviving probability

The fractional change of the surviving probability as a function of the distance traveled by the particle z is:

$$
\frac{\mathrm{d} p_{\mathrm{s}}(z)}{p_{\mathrm{s}}(z)}=-\mu(z) \mathrm{d} z
$$

μ is the interaction probability per unit path-length and is equivalent to the macroscopic cross section and the Inverse mean free path

Models for transport

After having traveled a distance z, the probability for the particle survive is:

$$
p_{\mathrm{s}}(z)=\exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)
$$

And that for interacting

$$
c(z)=1-p_{\mathrm{s}}(z)=1-\exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)
$$

Notice that

$$
c(\infty)=1 \quad p_{\mathrm{s}}(\infty)=0
$$

Models for transport

After having traveled a distance z, the interaction probability per unit pathlength is

$$
p(z)=\frac{\mathrm{d}}{\mathrm{~d} z}\left[1-\exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)\right]=\mu(z) \exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)=\mu(z) p_{\mathrm{s}}(z)
$$

First, ther particle has to survive after traveling a distance $z\left(p_{s}\right)$, Then, it has a probability of interacting per unit path length μ.

Models for transport

Infinite, isotropic and homogeneous media:

$$
\begin{gathered}
p_{\mathrm{s}}(z)=e^{-\mu z} \\
c(z)=1-p_{\mathrm{s}}(z)=1-e^{-\mu z} \\
p(z)=\frac{\mathrm{d}}{\mathrm{~d} z}\left[1-e^{-\mu z}\right]=\mu e^{-\mu z}=\mu p_{\mathrm{s}}(z)
\end{gathered}
$$

Models for transport

Sampling of the free path between successive interactions:

$$
s=-\frac{1}{\mu} \ln (1-r)=-\frac{1}{\mu} \ln r
$$

Notice that r is as ramdon as (1-r)

Models for transport

Transport in finite media Interaction probability

$$
c(z)=1-p_{\mathrm{s}}(z)=1-\exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)+\exp \left(-\int_{0}^{z_{\mathrm{b}}} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right) \theta\left(z-z_{\mathrm{b}}\right)
$$

Condition: $\quad \mu(z)=0$ for $z \geq z_{\mathrm{b}}$
Interaction probability per unit path length:
$p(z)=\mu(z) \exp \left(-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu\left(z^{\prime}\right)\right)+p_{\mathrm{s}}\left(z_{\mathrm{b}}\right) \delta\left(z-z_{\mathrm{b}}\right)$

Models for transport

Transport in medium with different regions.

 Interaction probability:

$$
\begin{aligned}
p(z) & =\theta(z) \theta\left(b_{1}-z\right) \mu_{1}(z) e^{-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)} \quad 0 \quad \mathrm{~b}_{1} \quad \mathrm{~b}_{2} \mathrm{~b}_{3} \quad \mathbf{z} \\
& +\theta\left(z-b_{1}\right) \theta\left(b_{2}-z\right) \mu_{2}(z) e^{-\int_{0}^{b_{1}} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)} e^{-\int_{b_{1}}^{z} \mathrm{~d} z^{\prime} \mu_{2}\left(z^{\prime}\right)} \\
& +\theta\left(z-b_{2}\right) \theta\left(b_{3}-z\right) \mu_{3}(z) e^{-\int_{0}^{b_{1}} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)} e^{-\int_{b_{1}}^{b_{2}} \mathrm{~d} z^{\prime} \mu_{2}\left(z^{\prime}\right)} e^{-\int_{b_{2}}^{z} \mathrm{~d} z^{\prime} \mu_{3}\left(z^{\prime}\right)}
\end{aligned}
$$

Models for transport

Transport in medium with different regions

 Interaction probability written in a different form:

$$
\begin{aligned}
p(z) & =\theta(z) \theta\left(b_{1}-z\right) \mu_{1}(z) e^{-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)} \\
& +p_{\mathrm{s}}\left(b_{1}\right) \theta\left(z-b_{1}\right) \theta\left(b_{2}-z\right) \mu_{2}(z) e^{-\int_{b_{1}}^{z} \mathrm{~d} z^{\prime} \mu_{2}\left(z^{\prime}\right)} \\
& +p_{\mathrm{s}}\left(b_{2}\right) \theta\left(z-b_{2}\right) \theta\left(b_{3}-z\right) \mu_{3}(z) e^{-\int_{b_{2}}^{z} \mathrm{~d} z^{\prime} \mu_{3}\left(z^{\prime}\right)}
\end{aligned}
$$

Models for transport

Transport in medium with different regions
Condition probability for the particle to arrive in $z=b_{i}$ without interacting in region b_{i-1}

$$
p_{\mathbf{s}}\left(b_{i} \mid b_{i-1}\right)
$$

Probability for arriving in $z=b_{i}$

$0 \quad b_{1} \quad b_{2} \quad b_{3} \quad z$

$$
p_{\mathrm{s}}\left(b_{i}\right)=p_{\mathrm{s}}\left(b_{i-1}\right) p_{\mathrm{s}}\left(b_{i} \mid b_{i-1}\right)
$$

Interaction probability after having traveled a distance z

$$
p(z)=p\left(z_{1}, z_{2}, z_{3} \cdots\right)=p\left(z_{1}\right)+p_{\mathbf{s}}\left(b_{1}\right)\left[p\left(z_{2}\right)+p_{\mathrm{s}}\left(b_{2} \mid b_{1}\right)\left[p\left(z_{3}\right)+p_{\mathbf{s}}\left(b_{3} \mid b_{2}\right)[\cdots\right.\right.
$$

Models for transport

Interaction probability after having traveled a distance z

$$
\begin{aligned}
p(z) & =\theta(z) \theta\left(b_{1}-z\right) \mu_{1}(z) e^{-\int_{0}^{z} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)} \\
& +p_{\mathrm{s}}\left(b_{1}\right) \theta\left(z-b_{1}\right) \theta\left(b_{2}-z\right) \mu_{2}(z) e^{-\int_{b_{1}}^{z} \mathrm{~d} z^{\prime} \mu_{2}\left(z^{\prime}\right)} \\
& +p_{\mathrm{s}}\left(b_{2}\right) \theta\left(z-b_{2}\right) \theta\left(b_{3}-z\right) \mu_{3}(z) e^{-\int_{b_{2}}^{z} \mathrm{~d} z^{\prime} \mu_{3}\left(z^{\prime}\right)}
\end{aligned}
$$

$$
p(z)=p\left(z_{1}, z_{2}, z_{3} \cdots\right)=p\left(z_{1}\right)+p_{\mathrm{s}}\left(b_{1}\right)\left[p\left(z_{2}\right)+p_{\mathrm{s}}\left(b_{2} \mid b_{1}\right)\left[p\left(z_{3}\right)+p_{\mathrm{s}}\left(b_{3} \mid b_{2}\right)[\cdots\right.\right.
$$

Probabilities now depend on a single variable in each region and they are independent

Models for transport

Interacting probability in zone 1

$$
p\left(z_{1}\right)=\mu_{1}\left(z_{1}\right) \exp \left(-\int_{0}^{z_{1}} \mathrm{~d} z^{\prime} \mu_{1}\left(z^{\prime}\right)\right)+p_{\mathrm{s}}\left(b_{1}\right) \delta\left(z-b_{1}\right)
$$

Interacting probability in zone 3

$$
p\left(z_{2}\right)=\mu_{2}\left(z_{2}\right) \exp \left(-\int_{0}^{z_{2}} \mathrm{~d} z^{\prime} \mu_{2}\left(z^{\prime}\right)\right)+p_{\mathrm{s}}\left(b_{2} \mid b_{1}\right) \delta\left(z-b_{2}\right)
$$

Interacting probability in zone 3

$$
p\left(z_{3}\right)=\mu_{3}\left(z_{3}\right) \exp \left(-\int_{0}^{z_{3}} \mathrm{~d} z^{\prime} \mu_{3}\left(z^{\prime}\right)\right)+p_{\mathrm{s}}\left(b_{3} \mid b_{2}\right) \delta\left(z-b_{3}\right)
$$

Models for transport

Example with two zones divided by plane z=b

Interaction coefficient

$$
\mu(z)=\mu_{1} \theta(b-z)+\mu_{2} \theta(z-b)
$$

Global interaction probability

$$
p(z)=\theta(b-z) \mu_{1} e^{-\mu_{1} z}+\theta(z-b) \mu_{2} e^{-\mu_{1} b} e^{\mu_{2}(z-b)}
$$

For each zone:

$$
p\left(z_{1}\right)=\mu_{1} e^{-\mu_{1} z}+e^{-\mu_{1} b} \delta(z-b) \quad p\left(z_{2}\right)=\mu_{2} e^{-\mu_{2} z_{2}}
$$

Models for transport

By zone:

For $z<b$

$$
p\left(z_{1}\right)=\mu_{1} e^{-\mu_{1} z}+e^{-\mu_{1} b} \delta(z-b)
$$

For $z>b$ $p\left(z_{2}\right)=\mu_{2} e^{-\mu_{2} z_{2}}$

Relation between μ and σ

Consider a beam with cross section area A that impinges a foil with thickness $d z$ containing n target per unit volume

Interaction probability

$$
\begin{array}{lll}
\mathrm{d} p=\frac{n A_{\mathrm{b}} \mathrm{~d} z \sigma}{A_{\mathrm{b}}} & \rightarrow \\
\frac{\mathrm{~d} p}{\mathrm{~d} z}=n \sigma & \mu=\frac{\mathrm{d} p}{\mathrm{~d} z} & \mu=\Sigma=n \sigma
\end{array}
$$

