Computer Physics Communications 79 (1994) 111-114
North-Holland

Computer Physics
Communications

RANLUX: A Fortran implementation of the high-quality
pseudorandom number generator of Liischer

F. James
CERN, CH-1211 Geneva 23, Switzerland

Received 10 October 1993

Following some remarks on the quality of pseudorandom number generators commonly used in Monte Carlo
calculations in computational physics, we offer a portable Fortran 77 implementation of a high-quality generator called
RANLUX (for LUXury RANdom numbers), using the algorithm of Martin Liischer described in an accompanying
article. The implementation allows the user to select different quality or luxury levels, where higher quality requires
somewhat longer computing time for the generation. There is a convenient way of initialization (appropriate also for
massively parallel Monte Carlo computations) as well as two different methods of restarting from a break point.

PROGRAM SUMMARY

Title of program: RANLUX

Catalogue number: ACPR

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in
this issue)

Licensing provisions: none

Computer and operating system: Any system with a stan-
dard Fortran 77 compiler Has been tested on Apollo Unix,
IBM VM/CMS, Sun UNIX and DEC Vax systems.
Programming language used: Fortran 77 with no extensions
Memory required to execute with typical data: 4342 words
Number of bits in a word: 32 or more

Has the code been vectorised?: Not this implementation,
but see ref. [1]. This implementation is immediately ap-

propriate for massively parallel applications.

Number of lines in distributed program, including test data,
etc.: 454

Correspondence to: F. James, CERN, CH-1211 Geneva 23,
Switzerland

Keywords: pseudorandom, random, quality, luxury, chaotic
dynamical systems, massively parallel

Nature of physical problem
Any Monte Carlo or other calculation requiring a uniform
pseudorandom number generator.

Method of solution

The RCARRY subtract-with-borrow algorithm of Marsaglia
and Zaman is improved by the skipping proposed by
Liischer.

Typical running time

Between one and ten times the time required to generate
pseudorandom numbers of traditional low quality, depend-
ing on the luxury level and the platform.

Unusual features of the program
The user can choose the level of quality (luxury) he wants.

References
[11M. Liischer, Comput. Phys. Commun. 79 (1994)
100, this issue.

0010-4655 /94 /$07.00 © 1994 — Elsevier Science B.V. All rights reserved

SSDI 0010-4655(93)E0110-9

112 F. James / Fortran implementation of pseudorandom number generator of Liischer

LONG WRITE-UP

1. The quality of pseudorandom number
generators

In a review article [1] on the pseudoran-
dom number generators considered to be the
best available in 1990, I discussed their various
properties. Very little attention was given to the
quality or randomness property in that article,
largely because there was no satisfactory mea-
sure of quality, and in spite of the considerable
amount of research done on random number al-
gorithms, most of the judgment of randomness
was based on empirical testing and, even worse,
on the unjustified feeling that generators with
very long periods probably also had the best
distribution.

Fortunately the situation concerning the qual-
ity of pseudorandom number generators is now
changing rapidly, with a major contribution
coming from the work of Martin Liischer ap-
pearing in this journal [2]. To our knowledge,
the algorithm proposed by Liischer and imple-
mented in RANLUX is the first for which there
is convincing evidence of high quality.

Among the many random number generation
algorithms available to computational physi-
cists, the quality can vary tremendously. Near
the bottom of the scale are some generators dis-
tributed with PC software, which, as Hamilton
[3] says, are “certainly adequate for standard
‘PC-type’ applications, such as moving the fish
around in a screen saver”, but they should not
be used in Monte Carlo calculations where a re-
liable quantitative result is required. As Hamil-
ton also points out, personal computers are now
powerful enough to perform very serious Monte
Carlo calculations and they therefore need much
better random number generators.

The question of just how “good” a random
number generator has to be for a given applica-
tion is a difficult one. Typically a given generator
is assumed to be good enough until it produces
an obviously wrong result. Certain calculations
in theoretical physics, such as lattice QCD and
Ising model simulations, are known to be sensi-
tive to the quality of the random numbers and

regularly give rise to incorrect results directly at-
tributable to the inadequate quality of the ran-
dom number generator. One of the more spec-
tacular examples of this phenomenon is reported
in the recent paper of Ferrenberg et al [4].

In my own laboratory, CERN, large quanti-
ties of pseudorandom numbers are consumed
in the simulation of high-energy physics events.
One of the uses of such simulations is to test
the reconstruction programs; for such a purpose,
it is probably sufficient that the events be rela-
tively “typical”, and screen-saver quality may be
good enough. However, these simulated events
are also used to calculate detection efficiencies
in order to make quantitative corrections to ex-
perimental data; the quality required for this ap-
plication is certainly higher, but it is very hard
to determine what the requirements may be.

Consumers of random numbers who have not
yet discovered anomalies in their Monte Carlo
results often adopt a very optimistic attitude
about the quality of the generator they are us-
ing. Even Marsaglia himself, the discoverer of
the first known systematic defect in multiplica-
tive congruential generators back in 1968, has
been quoted more recently as saying: ‘A ran-
dom number generator is much like sex: when
it’s good it’s wonderful, and when it’s bad it’s
still pretty good.” While 1 don’t wish to com-
ment on this attitude toward sex, I do take issue
at the part concerning random numbers, since
I hold that a random number generator which
unknowingly gives you an incorrect result is not
only bad, it is catastrophic.

In view of the long and painful history of incor-
rect Monte Carlo results due to random number
generators of insufficiently good quality, I sug-
gest that where high-quality generators are avail-
able, consumers would do well to use the best
one, even if they are not sure it is needed. To
make another analogy, I would say that a ran-
dom number generator is much like a wine: it
is better to choose one which is too good for a
particular occasion than one which is not good
enough.

F. James / Fortran implementation of pseudorandom number generator of Liischer 113

2. The algorithm of Liischer

As this algorithm is treated very thoroughly
in an accompanying paper [2], it is sufficient
to describe it here very briefly. It is based on
the RCARRY generator [1,5] which has a very
long period (=~ 10!7!) but is now known to fail
several sensitive tests for randomness. Liischer’s
idea was simply to throw away some of the num-
bers produced by the generator and only deliver
a certain fraction to the user. More precisely, the
generator delivers twenty-four random numbers
to the user, then throws away p — 24 numbers
before delivering twenty-four more. Lischer
shows quite convincingly that the quality in-
creases continuously as p varies from 24 up to
389, at which point all 24 bits of mantissa are
thoroughly chaotic. The RANLUX generator
allows the user to choose any value of p from
24 (which corresponds to RCARRY) to 2000,
although there is certainly no point in choosing
a value larger than 389. Large values of p of
course cause the generator to run more slowly,
so the user must be able to afford the luxury
of high quality. On typical platforms, p = 389
runs between five and ten times more slowly
than p = 24. For many applications, this time
is still negligible; in such cases, the user should
not deny himself the luxury of demonstrably
good random numbers.

3. Subroutine RANLUX, calling sequence and
initialization

A vector of N random numbers is generated
by the Fortran call:

CALL RANLUX (RVEC, N)

where the REAL array RVEC must be dimen-
sioned greater or equal to N. If the user does
no initialization, a default initialization is per-
formed automatically, and the default luxury
level, corresponding to p = 223, is chosen. More
usually, the user will at least want to choose the
luxury (the value of p) himself, and often the
initialization as well. Several additional calls are
available for these options. In order to simplify

the choice of luxury, five standard levels are
defined:

elevel 0 (p = 24): equivalent to the original
RCARRY of Marsaglia and Zaman, very long
period, but fails many tests.

elevel 1 (p = 48): considerable improvement
in quality over level 0, now passes the gap test,
but still fails spectral test.

elevel 2 (p = 97): passes all known tests, but
theoretically still defective.

elevel 3 (p = 223): DEFAULT VALUE. Any
theoretically possible correlations have a very
small chance of being observed.

elevel 4 (p = 389): highest possible luxury,
all 24 bits of mantissa are chaotic.

Both the initialization and the setting of the
luxury level are performed with:

CALL RLUXGO (LUX, INT, K1, K2)

which initializes the generator from one positive
integer INT and sets Luxury Level to LUX if it
is an integer between zero and four, or if LUX is
greater than 24, it sets p =LUX directly. This al-
lows the user the convenience of choosing a stan-
dard luxury level, but also the freedom to choose
other values of p if desired. For initialization
(as opposed to restarting), K1 and K2 should be
set to zero. If INT is set to zero, the default ini-
tialization, corresponding to INT=314159265,
is produced. The 32-bit integer INT is used in-
ternally to initialize a multiplicative congruen-
tial generator which in turn initializes all the 24
seeds inside RANLUX. This means that two val-
ues of INT which differ by only one bit will cause
totally different initialization of RANLUX, and
each of the 23! different values of INT gives rise
to an independent sequence which will generate
on average about 10'%° numbers before overlap-
ping any sequence produced by any other value
of INT. This generator is therefore appropriate
for massively parallel applications.

Two different methods are available for
restarting the generator from a given break
point. Since the period is very long, the num-
ber of different internal states is very large, and
restarting requires the specification of a consid-
erable amount of information. This information
must be saved at every break point, that is ev-

114 F. James / Fortran implementation of pseudorandom number generator of Liischer

ery point where the user may want to restart the
calculation (for example, in order to repeat a
part of the calculation where some exceptional
event occurred). The call:

CALL RLUXUT (ISVEC)

saves in the integer array ISVECT (dimensioned
at 25) all the information needed to restart the
generator at the current point. Then the call:

CALL RLUXIN (ISVEC)

restores the generator to the exact state in which
it was when the vector ISVEC was saved by
RLUXUT.

Since it may not be convenient to save and
reload twenty-five integers, another method of
restarting is available. With this second method,
the state of the generator is saved in only four in-
tegers, but the restarting may be very long, since
the information saved is simply the initialization
information plus the number of random num-
bers generated since the last initialization, and
the restarting skips over all the numbers gener-
ated up to the break point. This is still faster than
repeating the whole calculation, of course. With
this method the information is saved by the call:

CALL RLUXAT (LUX,INT,K1,K2)

and restored by calling RLUXGO as for initial-
ization, except that K1 and K2 will now be the
values returned by RLUXAT instead of zero. In
fact the restarting call:

CALL RLUXGO (LUX, INT, K1, K2)

performs the initialization with LUX and INT
and then skips over K; + 10°K, internally gen-
erated values to bring it into the state it was in
when RLUXAT was called giving K1 and K2.

4. Test program

Since this generator is supposed to be portable,
the test program serves mainly to verify that the
user is getting the “right” numbers from the gen-
erator, namely those that I have obtained on all
the systems so far tried. The output which should
be produced by the test program is contained
as comments in the test program itself, so it is
easy to verify that it is correct. The test program
does test the restarting from break point using
both methods, but it does no statistical testing,
since these tests require big programs and mas-
sive amounts of computing.

References

[1]F. James, A review of pseudorandom number
generators, Comput. Phys. Commun. 60 (1990) 329.
[2]M. Liischer, A portable high-quality random number
generator for lattice field theory simulations, Comput.

Phys. Commun. 79 (1994) 100, this issue.

[3]K.G. Hamilton, Pseudorandom number generators
for personal computers, Comput. Phys. Commun. 75
(1993) 105; 78 (1993) 172.

[4] A. M. Ferrenberg, D. P. Landau and Y.J. Wong, Monte
Carlo simulations: hidden errors from “good” random
number generators, Phys. Rev. Lett. 69 (1992) 3382,

[5]1G. Marsaglia and A. Zaman, A new class of random
number generators, Ann. Appl. Prob. 1 (1991) 462.

