F602 Eletromagnetismo II

Turma C 2º Semestre - 2010 Márcio José Menon

Capítulo IV ONDAS ELETROMAGNÉTICAS EM MEIOS MATERIAIS

• ÍNDICE

- 1. Introdução: Meios Lineares e Plano Geral
- 2. Ondas Eletromagnéticas em Meios Não Condutores)
- 3. Ondas Eletromagnéticas em Meios Condutores
- 4. Dispersão Óptica em Meios Materiais (Condutores e Dielétricos)
- 5. Ondas Guiadas

1. Introdução: Meios Lineares e Plano Geral

- 1.1 Meios Lineares e Relações Constitutivas
- 1.2 Plano Geral do Capítulo

2. Ondas Eletromagnéticas em Meios Não Condutores

- 2.1 Equações de Maxwel e Equação de Onda
- 2.2 Índice de Refração
- 2.3 Transparência
- 2.4 Ondas Planas Monocromáticas
- 2.5 Densidade de Energia, Vetor de Poynting e Intensidade
- 2.6 Reflexão, Transmissão e Refração de Ondas Eletromagnéticas
 - 2.6.1 Estabelecimento do Problema e Condições de Contorno
 - a) Problema Físico e Notação
 - b) Condições de Contorno
 - 2.6.2 Incidência Oblíqua: Reflexão e Refração
 - a) Plano de Incidência e Funções de Onda
 - b) Fases: As Três Leis Básicas da Óptica Geométrica
 - c) Amplitudes: Polarizações s e p
 - c1) Formulação
 - c2) Condições de Contorno
 - c3) Polarizações s e p
 - d) Polarização p
 - d1) Funções de Onda
 - d2) Condições de Contorno
 - d3) Equações de Fresnell
 - d4) Ângulo de Brewster
 - d5) Coeficientes de Reflexão e Transmissão
 - d6) Exemplo Numérico
 - e) Polarização s Resultados
 - e1) Equações de Fresnell
 - e2) Coeficientes de Reflexão e Transmissão
 - f) Polarização por Reflexão
 - f1) Conceito
 - f2) Aplicações: Óculos Polaróide
 - 2.6.3 Comentários sobre Incidência Normal: Reflexão e Transmissão

3. Ondas Eletromagnéticas em Meios Condutores

- 3.1 Equações Básicas Dissipação de Cargas Livres
- 3.2 Equações de Maxwell e Equação de Onda
- 3.3 Ondas Planas e Número de Onda Complexo
 - 3.3.1 Partes Real e Imaginária do Número de Onda
 - 3.3.2 Absorção e Profundidade de Atenuação
 - 3.3.3 Transversalidade
 - 3.3.4 Amplitudes Complexas
 - 3.3.5 Reflexão e Transmissão numa Superfície Condutora
 - a) Condições de Contorno
 - b) Funções de Onda
 - c) Reflexão e Transmissão
 - d) A Física do Espelho

4. Dispersão Óptica em Meios Materiais (Condutores e Dielétricos)

- 4.1 Conceito e Definição
 - 4.1.1 Meios Condutores
 - 4.2.2 Meios Dielétricos
- 4.2 Velocidades de Fase e de Grupo
- 4.3 Modelo de Lorentz para Dielétricos
 - 4.3.1 Idéia Geral
 - 4.3.2 Hipóteses Básicas
 - 4.3.3 Suscetibilidade, Permissividade e Constante Dielétrica Complexas
 - 4.3.4 Coeficientes de Refração e de Dispersão
 - 4.3.5 Dispersão Anômala

5. Ondas Guiadas

- 5.1 Guias de Onda
 - 5.1.1 Resultados Gerais
 - 5.1.2 Ondas Transversal Elétrica (TE) e Transversal Magnética (TM)
 - 5.1.3 Ondas TE e Guia de Onda Retangular
 - a) Sistema Físico e Objetivos
 - b) Condições de Contorno
 - c) Separação de Variáveis
 - d) Frequência de Corte
 - e) Velocidade de Grupo
- 5.2 Comentários sobre Cavidade Ressonante
- 5.3 Comentários sobre Linha de Transmissão Coaxial

Referências do Capítulo

- David J. Griffiths, *Introduction to Electrodynamics*, <u>3rd edition</u> (Person Education, New Jersey, 1999), Seções 9.3, 9.4 e 9.5.
- Eugene Hecht, *Optics*, 3rd edition (Addison Wesley Longman, Reading, 1998), capítulos 3, 4, 7, 8 e Apêndice 1.
- M.J. Menon, R.P.B. Santos, *Condição de Causalidade, Relações de Dispersão e o Modelo de Lorentz*, Revista Brasileira de Ensino de Física, Vo. 20, N. 1, pp. 38 48, 1998.

• QUESTÕES PROPOSTAS

Os exemplos e problemas indicados, referem-se à referência principal (Griffiths, <u>3a.</u> edição).

1. Introdução: Meios Lineares e Plano Geral

Questão 1. a) O que significa um meio material linear?

b) Quais são as relações constitutivas que caracterizam um meio linear?

2. Ondas Eletromagnéticas em Meios Não Condutores

Questão 2. Considere um meio não condutor linear, com permissividade elétrica ϵ e permeabilidade magnética μ .

- a) Escreva as equações de Maxwell para os campos \vec{E} e \vec{B} , correspondentes a esse meio material.
- b) Qual a diferença básica dessas equações em relação às correspondentes no vácuo (questão 12, capítulo III)? Qual uma consequência imediata dessa diferença?
- c) Dê a definição de *índice de refração* n e mostre que para a maioria dos materiais

$$n \approx \sqrt{\epsilon_r}$$

onde ϵ_r é a constante dielétrica do meio.

- d) A transversalidade de uma onda eletromagnética (OEM) é obedecida num meio não condutor? Justifique a resposta e obtenha a relação entre as funções de onda $\vec{\mathbb{E}}(\vec{r},t)$, $\vec{\mathbb{B}}(\vec{r},t)$ e o vetor de onda \vec{k} .
- **Questão 3.** Explique o conceito de *transparência* de um meio material. Esse conceito implica em qual propriedade de uma OEM que passa de um meio transparente a outro? Por exemplo, ar-água, ar-vidro, etc.
- **Questão 4.** Sejam 2 meios transparentes de extensão infinita, com ϵ_1 , μ_1 e ϵ_2 , μ_2 e interface no plano z=0. Considere uma OEM propagando-se na direção $+\hat{z}$, do meio 1 ao meio 2, com *incidência normal* e polarizada na direção \hat{x} .
- a) Escreva as expressões dos campos associados à onda incidente $\vec{\mathbb{E}}_{\text{I}}(z,t)$, $\vec{\mathbb{B}}_{\text{I}}(z,t)$.
- b) Mostre que as polarizações das ondas refletida e transmitida são as mesmas da onda incidente (consulte Problema 9.14).
- c) Aplicando as condições de contorno para os campos elétrico e magnético na interface, mostre que as amplitudes (complexas) do campo elétrico obedecem:

$$\mathbb{E}_{\mathtt{OT}} = \frac{2}{1+\beta} \mathbb{E}_{\mathtt{OI}}, \qquad \mathbb{E}_{\mathtt{OR}} = \left(\frac{1-\beta}{1+\beta}\right) \mathbb{E}_{\mathtt{OI}},$$

onde

$$\beta \equiv \frac{\mu_1 \, v_1}{\mu_2 \, v_2} = \frac{\mu_1 \, n_2}{\mu_2 \, n_1}.$$

d) Quais as interpretações físicas desse resultado?

e) Dê as definições dos coeficientes de transmissão T (transmitância) e de reflexão R (reflectância) e mostre que para $\mu_1 = \mu_2 = \mu_0$, tem-se

$$T = \frac{4 n_1 n_2}{(n_1 + n_2)^2},$$
 $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2.$

Questão 5. Problema 9.13.

Questão 6. Para o sistema da questão 4, considere agora a *incidência oblíqua* de uma OEM do meio 1 para o meio 2.

- a) Dê a definição de plano de incidência.
- b) Escreva as expressões gerais dos campos elétrico e magnético associados às ondas incidente (I), refletida (R) e transmitida (T).
- c) Estudando as fases das ondas I, R e T na interface (z=0), mostre que os vetores de onda correspondentes obedecem:

$$\vec{k}_I \cdot \vec{r} = \vec{k}_R \cdot \vec{r} = \vec{k}_T \cdot \vec{r},$$

onde \vec{r} é um vetor no plano z=0.

d) Mostre que se \hat{N} é a normal na interface (plano de incidência), tem-se

$$\vec{k}_I \times \hat{N} = \vec{k}_R \times \hat{N} = \vec{k}_T \times \hat{N}.$$

Questão 7. Com base nos resultados da questão anterior, demonstre as 3 leis básicas da óptica geométrica:

- L1) Os vetores de onda das ondas incidente, refletida e transmitida são coplanares e o plano contém a normal à interface (plano de incidência).
- L2) Lei da Reflexão. O ângulo de reflexão é igual ao ângulo de incidência: $\theta_R = \theta_I$.
- L3) Lei da Refração (Snell). Os ângulos de incidência e de transmissão (refração) obedecem:

$$\frac{\operatorname{sen}\theta_T}{\operatorname{sen}\theta_I} = \frac{n_1}{n_2}.$$

Questão 8. Explique o que são polarizações p e s.

Questão 9. Considere a onda incidente da questão 6 (incidência oblíqua), com *polarização* paralela ao plano de incidência (polarização p). Com base nas leis da questão 7 e aplicando as condições de contorno na interface (z=0), responda as questões que seguem.

a) Mostre que as amplitudes complexas obedecem as relações:

$$\mathbb{E}_{\mathtt{OT}} = \frac{2}{\alpha + \beta} \, \mathbb{E}_{\mathtt{OI}}, \qquad \qquad \mathbb{E}_{\mathtt{OR}} = \left(\frac{\alpha - \beta}{\alpha + \beta} \right) \, \mathbb{E}_{\mathtt{OI}},$$

onde

$$\alpha \equiv \frac{\cos \theta_T}{\cos \theta_I}$$
 e $\beta \equiv \frac{\mu_1 v_1}{\mu_2 v_2} = \frac{\mu_1 n_2}{\mu_2 n_1}$.

As relações acima são conhecidas como $Equações\ de\ Fresnell$ para polarização p (paralela ao plano de incidência).

- b) Expressando as amplitudes complexas na forma polar, discuta as fases das ondas refletidaincidente e refratada-incidente. Em qual situação há defasagem de π radianos?
- c) Mostre que α , definido no ítem (a), pode ser expresso como

$$\alpha(\theta_I) = \frac{\sqrt{1 - [(n_1/n_2) \sin \theta_I]^2}}{\cos \theta_I}.$$

- d) O que acontece se a incidência é razante, isto é, θ_I próximo de $\pi/2$? Isso explica algum fenômeno conhecido? Por exemplo, passeando no lago da Unicamp.
- e) O que significa Ângulo de Brewster, θ_B ? Mostre que se $\mu_1 \approx \mu_2$ esse ângulo pode ser aproximado por

$$\theta_B \approx \tan^{-1} \left(\frac{n_2}{n_1} \right).$$

f) Mostre que os coeficientes de reflexão e de transmisão são dados por

$$R = \left(\frac{\alpha - \beta}{\alpha + \beta}\right)^2, \qquad T = \alpha\beta \left(\frac{2}{\alpha + \beta}\right)^2.$$

Questão 10. Considere, agora, o caso de *incidência oblíqua* com polarização s (polarização perpendicular ao plano de incidência). Responda as questões que seguem (consulte Problema 9.16).

a) Mostre que as equações de Fresnell são dadas por

$$\frac{\mathbb{E}_{OR}}{\mathbb{E}_{OT}} = \frac{1 - \alpha \beta}{1 + \alpha \beta}, \qquad \frac{\mathbb{E}_{OT}}{\mathbb{E}_{OT}} = \frac{2}{1 + \alpha \beta}$$

e que os coeficientes de reflexão e transmissão são expressos por

$$R = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta}\right)^2, \qquad T = \alpha \beta \left(\frac{2}{1 + \alpha \beta}\right)^2.$$

- b) Nesse caso, existe um ângulo de Brewster? Explique.
- c) Discuta alguma aplicação física relacionada ao fato de o ângulo de Brewster estar associado à polarização p e não à s.

3. Ondas Eletromagnéticas em Meios Condutores

Questão 11. Considere um meio *condutor linear*, com condutividade σ , permissividade ϵ , permeabilidade μ e no qual é válida a lei de Ohm, $\vec{J}_f = \sigma \vec{E}$.

a) Na presença de um campo elétrico aplicado, o que acontece com a densidade volumétrica de cargas livres? Em particular, mostre que essa densidade obedece

$$\rho_f(t) = \rho_f(t=0)e^{-\frac{t}{t_c}},$$

onde $t_c = \epsilon/\sigma$ é um tempo característico. Qual a ordem de grandeza de t_c num bom condutor? Fisicamente, o que se pode concluir?

- b) Considere uma OEM incidente num condutor. Com base na conclusão do ítem anterior e utilizando a lei de Ohm, escreva as equações de Maxwell em termos dos campos \vec{E} e \vec{B} , adequadas à situação física (condutor linear).
- c) Obtenha as equações de onda correspondentes para os campos \vec{E} e \vec{B} .
- d) Sob qual condição algébrica, as equações do ítem anterior possuem como solução ondas planas monocromáticas? O que isso significa?

Questão 12. a) No caso da questão anterior, obtenha as expressões analíticas das partes real e imaginária do número de onda, em função das grandezas características do meio (μ, ϵ, σ) e da frequência da onda ω .

b) O resultado do ítem anterior, se reduz ao resultado esperado no caso de um meio *não condutor*? Explique. Quem é o responsável pela parte imaginária do numero de onda?

Questão 13. Para o condutor da questão anterior, considere uma OEM propagando-se na direção z.

a) Mostre que os campos $\vec{\mathbb{E}}$ e $\vec{\mathbb{B}}$ podem ser escritos na forma

$$\vec{\mathbb{F}}(z,t) = \vec{\mathbb{F}}_0 e^{-k_i z} e^{i(k_r z - \omega t)},$$

onde k_r e k_i são as partes real e imaginária do número de onda complexo \mathbb{R} .

b) Discuta as interpretações físicas de k_r e k_i , mostrando que

$$k_r = \frac{\omega}{c}n$$
, onde n é o índice de refração,

$$k_i = \frac{1}{d}$$
, onde d é o comprimento de atenuação.

c) Qual o significado físico de d? Dê alguns valores típicos.

Questão 14. a) No caso de uma OEM propagando-se num condutor, os campos \vec{E} e \vec{B} são transversais à direção de propagação? Justifique a resposta.

b) Utilizando a lei de Faraday-Lenz (ou de Ampère-Maxwell), mostre que num condutor:

$$\vec{\mathbb{B}}(\vec{r},t) = \frac{\mathbb{I} k}{\omega} \hat{k} \times \vec{\mathbb{E}}(\vec{r},t),$$

onde $\mathbb{k} = k_r + ik_i$.

c) Expressando as amplitudes complexas e o número de onda na forma polar,

$$\mathbb{E}_0 = E_0 e^{\delta_E}, \quad \mathbb{B}_0 = B_0 e^{\delta_B}, \quad \mathbb{k} = k e^{i\delta_k},$$

mostre que

$$B_0 = \frac{kE_0}{\omega} = E_0 \sqrt{\mu \epsilon \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2}}$$
 e $\delta_B = \delta_E + \delta_k$.

d) Discuta as diferenças entre esses resultados e aqueles obtidos para um meio não condutor. Um caso pode ser considerado particular do outro? Qual?

Questão 15. Considere a incidência normal de uma OEM plana monocromática de um meio não condutor (μ_1 , ϵ_1) num meio condutor (μ_2 , ϵ_2 , σ), ambos lineares, com interface em z=0. A onda incidente propaga-se na direção $+\hat{z}$ e é polarizada na direção \hat{x} .

- a) Escreva as expressões para os campos $\vec{\mathbb{E}}(\vec{r},t)$ e $\vec{\mathbb{B}}(\vec{r},t)$ para as ondas incidente, refletida e transmitida (lembre-se que k é real no meio não condutor e complexo no meio condutor).
- b) Mostre que as amplitudes complexas obedecem:

$$\mathbb{E}_{0R} = \left(\frac{1 - \mathbb{I}\beta}{1 + \mathbb{I}\beta}\right) \mathbb{E}_{0I}, \qquad \mathbb{E}_{0T} = \left(\frac{2}{1 + \mathbb{I}\beta}\right) \mathbb{E}_{0I},$$

onde $I\beta$ é complexo e dado por

$$\mathbf{I}\beta = \frac{\mu_1 \, v_1}{\mu_2 \, \omega} \, \mathbf{I} \mathbf{k}_2.$$

Questão 16. Explique, fisicamente, o funcionamento de um espelho.

Questão 17. Problema 9.21.

4. Dispersão Óptica em Meios Materiais (Condutores e Dielétricos)

Questão 18. a) O que significa o fenômeno de dispersão em Óptica?

b) Discuta as consequências/implicações desse fenômeno em termos da velocidade de um pacote de ondas.

Questão 19. a) Discuta as bases do *Modelo de Lorentz* (unidimensional) no caso da propagação de uma OEM num dielétrico.

b) Mostre que, com base nesse modelo, a polarização do material pode se expressa por

$$\vec{\mathbb{P}} = \frac{N q^2}{m} \sum_{j} \frac{f_j}{\omega_j^2 - \omega^2 - i \gamma_j \omega} \vec{\mathbb{E}},$$

onde ω é a frequência da OEM, q e m a carga e massa do elétron, f_j é o número de elétrons em cada molécula com frequência natural de oscilação ω_j , fator de amortecimento (radiação) γ_j e N é o número de moléculas por unidade de volume.

c) Mostre que o resultado do ítem anterior, implica em um número de onda complexo, dado por

$$\mathbb{I} \mathbf{k} = \frac{\omega}{c} \sqrt{1 + \frac{N q^2}{m \epsilon_0} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i \gamma_j \, \omega}}.$$

Questão 20. Sendo complexo o número de onda de uma OEM propagando-se num dielétrico, o campo elétrico associado, propagando-se na direção $+\hat{z}$, pode ser expresso por

$$\vec{\mathbb{E}}(z,t) = \vec{\mathbb{E}}_0 e^{i(\mathbb{I} k z - \omega t)}.$$

a) Expressando $\mathbb{R} = k_r + ik_i$, discuta o significado físico das partes real e imaginária, mostrando que

$$k_r = \frac{\omega}{c}n$$
, onde n é o índice de refração

$$k_i = \frac{\alpha}{2}$$
, onde α é o coeficiente de absorção.

- b) O caráter complexo do vetor de onda num dielétrico tem algo a ver com seu caráter complexo num condutor? Explique a origem dessa "complexidade", no caso de dieletricos e condutores.
- **Questão 21.** a) Com base nos resultados das duas questões anteriores, mostre que para gases, o índice de refração n e o coeficiente de absorção α , no modelo de Lorentz, podem ser expressos em função da frequência ω de uma OEM como

$$n(\omega) \approx 1 + \frac{N q^2}{2m\epsilon_0} \sum_j \frac{(\omega_j^2 - \omega^2) f_j}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2},$$

$$\alpha(\omega) \approx \frac{N q^2}{m\epsilon_0 c} \sum_j \frac{\gamma_j \,\omega^2 \, f_j}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \,\omega^2}.$$

- b) Discuta as interpretações físicas desses resultados no caso em que ω é *próxima* de uma das frequências de ressonância ω_i .
- c) Repita o ítem anterior no caso em que ω é distante de uma das frequências de ressonância.

5. Ondas Guiadas

Questão 22. Discuta as características gerais de um guia de ondas.

Questão 23. Considere um guia de ondas ao longo do eixo z e uma OEM propagando-se nessa direção, com campos dados por

$$\vec{\mathbb{E}}(\vec{r},t) = \vec{\mathbb{E}}_0(x,y)e^{i(kz-\omega t)}, \qquad \vec{\mathbb{B}}(\vec{r},t) = \vec{\mathbb{B}}_0(x,y)e^{i(kz-\omega t)}.$$

Considere, inicialmente, que as amplitudes dos campos elétrico e magnético possam ter componentes longitudinais, isto é, na direção de propagação \hat{z} . Por "economia de notação", represente as componentes retangulares das amplitudes sem a barra de complexo e sem o índice zero (incluindo as componentes z):

$$\vec{\mathbb{E}}_{0}(x,y) = E_{x}(x,y) \,\hat{x} + E_{y}(x,y) \,\hat{y} + E_{z}(x,y) \,\hat{z},$$

$$\vec{\mathbb{B}}_{0}(x,y) = B_{x}(x,y) \,\hat{x} + B_{y}(x,y) \,\hat{y} + B_{z}(x,y) \,\hat{z}.$$

No que segue, consulte Problema 9.26.

a) A partir das equações de Maxwell para o vácuo (interior do guia), mostre que a lei de Faraday-Lenz implica em

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = i\omega B_z, \qquad \frac{\partial E_z}{\partial y} - ikE_y = i\omega B_x, \qquad ikE_x - \frac{\partial E_z}{\partial x} = i\omega B_y,$$

e a lei de Ampère-Maxwell, em

$$\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = -i\frac{\omega}{c^2}E_z, \qquad \frac{\partial B_z}{\partial y} - ikB_y = -i\frac{\omega}{c^2}E_x, \qquad ikB_x - \frac{\partial B_z}{\partial x} = -i\frac{\omega}{c^2}E_y.$$

b) A partir dessas equações, mostre que as componentes transversais, E_x , E_y , B_x , B_y , podem ser expressas em termos das derivadas parciais das componentes longitudinais, E_z , B_z , na forma:

$$E_x = \frac{i}{(\omega/c)^2 - k^2} \left[k \frac{\partial E_z}{\partial x} + \omega \frac{\partial B_z}{\partial y} \right], \qquad E_y = \frac{i}{(\omega/c)^2 - k^2} \left[k \frac{\partial E_z}{\partial y} - \omega \frac{\partial B_z}{\partial x} \right],$$

$$B_x = \frac{i}{(\omega/c)^2 - k^2} \left[k \frac{\partial B_z}{\partial x} - \frac{\omega}{c^2} \frac{\partial E_z}{\partial y} \right], \qquad B_y = \frac{i}{(\omega/c)^2 - k^2} \left[k \frac{\partial B_z}{\partial y} + \frac{\omega}{c^2} \frac{\partial E_z}{\partial x} \right].$$

c) Substituindo esses resultados nas expressões das leis de Gauss associadas, $\vec{\nabla} \cdot \vec{E} = 0$ e $\vec{\nabla} \cdot \vec{B} = 0$, mostre que as componentes *longitudinais* obedecem às seguintes equações diferenciais:

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \left(\frac{\omega}{c}\right)^2 - k^2\right] E_z(x, y) = 0, \qquad \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \left(\frac{\omega}{c}\right)^2 - k^2\right] B_z(x, y) = 0.$$

(notem que as duas equações são idênticas)

Questão 24. a) Com base nos resultados da questão anterior e justificando a resposta em detalhe, mostre que se $E_z = 0$ e $B_z = 0$, então não há propagação no guia de ondas.

- b) Explique o que significam *onda elétrica transversal* (TE) e *onda magnética transversal* (TM).
- **Questão 25.** Considere um guia de ondas retangular, de altura a (eixo x, de 0 a a), largura b (eixo y, de 0 a b) e a propagação de uma onda TE na direção $+\hat{z}$. O problema da propagação, envolve a resolução da equação diferencial da questão 23 (ítem c) para a componente $B_z(x,y)$ (pois, por hipótese, $E_z=0$).
- a) Sendo $B_{\perp}=0$ nas paredes internas do guia, estabeleça as condições de contorno para as derivadas parciais de B_z em x=0,a e y=0,b (utilize as expressões para B_x e B_y da questão 23, ítem b).
- b) Resolvendo a equação diferencial por separação de variáveis e aplicando as condições de contorno, mostre que as soluções são:

$$B_z(x,y) = B_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right), \qquad m, n = 0, 1, 2, \dots$$

c) Mostre que a propagação tem uma frequência de corte dada por

$$\omega_{mn} = c\pi \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}.$$

d) O que significa $modo \text{ TE}_{mn}$?

Questão 26. a) Com relação à questão anterior, mostre que a *velocidade de fase* e a *velocidade de grupo* são dadas, respectivamente, por

$$v_f = \frac{c}{\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}}, \qquad v_g = c\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}.$$

b) O que se pode concluir desses resultados?

Questão 27. Problema 9.38 (Cavidade Ressonante).

.....