## FI255 - Tópicos de Óptica e Fotônica II

**Óptica Não-Linear** 

11ª. aula

Prof. Cid B. de Araújo UNICAMP - 25 de maio de 2018

### Roteiro

- 1. Técnicas não lineares para caracterização de materiais-Review
- 2. Representação gráfica dos processos não lineares-Review
- 3. Não linearidades de alta ordem
- 4. Cascatas de não linearidades how to eliminate their influence

## General theoretical approach

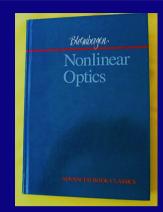
PHYSICAL REVIEW

VOLUME 127, NUMBER 6

SEPTEMBER 15 1962

Interactions between Light Waves in a Nonlinear Dielectric\*

J. A. Armstrong, N. Bloemdergen, J. Ducuing, And P. S. Pershan Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts



## When there is inversion symmetry:

$$\chi^{(j)} \equiv 0$$
  
j = even

$$P_L + P_{NL} = \epsilon_0 \sum_{N=0}^{\infty} \chi^{(2N+1)} E^{(2N+1)}$$

$$n_N \propto Re \chi^{(2N+1)}$$

Nonlinear refractive index

$$\alpha_N \propto Im \, \chi^{(2N+1)}$$

Nonlinear absorption coefficient

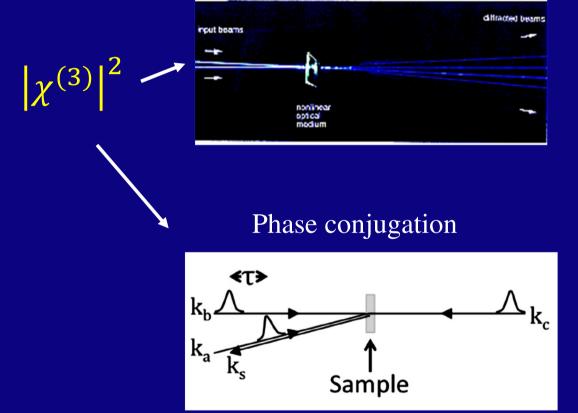
#### linear + nonlinear

$$n = n_0 + n_2 I + n_4 I^2 + n_6 I^3 + \cdots$$

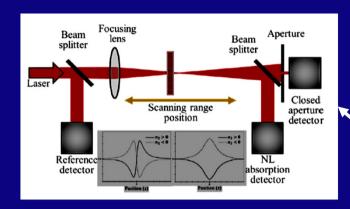
$$\alpha = \alpha_0 + \alpha_2 I + \alpha_4 I^2 + \alpha_6 I^3 + \cdots$$

### 9ª. aula

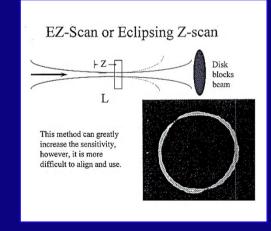
### Degenerate four wave-mixing



### Z-scan



### EZ-scan



Real  $\chi^{(3)}$ Im  $\chi^{(3)}$ 

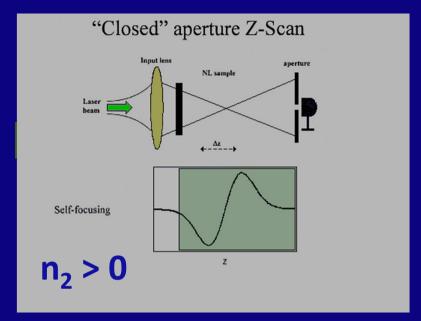
## Nonlinear refraction

$$n = n_0 + n_2 I(r)$$

$$I(r) = I_0 \exp [-r^2/w^2]$$

 $n_2 > 0$  self focusing  $n_2 < 0$  self defocusing

$$L \ll z_0$$
  $L \ll z_0/\Delta\Phi_0$   $x = z/z_0$   $\Delta\Phi_0 = (n_2I_0)k\ L_{eff}$   $L_{eff} = (1 - e^{-\alpha L})/\alpha$ 



Sample = lens

$$T(z, \Delta\Phi_0) \cong 1 - \frac{4 \cdot \Delta\Phi_0 \cdot x}{(x^2 + 9)(x^2 + 1)};$$

Sheik-Bahae et al. IEEE J. Quantum Electron. 1990

## Z-scan technique Nonlinear absorption

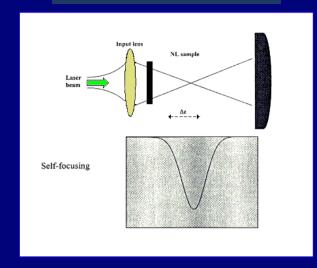
when  $\alpha_2 I_0 L_{eff} \ll 1$ 

$$\Delta T(z) \approx -\frac{\alpha_2 \cdot I \cdot L_{eff}}{2\sqrt{2}} \frac{1}{1 + z^2/Z_0^2}$$

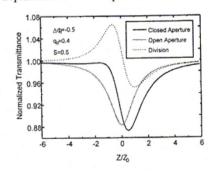
Closed aperture

NL refraction + NL absorption

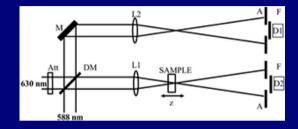
## Open aperture



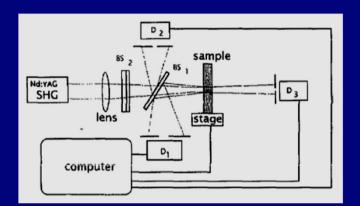
#### Separation of NLAbsorption and NLRefraction



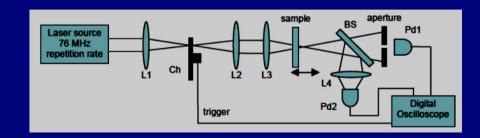
## 9ª. aula Two-color Z-scan



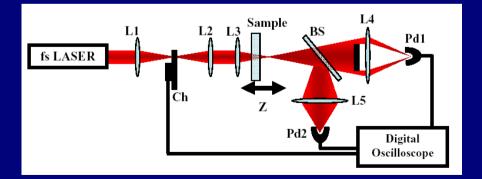
### RZ-scan



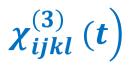
TM Z-scan

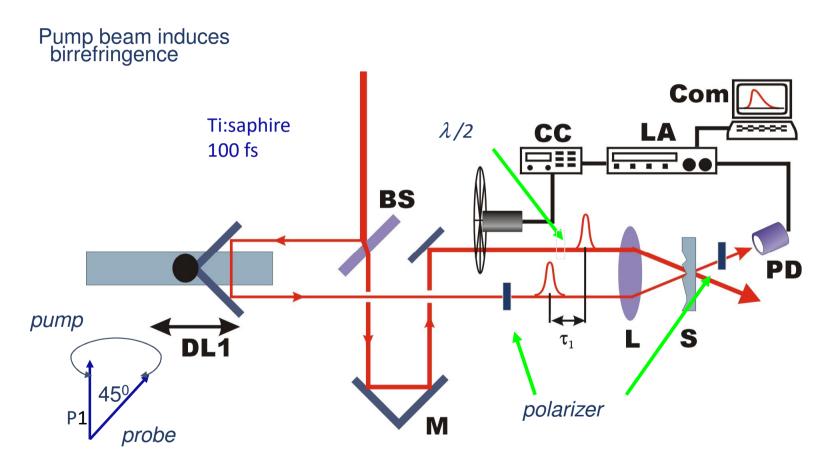


TM- EZ scan



# Kerr shutter setup Dynamics of the nonlinearity





## Kerr shutter

### Isotropic medium

$$\begin{split} \vec{E}_{exc} &= E_{exc} \, \hat{x} \\ \vec{E}_{prova} &= \sqrt{2} \, E_{prova} \, (\hat{x} + \hat{y})/2 \end{split}$$



$$P_x^{(3)} = \chi_{xxxx}^{(3)} |E_{exc}|^2 E_{prova, x}$$

$$P_y^{(3)} = \chi_{yxxy}^{(3)} |E_{exc}|^2 E_{prova, y}$$

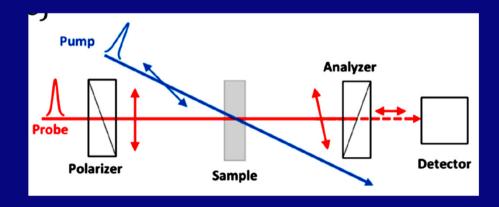
$$\Delta n_x = \frac{2\pi}{n_0} \chi_{xxxx}^{(3)} |E_{exc}|^2$$

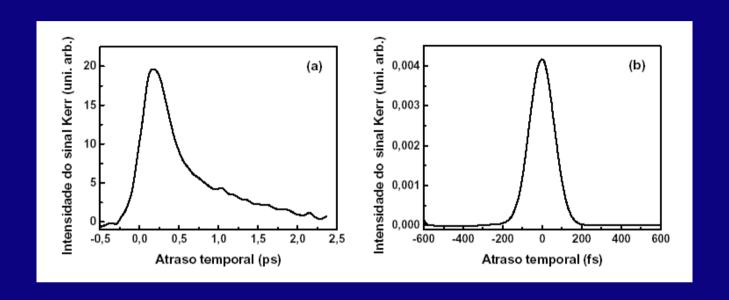
$$\Delta n_y = \frac{2\pi}{n_0} \chi_{yxxy}^{(3)} |E_{exc}|^2$$

$$\Delta n_{NL} = \Delta n_x - \Delta n_y = \frac{4\pi}{3n_0} \chi_{xxxx}^{(3)} \left| E_{exc} \right|^2$$

$$\vec{E}_{prova}(L) = \frac{\sqrt{2}}{2} E_{prova} [\hat{x} + \hat{y} \exp(-i \Delta \phi_{NL})]$$

$$\Delta\phi_{NL}=k\,L\,\Delta n_{NL}$$





Carbon disulfide CS<sub>2</sub>

Electronic <50 fs Reorientational > 2ps Silica (Fused SiO<sub>2)</sub>

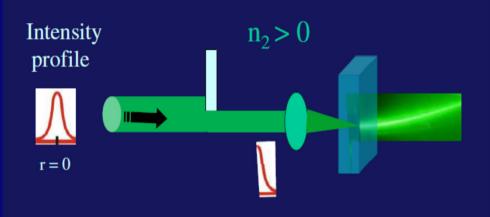
Electronic polarization
Faster than the laser pulse duration

## Cross-bending

Appl. Phys. Lett. 63 (1993) 3553

#### Light-controlled beam deflector in semiconductor doped glasses

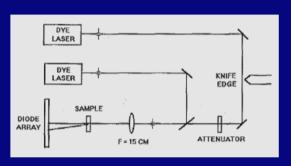
H. Ma and Cid B. de Araújo Departamento de Física, Universidade Federal de Pernambuco, 50732-910 Recife, PE, Brazil

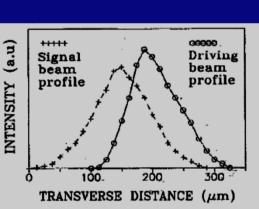


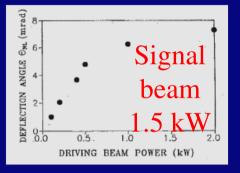
Self-bending-Nonlinear analogue of mirage

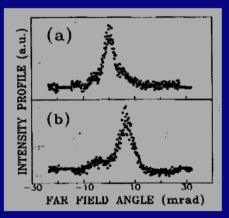
A. E. Kaplan, JETP Lett. 9, 33 (1969).

M. S. Brodin and A. M. Kamuz, JETP Lett. 9, 352 (1969).







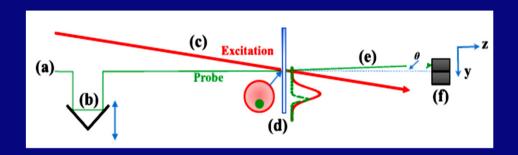


Driving beam peak power: 1.5 kW

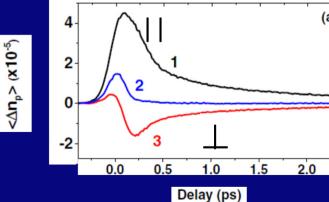
Opt. Lett. 38 (2013) 3518

# Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction

Manuel R. Ferdinandus, Honghua Hu, Matthew Reichert, David J. Hagan, and Eric W. Van Stryland Later and Eric W. Van Stryland



$$\Delta n_p(x,y,t) = \Delta n_p(t) \exp\biggl(\frac{-2(x^2+y^2)}{w_e^2}\biggr)$$



### For more details and references for several NL techniques see for example:

### IOP Publishing

Rep. Prog. Phys. 79 (2016) 036401 (30pp)

#### Review

# Techniques for nonlinear optical characterization of materials: a review

Cid B de Araújo<sup>1</sup>, Anderson S L Gomes<sup>1</sup> and Georges Boudebs<sup>2</sup>

Four wave-mixing

Phase conjugation

Kerr gate

Scattered Light
Imaging Method –SLIM

Pump-and-probe

Beam deflection techniques

Single beam Z-scan

Two-color Z-scan

Reflection Z-scan

**Eclipsing Z-scan** 

Thermally managed

TM-Z scan

TM-EZ scan

Hartmann - Schack Z-scan

White-light continuum Z-scan

Intensity scan (I-scan)

# High-order nonlinearities

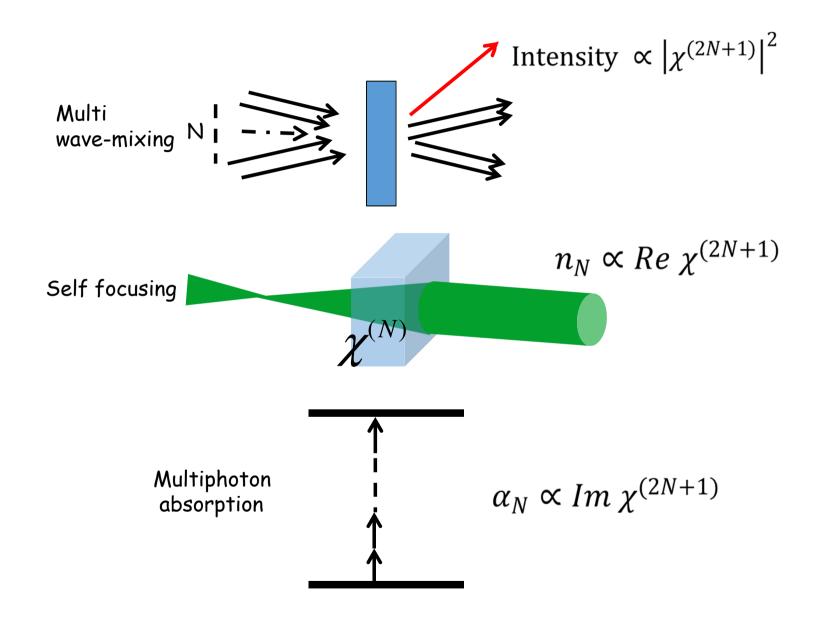
- Generation of higher harmonics
- Multiphoton excitation processes
  - Multi-wave mixing

Studies of multiphoton ionization: 60's; Many studies in the 70's, 80's.

Multiphoton dissociation and ionization processes applied to isotope separation (70's and 80's).

### More recently:

Solitons, filamentation, extreme events, generation of VUV and soft X-rays – 400th harmonic, proposals for attosecond X-ray pulse generation ....



# Normally high-order nonlinearities (HON) are weaker than low-order effects

But HON may be due to repeated low-order susceptibilities cascading processes

Macroscopic cascading: involves propagation effects

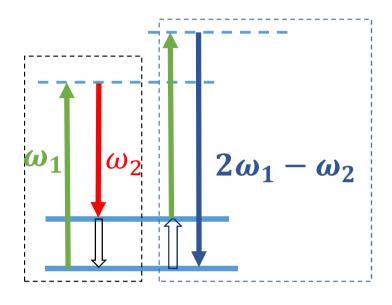
Example:  $\omega + \omega$  creates  $2\omega$  then  $2\omega + \omega$  creates  $3\omega$ 

### Microscopic cascading:

two neighbor atoms interact through local field effects to create a HON process

### Meio sem centro de inversão

$$\chi^{(2)} \neq 0$$



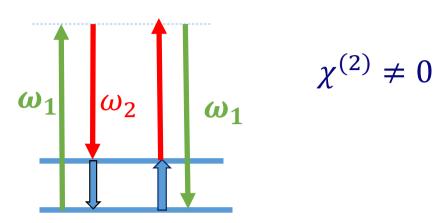
$$E(\omega_1 - \omega_2) \propto \chi^{(2)}(\omega_1 - \omega_2, \omega_1, -\omega_2) E(\omega_1) E^*(\omega_2)$$

$$E(2\omega_1-\omega_2)\propto \chi^{(2)}(2\omega_1-\omega_2,\omega_1-\omega_2,\omega_1)E(\omega_1-\omega_2)E(\omega_1)$$

$$E(2\omega_{1} - \omega_{2}) \propto \chi^{(2)}(2\omega_{1} - \omega_{2}, \omega_{1} - \omega_{2}, \omega_{1})\chi^{(2)}(\omega_{1} - \omega_{2}, \omega_{1}, -\omega_{2})E(\omega_{1})E(\omega_{1})E^{*}(\omega_{2})$$

$$\chi^{(3)}_{off}$$

Outra possibilidade



$$\chi^{(2)} \neq 0$$

$$E(\omega_1 - \omega_2) \propto \chi^{(2)}(\omega_1 - \omega_2, \omega_1, -\omega_2) E(\omega_1) E^*(\omega_2)$$

$$E(\omega_1) \propto \chi^{(2)}(\omega_1, \omega_1 - \omega_2, \omega_2) E(\omega_1 - \omega_2) E(\omega_2)$$

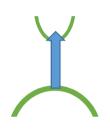
$$E(\omega_1) \propto \chi^{(2)}(\omega_1, \omega_1 - \omega_2, \omega_2) \chi^{(2)}(\omega_1 - \omega_2, \omega_1, -\omega_2) E(\omega_1) E(\omega_2) E^*(\omega_2)$$

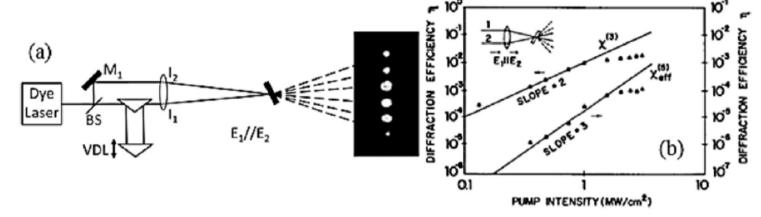
$$\chi_{eff}^{(3)} \propto \left[\chi^{(2)}\right]^2$$

### Semiconductor doped glasses

## Nanocrystals of CdS<sub>x</sub>Se<sub>1-x</sub>

Rep. Prog. Phys. **79** (2016) 036401





 $\hbar\omega_{laser} \approx E_{gap}$ 

Figure 2. (a) Typical experimental setup for studying forward DFWM. The photographic image shows the two transmitted beams in the center and self-diffracted orders on each side; (b) measured diffraction efficiency as a function of incident intensity for four-wave and effective six-wave mixing processes (reproduced from [31], copyright 1990 IEEE).



$$\chi_{eff}^{(5)} = A\chi^{(3)}.\chi^{(3)} + B\chi^{(5)}$$

$$2\vec{k}_1 - \vec{k}_2$$

$$\vec{k}_1$$

$$3\vec{k}_1 - 2\vec{k}_2$$

$$-\vec{k}_2$$

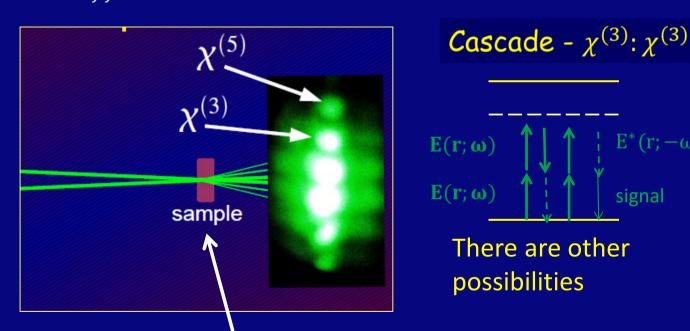
$$\chi^{(3)}.\chi^{(3)} \equiv \chi^{(5)}$$

signal

### Observation of a Microscopic Cascaded Contribution to the Fifth-Order Nonlinear Susceptibility

Ksenia Dolgaleva,\* Heedeuk Shin, and Robert W. Boyd

$$\chi_{eff}^{(5)} \propto A \chi^{(3)} \colon \chi^{(3)} + B \chi^{(5)}$$



Mixture of CS<sub>2</sub> and Fulerene (C<sub>60</sub>)

## Microscopic cascading by local field effects

Third-order hyperpolarizability

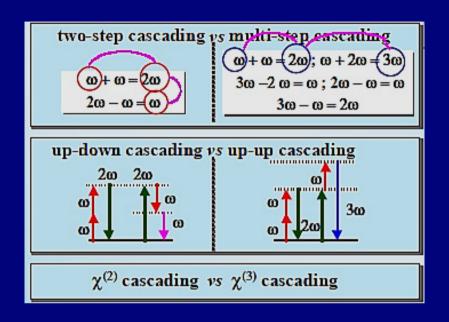
$$\chi^{(3)} = N \gamma_{\text{at}}^{(3)} |L|^2 L^2$$
, factor
$$L = \frac{\varepsilon^{(1)} + 2}{3}$$

Lorentz local field

Direct contribution from the fifth-order hyperpolarizability

$$\chi^{(5)} = N \gamma_{at}^{(5)} |L|^4 L^2 + \frac{24\pi}{10} N^2 (\gamma_{at}^{(3)})^2 |L|^4 L^3 + \frac{12\pi}{10} N^2 |\gamma_{at}^{(3)}|^2 |L|^6 L$$

Contributions by the third-order hyperpolarizability



Under certain conditions, the cascaded contribution can be as large as the direct contribution

### Cascaded NL optical processes play important role

- in frequency upconversion
- in optical communications: for routing, switching, information interchange
- for studying fundamental constants of the materials
- for mode-locking and pulse compression

# However it is possible determination of pure NL susceptibilities using phase-matching configurations as described in the following papers

Volume 51, number 2

#### **OPTICS COMMUNICATIONS**

15 August 1984

## DIRECT OBSERVATION OF HIGH-ORDER OPTICAL SUSCEPTIBILITIES VIA ANGULARLY-RESOLVED MULTIWAVE MIXING

R.K. RAJ, O.F. GAO \*, D. BLOCH and M. DUCLOY

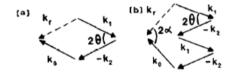


Fig. 1. Wavevector configuration for (a) backward four-wave mixing  $(k_0 = -k_1; k_1 = -k_2)$ , (b) phase-matched six-wave mixing in which two photons 1 are absorbed and two photons 2 emitted.

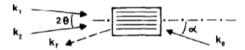


Fig. 3. Grating viewpoint of resonant multiwave mixing. The *n*th-order Bragg condition is given by  $\sin \alpha = n \sin \theta$ .

$$\chi^{(5)}$$
: sen  $\alpha = 2$  sen  $\theta$ 

$$\chi^{(2n+1)}$$
: sen  $\alpha = n \operatorname{sen} \theta$ 

#### Optics Communications 100 (1993) 193-196

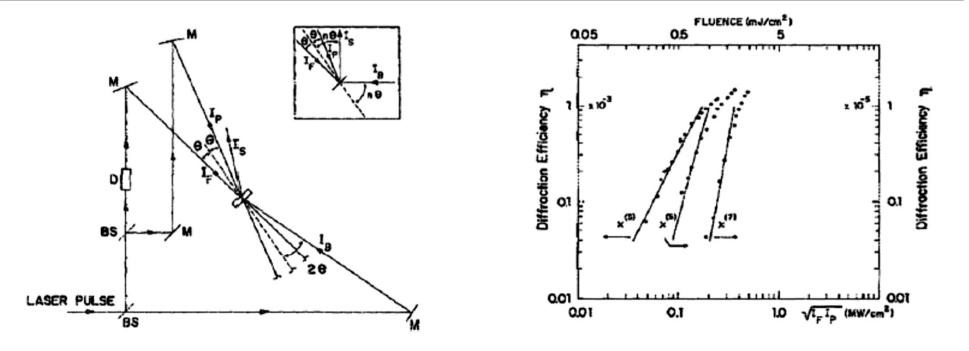
Cascade contributions in the high-order optical nonlinearity measurement

H. Ma, A.S.L. Gomes and Cid B. de Araujo

## Phase-matching multi-wave mixing

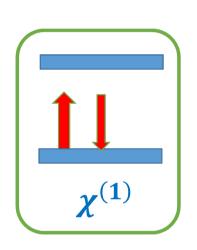
## Unambigous measurement of high-order susceptibilities



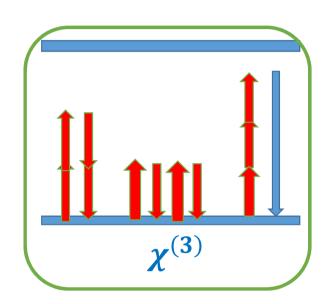


**Figure 3.** (a) Experimental scheme for unambiguous measurement of phase-matched multi wave-mixing; (b) measured diffraction efficiencies for  $|\chi^{(3)}|$ ,  $|\chi^{(5)}|$  and  $|\chi^{(7)}|$  in SDG (reproduced from [50], copyright 1988 AIP).

## Exemples of pure optical processes

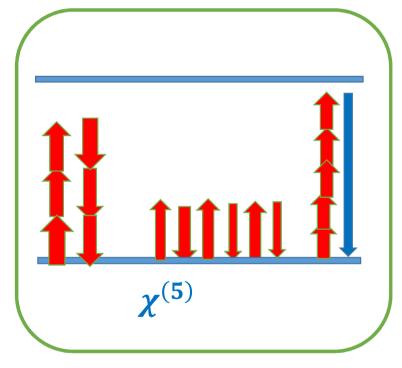


$$P^{(1)} = \epsilon_0 \chi^{(1)} E(\omega)$$



$$P^{(3)} = \epsilon_0 \chi^{(3)} [E(\omega)]^2 E^*(\omega)$$

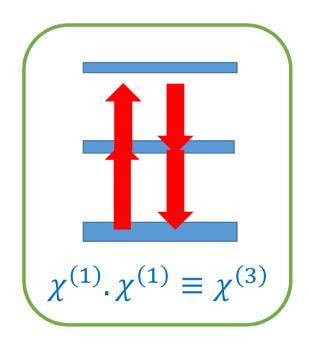
$$P^{(3)} = \epsilon_0 \chi^{(3)} [E(\omega)]^3$$

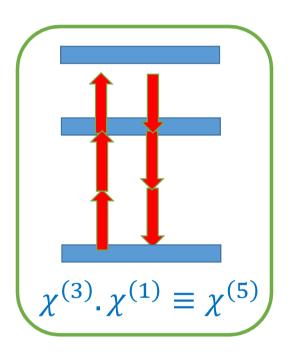


$$P^{(5)} = \epsilon_0 \chi^{(5)} [E(\omega)]^3 [E^*(\omega)]^2$$

$$P^{(5)} = \epsilon_0 \chi^{(5)} [E(\omega)]^5$$

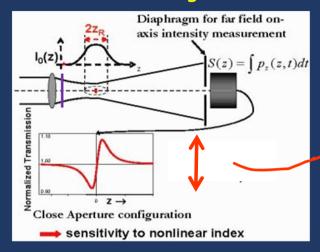
# Examples of more cascade processes





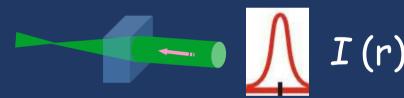
## When high-order nonlinearities are present:

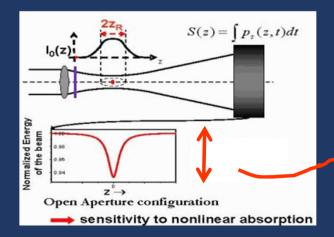
Self - focusing medium



NL refraction
"Closed-aperture" Z scan

$$\Delta T \propto n_2 I + n_4 I^2 + n_6 I^3 + \cdots$$





NL absorption
"Open-aperture" Z scan

$$\Delta T \propto \alpha_2 I + \alpha_4 I^2 + \alpha_6 I^3 + \cdots$$

Particularly for nanocomposites it is possible to vary the material's composition and incident light intensity in order to manage its nonlinearity in such way that the material may present HON on demand.

It means that we may, for instance, to adjust the material's parameters to supress one particular NL susceptibility and enhance the others.

For example, one may supress the third-order refractive index such that the refraction can be dominate by the fifth-order susceptibility

This possibility is illustrated in the next slide where  $n_2$  is canceled but  $n_4$  is not nulled. This nonlinearity management procedure will be the subject presented in the next class.

# Observation of fifth-order refraction in a colloid with supressed third-order refraction

