Gluons and ghosts at (non-)vanishing temperatures

Markus Q. Huber

Institute of Physics, University of Graz

QCD-TNT4 2015, Ilhabela

September 2, 2015

Der Wissenschaftsfonds.

Markus Q. Huber

University of Graz

September 2, 2015

From Green functions to 'observables'

←

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

$$\begin{array}{l} \rightarrow \qquad \qquad \Gamma_{ij} = \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j}, \\ \Gamma_{ijk} = \frac{\delta^3 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j \delta \Phi_k}, \quad \dots \end{array}$$

From Green functions to 'observables'

 \leftarrow

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

Green functions \rightarrow 'observables'?

Examples:

- $\bullet\,$ Bound state equations $\rightarrow\,$ masses and properties of hadrons
- $\bullet\,$ Analytic properties of Green functions $\rightarrow\,$ confinement
- ullet (Pseudo-)Order parameters o Phases and transitions

Markus Q. Huber

University of Graz

d=3 T>

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\mathcal{L} = \frac{1}{2}F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$
$$F_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + i g [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$$

Landau gauge • simplest one for functional equations • $\partial_{\mu} \mathbf{A}_{\mu} = 0$: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2$, $\xi \to 0$ • requires ghost fields: $\mathcal{L}_{gh} = \overline{c} (-\Box + g \mathbf{A} \times) c$ $G = \int_{D^{A\bar{c}c}} D^{A\bar{c}AA} \mathbf{A}_{\mu} dA_{\mu} dA_{\mu}$

The tower of DSEs

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

September 2, 2015

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available?)
- Use fits

Ideally: Find a truncation that has no parameters and yields quantitative results.

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available?)
- Use fits

Ideally: Find a truncation that has no parameters and yields quantitative results.

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Practical obstacle: Manage the system of equations. → Automatization tools [Alkofer, MQH, Schwenzer '08; Braun, MQH '11; MQH, Mitter '11; http://tinyurl.com/dofun2; http://tinyurl.com/crasydse]

Truncation of Yang-Mills system

Coupled system of propagators with models for three-point functions:

Truncation of Yang-Mills system

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically:

Truncation of Yang-Mills system

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically:

Open questions:

- Four-gluon vertex (in this truncation scheme no dependence on higher n-point functions)
- Two-loop diagrams

Truncation of Yang-Mills system

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically:

Open questions:

- Four-gluon vertex (in this truncation scheme no dependence on higher n-point functions)
- Two-loop diagrams
- Technical questions: spurious divergences in gluon propagator, RG resummation

Markus Q. Huber

University of Graz

September 2, 2015

1.5

2.0

2.5

1.0

Markus Q. Huber

University of Graz

September 2, 2015

Three-gluon vertex DSE

Three-gluon vertex DSE

- Keep only diagrams with primitively divergent Green functions.
- Tree-level tensor only.

Four-gluon vertex model:

$$D^{A^4}(p,q,r,s) = (a anh(b/ar{p}^2) + 1) \, D^{A^4}_{RG}(p,q,r,s)$$

 \rightarrow Test model dependence by varying *a* and *b*.

Markus Q. Huber

University of Graz

September 2, 2015

The three-gluon vertex

[Blum, MQH, Mitter, von Smekal '14; lattice: Cucchieri, Maas, Mendes '08]

 \rightarrow Truncation reliable. Neglected terms, including two-loop, suppressed.

- Zero crossing (in this tensor) See also [Peláez, Tissier, Wschebor '13; Aguilar, Binosi, Ibáñez, Papavassiliou '13; Eichmann, Williams, Alkofer, Vujinovic '14], lattice seen in d = 2,3 [Maas '07; Cucchieri, Maas, Mendes '08].
- Results for other dressings [Eichmann, Williams, Alkofer, Vujinovic '14]: very small.

Propagators II: Limits of one-loop truncation

Feed three-gluon vertex into gluon propagator DSE:

 \rightarrow Gap in midmomentum regime must be due to missing two-loop diagrams!

NB: Employed projection of three-gluon vertex is the same as in gluon loop of gluon propagator DSE! \rightarrow Error from neglected tensors small.

T>0

Regularization and UV behavior

Ways of regularization

- Lattice
- Pauli-Villars
- Analytic reg., proper time, ...; useful for analytic calculations
- Dimensional regularization \rightarrow numerical difficult, esp. for power law divergences [Phillips, Afnan, Henry-Edwards '99]
- UV cutoff:

$$\int_0^\infty dq o \int_0^\Lambda dq$$

- standard choice for numerical calculations
- ullet breaks gauge invariance o spurious divergences

Regularization and UV behavior

Ways of regularization

- Lattice
- Pauli-Villars
- Analytic reg., proper time, ...; useful for analytic calculations
- Dimensional regularization \rightarrow numerical difficult, esp. for power law divergences [Phillips, Afnan, Henry-Edwards '99]
- UV cutoff:

$$\int_0^\infty dq o \int_0^\Lambda dq$$

- standard choice for numerical calculations
- ullet breaks gauge invariance o spurious divergences

Several methods for subtraction of spurious divergences used. Prerequisite for a quantitatively accurate description: a good understanding of how to subtract them.

T>0

Subtraction of divergences of gluon propagator

- **1** Logarithmic divergences handled by subtraction at p_0 .
- 2 Quadratic divergences also subtracted, coefficient C_{sub} .

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub} \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side (log.
divergences handled)

How to determine C_{sub} ?

Calculation of C_{sub}

Can be calculated analytically!

Calculation of C_{sub}

Can be calculated analytically!

Use projector $P^{\zeta}_{\mu\nu}(p) = g_{\mu\nu} - \zeta p_{\mu}p_{\nu}/p^2$ for gluon propagator DSE.

Consider ghost loop:

Calculation of C_{sub}

Can be calculated analytically!

Use projector $P^{\zeta}_{\mu\nu}(p) = g_{\mu\nu} - \zeta p_{\mu}p_{\nu}/p^2$ for gluon propagator DSE.

Consider ghost loop:

Approximation: $G\left((p+q)^2
ight) o G\left(q^2
ight) \Rightarrow$ perform angle integrals

$$I_{gh}(x) = \frac{N_c g^2}{192\pi^2} \int_x^{\Lambda^2} dy \left(\underbrace{x(\zeta - 2)}_{\log_c \text{ div. } \checkmark} - \underbrace{(\zeta - 4)y}_{\text{quad. div.}} \right) \frac{G(y)^2}{xy} + \dots$$

 $x = p^2, y = q^2, z = (p+q)^2$

 $d \equiv 3$

Calculation of C_{sub}

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

 $d \equiv 3$

Calculation of C_{sub}

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

If $G_{UV}(y)$ const.:

$$ightarrow rac{\Lambda^2}{x} G_{UV}(y)$$

Calculation of C_{sub}

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

If $G_{UV}(y)$ const.:

$$ightarrow rac{\Lambda^2}{x} G_{UV}(y)$$

If $G_{UV}(y)$ runs logarithmically:

$$ightarrow rac{\Lambda_{
m QCD}^2}{x}(-1)^{2\delta} \Gamma(1+2\delta,-\ln(\Lambda^2/\Lambda_{
m QCD}^2))$$

Calculation of C_{sub}

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

If $G_{UV}(y)$ const.:

$$ightarrow rac{\Lambda^2}{x} G_{UV}(y)$$

If $G_{UV}(y)$ runs logarithmically:

$$ightarrow rac{\Lambda_{
m QCD}^2}{x}(-1)^{2\delta}\Gamma(1+2\delta,-\ln(\Lambda^2/\Lambda_{
m QCD}^2))$$

What about the finite part?

- Perturbatively no mass term should be generated.
- Independent of UV parametrization.
- Dim. reg. calculation yields the same finite part.

Markus Q. Huber

University of Graz

September 2, 2015

Form of spurious divergences

Up to now approximated analytic calculation.

Form of spurious divergences

Up to now approximated analytic calculation.

Compare derivatives of analytic result with full numeric calculation:

• Full agreement

 \rightarrow Approximations well justified, anal. expressions can be used.

- Independent of external momentum
 - \rightarrow Spurious divergences of purely perturbative origin.
 - \Rightarrow Subtraction should not interfere with non-perturbative part.

Markus Q. Huber

September 2, 2015

Take home messages from d=4

- Subtraction of spurious divergences: Should not interfere with non-perturbative part
- Three-point functions: important
- Two-loop diagrams: likely important

Take home messages from d=4

- Subtraction of spurious divergences: Should not interfere with non-perturbative part
- Three-point functions: important
- Two-loop diagrams: likely important

Is this sufficient?

Introduction	Dyson-Schwinger equations	d=4 d=3	Τ>0	Summary & conclusions
Yang-N	Aills theory in 3	dimensions:	Propagato	or results

$$d = 3$$

Yang-Mills theory in 3 dimensions: Propagator results

$$d = 3$$

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR, e.g., [Cucchieri '99; Cucchieri, Mendes, Taurines '03; Maas '08, '14; Cucchieri, Dudal, Mendes, Vandersickel '11; Bornyakov, Mitrjushkin, Rogalyov '11, '13]

Continuum results:

- Coupled propagator DSEs: Maas, Wambach, Grüter, Alkofer '04
- (R)GZ: Dudal, Gracey, Sorella, Vandersickel, Verschelde '08
- DSEs of PT-BFM: Aguilar, Binosi, Papavassiliou '10

Markus Q. Huber

University of Graz

September 2, 2015

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations.

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations.

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- \Rightarrow Many complications from d = 4 absent!

d=3 ⊤>

A solution for the propagators

'Standard' truncation of propagators:

1-loop, bare ghost-gluon vertex, three-gluon vertex model

Form of spurious divergences (analytic):

$$C_{sub} = a\Lambda + b \ln \Lambda$$

Three-gluon vertex model

$$D^{A^{3}}(x, y, z) = \frac{\overline{p}^{2}}{\overline{p}^{2} + L^{2}} - G(\overline{p}^{2})^{3} \frac{L^{6}}{(L^{2} + x)(L^{2} + y)(L^{2} + z)}$$
$$\overline{p}^{2} = \frac{x + y + z}{2}$$

Not possible to raise the gluon bump further by playing with the vertex models!

Introduction	Dyson-Schwinger equations	d = 4	d = 3	Τ>0	Summary & conclusion
	Two-	loop di	agrams		
Squint:	-	S	unset:		
-	\square			\bullet	_
4d: [Bloch '	03; Mader, Alkofer '12; Meyers	, Swanson '	14]		
Main obst	acle: spurious divergence	es			

Spurious divergences

Leading order corrections to subtraction coefficient: $g^4
ightarrow \log(\Lambda)$

Determined by a fit:

- Very small.
- Still large effect.

Introduction	Dyson-Schwinger equations	d = 4	d = 3	T>0	Summary & conclusion
	Two-	loop di	agrams		
Squint:	•	S	unset:		
-				\bullet	
4d: [Bloch	03; Mader, Alkofer '12; Meyers	, Swanson '	14]		
Main obst	acle: spurious divergence	es			

Spurious divergences

Leading order corrections to subtraction coefficient: $g^4
ightarrow \log(\Lambda)$

Determined by a fit:

- Very small.
- Still large effect.

New vertex enters: Four-gluon vertex

Summary & conclusions

Four-gluon vertex

4d: Solution of four-gluon DSE (full momentum dependence)

[Cyrol, MQH, von Smekal '14]

Similar results by

[Binosi, Ibáñez, Papavassiliou '14]

Summary & conclusions

Four-gluon vertex

4d: Solution of four-gluon DSE (full momentum dependence)

Ansatz:

3d:

[Binosi, Ibáñez, Papavassiliou '14]

d = 3

Summary & conclusions

A solution for the propagators with two-loop diagrams

Improved truncation of propagators:

1- and 2-loops, bare ghost-gluon vertex, three-gluon vertex model

 \rightarrow Two-loop diagrams essential to allow raising the gluon bump.

Introduction

d = 4

d = 3

Summary & conclusions

A solution for the propagators with two-loop diagrams

Improved truncation of propagators:

1- and 2-loops, bare ghost-gluon vertex, three-gluon vertex model

 \rightarrow Two-loop diagrams essential to allow raising the gluon bump.

\Rightarrow Next step: include vertices dynamically.

Markus Q. Huber

University of Graz

September 2, 2015

d=3

Ghost-gluon vertex

Full momentum dependence calculated!

Three-gluon vertex

Full momentum dependence calculated!

Markus Q. Huber

Т>0

Overview d = 3

Take home messages d=3

- Simpler: Useful testbed for truncations.
- Extensions of truncations: Two-loop diagrams and dynamic three-point functions improve results considerably.
- Only one remaining input: Four-gluon vertex Caveats: further tensors, self-consistent solution

Take home messages d=3

- Simpler: Useful testbed for truncations.
- Extensions of truncations: Two-loop diagrams and dynamic three-point functions improve results considerably.
- Only one remaining input: Four-gluon vertex Caveats: further tensors, self-consistent solution

Parameter-less truncation possible!

Phases of QCD

Challenges at non-zero density:

- Lattice: complex phase problem \rightarrow complex Langevin, Lefschetz thimble, dual variables, Taylor expansion, reweighting, ...
- Functional framework: truncations

 $d \equiv 3$

Gluon propagators

Gluon propagators

Input for DSEs to calculate quantities difficult for lattice

- Gluon DSE inconveniently difficult: spurious divergences, two-loop diagrams
- No truncation effects for input!
- Lattice artifacts [Cucchieri, Mendes '11]?

Simple test: Ghost propagator

Ghost dressing $G(p^2)$ from DSE [MQH, von Smekal '13]:

Lattice: [Fischer, Maas, Müller '10, Cucchieri, Mendes '11, Silva, Oliveira, Bicudo, Cardoso '13] FRG: [Fister, Pawlowski '11]

Markus Q. Huber

University of Graz

September 2, 2015

Т>0

Three-point warm-up: Ghost-gluon vertex

DSE calculation: self-consistent solution of truncated DSE, zeroth Matsubara frequency only

Vertices quite expensive on lattice.

Т>0

• Full momentum dependence from functional equations.

Vertex from FRG: [Fister, Pawlowski '11]

Ghost-gluon vertex: Continuum and lattice

⊐ p[GeV]

-___ p[GeV]

3

Lattice [Fister, Maas '14]: No zero crossing around T_c ?

Lattice volume artifacts inherited from lattice gluon propagators in functional calculation!

Three-gluon vertex

DSE calculation: semi-perturbative approximation (first iteration only)

Summary and conclusions

- 3d Yang-Mills theory as a testbed for truncations of DSEs
- Various improvements (two-loop diagrams, dynamic three-point functions) lead to results close to lattice results.
- Missing piece to show quantitative correctness: four-gluon vertex

Implications

- An example of a self-consistent, self-contained truncation of a set of DSEs with quantitative results???
- What about 4d?

Summary and conclusions

- 3d Yang-Mills theory as a testbed for truncations of DSEs
- Various improvements (two-loop diagrams, dynamic three-point functions) lead to results close to lattice results.
- Missing piece to show quantitative correctness: four-gluon vertex

Implications

- An example of a self-consistent, self-contained truncation of a set of DSEs with quantitative results???
- What about 4d?

T > 0:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- ullet Basis for extension to QCD and $\mu > 0$

Summary and conclusions

- 3d Yang-Mills theory as a testbed for truncations of DSEs
- Various improvements (two-loop diagrams, dynamic three-point functions) lead to results close to lattice results.
- Missing piece to show quantitative correctness: four-gluon vertex

Implications

- An example of a self-consistent, self-contained truncation of a set of DSEs with quantitative results???
- What about 4d?

T > 0:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- Basis for extension to QCD and $\mu > 0$

Thank you for your attention.

Markus Q. Huber

University of Graz

September 2, 2015