
Unquenching the gap equation

J. C. Cardona and A. C. Aguilar

Instituto de F́ısica Gleb Wataghin, Universidade Estadual de Campinas, Brazil

Introduction

The most appropriate nonperturbative tool for studying chiral symme-
try breaking and the subsequent dynamical quark mass generation is the
Schwinger-Dyson equation (SDE) for the quark propagator. It is well known
that the main ingredients entering in this equation are the full gluon propa-
gator and the quark-gluon vertex [1, 2].
In the last few years our knowledge on the nonperturbative behavior
of the gluon propagator, in the Landau gauge, has improved substan-
tially [3, 4, 5, 6, 7]. Now, our main challenge is to achieve the same level
of understanding for the quark-gluon vertex. One formalism that is suitable
for pursuing this objective is based on the synthesis of the pinch technique
(PT) with the background field method (BFM), known in the literature as
the PT-BFM scheme [6].
It is known that in the PT-BFM scheme there are two different quark-gluon
vertices. The first one obeys a Slavnov Taylor identity (STI), whereas the
second satisfies an Abelian-like Ward Identity (WI). Interestingly enough,
both quantities are related to each other through the so-called Background
Quantum Identities (BQI) [8].
In this work we take the first steps towards a truncation scheme where the
Abelian-like quark-gluon vertex is employed in the quark SDE. Within this
approximation, we study how the behavior of the quark dynamical mass is
affected by the presence of a different number of quark flavors.

The gap equation

The SDE for the quark propagator is diagrammatically depicted in Fig. 1.
The gray circles represent the full quark propagator and the full gluon prop-
agator, while the black circle represent the full quark-gluon vertex.
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Figure 1: The SDE for the quark propagator. The gray circles represent full propagators and

the black circle the full vertex.

Using the moment flow and the Lorentz indices indicated in Fig. 1, the
renormalized gap equation in the chiral limit, m0 → 0, can be written as

S−1(p) = ZF/p− Z1CFg
2
∫

k
γµS(k)Γν(−p, k, q)∆

µν(q) , (1)

where Z1(µ) and ZF (µ) are the vertex and the quark wave-function renor-
malization constants respectively. CF is the Casimir eigenvalue for the fun-
damental representation.
The full quark propagator can be written as

S−1(p) = A(p2) /p− B(p2)I = A(p2)[/p−M(p2)I] , (2)

where A(p2) and B(p2) are scalar functions, and we defined the dynamical
quark mass function as M(p2) = B(p2)/A(p2). The full gluon propagator
in the Landau gauge, quenched or unquenched, is given by

∆µν(q) = −i

[
gµν −

qµqν

q2

]
∆(q) . (3)

The PT-BFM quark vertex

In the PT-BFM formalism there exist two types of the quark-gluon vertices,
i.e., the conventional vertex and the background vertex [8]. The first one
is formed by a quantum gluon (Q) entering into ψψ̄ pair and it is usually
denoted by Γaµ (see left vertex of Fig. 2); the second one corresponds to the

three-point function with a background gluon (Â) entering into ψψ̄ pair, and

it will be denoted by Γ̂aµ (see right vertex of Fig. 2). Choosing the flux of
the momenta such that p1 = q + p2, we then define

Γaµ(q, p2,−p1) = gtaΓµ(q, p2,−p1) ; Γ̂aµ(q, p2,−p1) = gtaΓ̂µ(q, p2,−p1) ,

where ta = λa/2 are the standard generating matrices of the SU(3) group
for the fundamental representation, and λa are the Gell-Mann matrices. It
is important to remark that Γµ and Γ̂µ coincide only at tree-level, where one

has Γ
(0)
µ = Γ̂

(0)
µ = γµ.
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Figure 2: The conventional and background full quark-gluon vertices.

The main difference between these two vertices is that Γ̂µ obeys the QED-like
Ward identity (WI) [8]

qµΓ̂µ(q, p2,−p1) = [S−1(p1)− S−1(p2)] , (4)

while the vertex Γµ satisfies the fundamental STI

qµΓµ(q, p2,−p1)=F (q)[S
−1(p1)H(q, p2,−p1)−H(−q, p1,−p2)S

−1(p2)] , (5)

here Ha = taH is the quark-ghost scattering kernel and H its “conjugate”,
shown in Fig. 3. The function F (q) is the ghost dressing function, defined
from the ghost propagator D(q) = iF (q)/q2.
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Figure 3: The quark-ghost scattering kernel H(p1, p2, p3).

The conventional and background vertices are related by means of the BQI,
that in Landau gauge, can be written as [8]

[1 +G(q2)]Γµ(q, p2,−p1) = Γ̂µ(q, p2,−p1) + · · · , (6)

where the ellipses denote some auxiliary three point functions, whose effects
will be neglected here.
The function G(q) appearing above is particular to the PT-BFM formal-
ism [6]; specifically, G(q) is the form factor associated with the gµν compo-
nent of the special two-point function Λµν, shown in Fig. 4 [9].

Λµν(q) = +µ ν µ ν

Figure 4: Definition of the auxiliary function Λµν.

In this work we will employ Eq. (6) using a particular choice for Γ̂µ, namely

Γµ(q, p2,−p1) =
Γ̂BCµ (q, p2,−p1)

[1 +G(q)]
, (7)

where Γ̂BCµ is the well-known Ball-Chiu vertex (which satisfies the WI given
by Eq. (4)) ,

Γ̂
µ
BC =

A1 + A2

2
γµ +

(p1 − p2)
µ

p21 − p22

{
[A1 − A2]

/p1 − /p2
2

+ [B1 − B2]
}
, (8)

with Ai = A(pi) and Bi = B(pi), with i = 1, 2.
In order to proceed further, we need first to discuss the renormalization
of the quark SDE given by Eq. (1). We know that the STI imposes that
Z1 = Z−1

c ZFZH−1, where Zc and ZH are the renormalization of the ghost
propagator and the quark-ghost scattering kernel, respectively. Now, in the
Landau gauge, both the quark self-energy and the quark-ghost kernel are
finite at one-loop; thus, at that order, ZF = ZH = 1, and, therefore,
Z1 = Z−1

c . Imposing the above relations in Eq. (1), we obtain

S−1(p) = /p− Z−1
c CFg

2
∫

k
γµS(k)Γν(−p, k, q)∆

µν(q) , (9)

Using the propagators and the vertex given by Eq. (7) and taking the ap-
propriate traces, we obtain from Eq. (1) the following system of integral
equations

A(p) = 1 + Z−1
c g2CF

∫

k

KA(p, k)

A2(k)k2 +B2(k)

[
∆(q)

1 +G(q)

]
,

B(p) = Z−1
c g2CF

∫

k

KB(p, k)

A2(k)k2 + B2(k)

[
∆(q)

1 +G(q)

]
, (10)

where KA(p, k) and KB(p, k) are scalar functions.
At this point it is important to recall that 1+G and F renormalized through
the same renormalization constant, namely F−1(q2, µ2) = ZcF

−1(q2,ΛUV )
and 1+G(q2, µ2) = Zc[1+G(q

2,ΛUV )]. Then, to enforce the correct renor-
malization group behavior of the dynamical quark mass, we will introduce
the following modification Z−1

c KA,B(p, k) → KA,B(p, k)[1 +G(q2)]−1.
Then, Eq. (10) becomes

A(p) = 1 + CF

∫

k
d̂(q2)

KA(p, k)

A2(k)k2 +B2(k)
,

B(p) = CF

∫

k
d̂(q2)

KB(p, k)

A2(k)k2 + B2(k)
, (11)

where d̂(q2) is the renormalization-group invariant quantity

d̂(q2) =
g2∆(q)

[1 +G(q)]2
. (12)

Unquenching the gluon propagator

The next step it is to include the quark effects in the gluon propagator. To
do that, we use the same procedure as in Ref. [9], which expresses the un-
quenched gluon propagator ∆Q(q) as a deviation from the unquenched one,
∆(q), i.e.

∆Q(q) =
∆(q)

1 +
{
X̂(q)

[
1 +GQ(q)

]−2
+ λ2

}
∆(q)

, (13)

where the quark loop contribution X̂µν(q) = X̂(p)Pµν(q) is shown in Fig. 5.
The subscript Q denotes the presence of quark loops in the correspond-
ing function, and λ2 is the difference of the dynamical gluon mass in the
quenched and unquenched cases.

X̂µν(q) =
k + q

k

Figure 5: The quark loop contribution in the PT-BFM scheme.

Numerical Analysis and Conclusions

In Fig. 6 we compare the results for ∆(q) (left panel) and [1+G(q)]−1 (right
panel) for the quenched case (black curve) and the unquenched with Nf = 2
(red curve) and Nf = 2 + 1 + 1 (blue curve). All curves are renormalized

at µ = 4.3 GeV. The results for [1 + G(q)]−1 was obtained using its own
dynamical equation from Ref. [10]. The values of αs(µ) = g2/4π were fixed
such that the ghost lattice data of Ref. [4] were reproduced. The values
we obtain using this procedure are: αs(µ) = 0.22 (Nf = 0), α(µ) = 0.28
(Nf = 2) and α(µ) = 0.31 (Nf = 2 + 1 + 1).

Figure 6: (i) Left panel: The gluon propagator ∆(q), and (ii) right panel: The function

[1 +G(q)]−1.

Notice that the inclusion of the quark loop into Eq. (13) suppresses both the
IR and the intermediate momenta regions of the gluon propagator. On the
other hand, the changes in the [1 +G(q)]−1 are extremely mild.
In Fig. 7, we show the corresponding A−1(p2) (left panel) and the M(p2)
(right panel) obtained when we solve the system formed by Eq. (10) using the
results of Fig. 6. It is interesting to notice that for the three cases we obtain
similar values for the dynamical quark masses, around M(0) = 270 MeV.

Figure 7: Quark wave function (left panel) and NF = 0 (black curve), NF = 2 (red curve)

and NF = 2 + 1 + 1 (blue curve).

In conclusion, we have presented a preliminary study of the quark mass
generation using the quenched and unquenched gluon propagators. We
have shown that it is possible to generate a dynamical mass of around
M(0) = 270 MeV, using the minimal Ansatz for the Abelian-like quark-

gluon vertex, Γ̂µ. Of course, the Ansatz employed here can be improved
using the transverse tensorial structures or by adding the neglected cor-
rections appearing in the BQI relating the PT-BFM and the conventional
vertex.
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