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Abstract

By evaluating the so-called Bose-ghost propagator, we

present the first numerical evidence of BRST-symmetry break-

ing in minimal Landau gauge, i.e. due to the restriction of the

functional integration to the first Gribov region in the Gribov-

Zwanziger approach. We find that our data are well described

by a simple fitting function, which can be related to a mas-

sive gluon propagator in combination with an infrared-free

(Faddeev-Popov) ghost propagator. As a consequence, the

Bose-ghost propagator, which has been proposed as a carrier

of the confining force in Yang-Mills theories in minimal Landau

gauge, presents a 1/p4 singularity in the infrared limit.

[A.C., D.Dudal, T.Mendes & N.Vandersickel, Phys.Rev. D 90 (2014)]
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Color Confinement

Millennium Prize Problems by the Clay Mathematics Institute

(US$1,000,000): Yang-Mills Existence and Mass Gap: Prove that

for any compact simple gauge group G, a non-trivial quantum Yang-

Mills theory exists on R
4 and has a mass gap ∆ > 0.

Lattice simulations can solve QCD exactly (in discretized Euclidean

space-time), allowing quantitative predictions for the physics of

hadrons. But they can also help reveal the principles behind a cen-

tral phenomenon of QCD: confinement. In fact, we can try to un-

derstand the QCD vacuum (the “battle for nonperturbative QCD”,

E.V. Shuryak, The QCD vacuum, hadrons and the superdense mat-

ter) by using inputs from lattice simulations and by testing numeri-

cally the approximations introduced in analytic approaches (Dyson-

Schwinger equations, Bethe-Salpeter equations, Pomeron dynam-

ics, QCD-inspired models, etc).
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Pathways to Confinement

How does confinement come about?

Theories of quark confinement include:

dual superconductivity (electric flux tube connecting magnetic

monopoles), condensation of center vortices, etc.

Proposal by Mandelstam (1979) linking linear potential to

infrared behavior of gluon propagator as 1/p4.

Green’s functions carry all information of a QFT’s physical and

mathematical structure.

Confinement given by behavior at large distances (small

momenta) ⇒ nonperturbative study of IR propagators and

vertices −→ it requires very large lattice volumes.

Gribov-Zwanziger confinement scenario based on suppressed

gluon propagator and enhanced ghost propagator in the IR.
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Quantization and Gribov Copies

The invariance of the Lagrangian under local gauge transformations implies that,

given a configuration {A(x), ψf (x)}, there are infinitely many gauge-equivalent con-

figurations {Ag(x), ψg
f
(x)} (gauge orbits). In the path integral approach we integrate

over all possible configurations

Z =

∫

DA exp

[

−

∫

d4xL(x)

]

There is an infinite factor coming from gauge invariance:
∫

DA =
∫

DA
g
Dg and

∫

Dg = ∞.

To solve this problem we can choose a represen-

tative A on each gauge orbit (gauge fixing) using

a gauge-fixing condition f(A) = 0. The change of

variable A → A introduces a Jacobian in the mea-

sure.

Question: does the gauge-fixing condition select

one and only one representative on each gauge

orbit?

Answer: in general this is not true (Gribov copies).
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Lattice Landau Gauge

In the continuum: ∂µ Aµ(x) = 0. On the lattice the Landau gauge

is imposed by minimizing the functional

S[U ;ω] = −
∑

x,µ

Tr Uω
µ (x) ,

where ω(x) ∈ SU(N) and Uω
µ (x) = ω(x) Uµ(x) ω

†(x+ a eµ) is the

lattice gauge transformation.

By considering the relations Uµ(x) = ei a g0 Aµ(x) and ω(x) =

ei τ θ(x) , we can expand S[U ;ω] (for small τ ):

S[U ;ω] = S[U ; 1⊥] + τ S
′

[U ; 1⊥](b, x) θb(x)

+
τ2

2
θb(x)S

′′

[U ; 1⊥](b, x; c, y) θc(y) + . . .

where S
′′

[U ; 1⊥](b, x; c, y) = M(b, x; c, y)[A] is a lattice discretization

of the Faddeev-Popov operator −D · ∂ .
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Constraining the Functional Integral

At a stationary point S
′

[U ; 1⊥](b, x) = 0 , one obtains

∑

µ

Ab
µ(x) − Ab

µ(x− a eµ) = 0 ,

which is a discretized version of the (continuum) Landau gauge condition. At a local

minimum one also has M(b, x; c, y)[A] ≥ 0 . This defines the first Gribov region (V.N.

Gribov, 1978)

Ω ≡ {U : ∂ ·A = 0, M ≥ 0 } ≡ all local minima of S[U ;ω] .

All gauge orbits intersect Ω (G.

Dell’Antonio & D. Zwanziger, 1991)

but the gauge fixing is not unique (Gri-

bov copies).

Absolute minima of S[U ;ω] define the

fundamental modular region Λ, free of

Gribov copies in its interior. (Finding

the absolute minimum is a spin-glass

problem.)

Ω
Λ

Γ
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GZ Action and BRST Breaking

Analytically the restriction to the first Gribov region Ω can be achieved by adding a

nonlocal term Sh, the horizon function (D. Zwanziger, 1993), to the usual Landau

gauge-fixed Yang-Mills action:

SGZ = SYM + Sgf + γ4Sh ,

where the Gribov (massive) parameter γ is dynamically determined (in a self-

consistent way) through the so-called horizon condition. The GZ action can be lo-

calized, using auxiliary fields (organized in BRST doublets), and can be written as

SGZ = SYM + Sgf + Saux + Sγ .

Under the usual nilpotent BRST variation s the localized GZ theory is not BRST-

invariant. Indeed,

s (SYM + Sgf + Saux) = 0 and s Sγ ∝ γ2 6= 0

but (M.A.L. Capri et al., 2015) sγ2 SGZ =
(

s+ δγ2

)

SGZ = 0 (!!)
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The Bose-ghost Propagator

Using the auxiliary fields ωabµ (x), ωabµ (x), φabµ (x), φ
ab

µ (x) one

can consider the (BRST-exact) correlation function

Qabcd
µν (x, y) = 〈 s(φabµ (x)ωcdν (y)) 〉

= 〈ωabµ (x)ωcdν (y) + φabµ (x)φ
cd

ν (y) 〉 ,

which (at tree level) is given by

Qabcd
µν (k, k′) = γ4

(2π)4 δ(4)(k + k′) g20 f
abef cdePµν(k)

k2
(

k4 + 2g20Ncγ4
) ,

where Pµν(k) is the usual transverse projector. [Extended to

one loop by J.A. Gracey, JHEP 1002 (2010).]
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The Q(k2) Propagator

We want to evaluate the scalar function Q(k2), defined through

the relation

γ−4Qabdb
µµ (k) ≡ δadNc Pµµ(k)Q(k2) .

On the lattice one does not have direct access to the auxil-

iary fields (φ
ac

µ , φacµ ) and (ωacµ , ωacµ ). Nevertheless, since these

fields enter the continuum action at most quadratically, we can

integrate them out exactly. More precisely, one can

1. add sources to the (localized) GZ action,

2. explicitly integrate over the four auxiliary fields,

3. take the usual functional derivatives with respect to the

sources, in order to obtain the chosen propagator.
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The Q(k2) Propagator on the Lattice

This gives

γ−4Qabcd
µν (x− y) =

〈

Rab
µ (x)Rcd

ν (y)
〉

,

where

Rab
µ (x) =

∫

d4z (M−1)ae(x, z)Beb
µ (z)

and Beb
µ (z) is given by the covariant derivative Deb

µ (z). Alterna-

tively, by neglecting at the classical level the total derivatives

∂µ(φ
aa
µ + φ

aa

µ ) in the action Sγ , we find

Beb
µ (x) = g0 f

ecbAcµ(x) .

The above expessions can be easily evaluated on the lattice.
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Numerical Simulations

We evaluate the Bose-ghost propagator Q(k2) —modulo

the global factor γ4— using Monte Carlo simulations in

the four-dimensional case for the SU(2) gauge group.

In order to check for discretization effects, we consid-

ered four different values of the lattice coupling β, cor-

responding to a lattice spacing a of about 0.210 fm,

0.140 fm, 0.105 fm and 0.0841 fm. The lattice volumes

V considered have physical volumes ranging from about

(3.366 fm)4 to (13.44 fm)4.
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The Beb
µ (x) Vectors on the Lattice

We consider three different lattice Beb
µ (x) vectors:

Bbc
µ (x) = δbc

Tr

2
[Uµ(x) − Uµ(x− eµ)]

+f cdb
[

Ad
µ(x) + Ad

µ(x− eµ)
]

,

which is a lattice discretization of the covariant deriva-

tive, the above equation without the diagonal part in color

space (i.e. only the second line), and

Bbc
µ (x) = f bdcAd

µ(x) .
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Different Beb
µ (x) Vectors
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Plot of Q(k2) (lattice vol-

ume V = 964 at β ≈

2.44) as a function of

the improved momentum

squared p2(k) for the first

(red, +), second (green,

×) and third (blue, ∗) dif-

ferent discretization of the

sources Bbc
µ (x). For the

latter case the data are

multiplied by a factor 4.

Note the logarithmic scale

on both axes.
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Finite-Volume Effects
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Plot of Q(k2) (at β ≈

2.35) as a function of

the improved momentum

squared p2(k) for the lat-

tice volumes V = 484 (red,

+), 604 (green, ×) and 724

(blue, ∗), using the third

discretization formula for

the sources Bbc
µ (x). Note

the logarithmic scale on

both axes.

QCD–TNT4 September 2, 2015 – p. 15



Scaling and Fit (I)

Plot of Q(k2) at β = 2.2 and lattice volume V = 484 (+) matched

with data at β ≈ 2.35 and V = 724 (×). We also show the fitting

function

f(k2) =
c

k4
k2 + s

k4 + u2k2 + t2
∼ G2(k2)D(k2)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.01  0.1  1  10

Q
(k

2 ) 
(G

eV
-2

)

p2(k) (GeV2)

with t = 3.2(0.3)(GeV 2),

u = 3.6(0.4)(GeV ),

s = 49(14)(GeV 2) and

c = 37(4).

Note: Q(k2) ∼ 1/k4 in the IR limit and ∼ 1/k6 in the UV limit.
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Scaling and Fit (II)
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Plot of p4(k)Q(k2) at β ≈

2.44 and lattice volume

V = 964 (+) matched with

data at β ≈ 2.51 and V =

1204 (×). We also show the

fitting function

f(k2) = c
k2 + s

k4 + u2k2 + t2

with t = 3.3(0.2)(GeV 2),

u = 4.8(0.3)(GeV ),

s = 121(21)(GeV 2) and

c = 132(11). Note the loga-

rithmic scale on both axes.

QCD–TNT4 September 2, 2015 – p. 17



Poles of Q(k2)

We can write the fitting function as

f(p2) =
c

p4

(

α+

p2 + ω2
+

+
α−

p2 + ω2
−

)

and the poles can be complex-conjugate, i.e. α± = 1/2 ± ib/2 and

ω2
± = v ± iw, or they can be real, i.e. α±, ω

2
± = v ± w ∈ R.

V = N4 β v (GeV 2) w (GeV 2) b or α+ type

484 β0 1.1(0.3) 2.0(0.2) 4.8(0.1) C

644 β0 1.0(0.3) 1.9(0.2) 4.0(0.1) C

724 β1 6.5(1.4) 5.6(0.2) 4.27(0.03) R

964 β2 7.6(0.8) 6.99(0.04) 4.091(0.007) R

1204 β3 11.5(1.4) 11.04(0.06) 5.460(0.009) R
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Q(k2) vs. g20 G
2(k2)D(k2)
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Plot of Q(k2) (red, +)

and of the product

g20 G
2(p2)D(p2) (green,

×) as a function of the

improved momentum

squared p2(k) for the

lattice volume V = 1204

at β ≈ 2.51. The data of

Q(k2) have been rescaled

in order to agree with

the data of the product

g20 G
2(p2)D(p2) at the

largest momentum. Note

the logarithmic scale on

both axes.
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Conclusions

To-do list:

Extend these studies to the SU(3) case.

Consider also the 2d and the 3d cases.

Consider other correlation functions.

Conceptual issue:

How to evaluate the Gribov parameter γ on

the lattice?
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