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Introduction

Our understanding of the infrared (IR) properties of the fundamental QCD
Green’s functions has improved considerably in the last few years, due to
a variety of parallel efforts in lattice simulations [1, 2, 3] and Schwinger-
Dyson equations (SDEs) [4, 5]. The majority of the aforementioned studies
have focused on the low-momentum behavior of the quark, gluon and ghost
propagators, which can be directly or indirectly related to some of the most
fundamental nonperturbative phenomena of QCD, such as quark confine-
ment, dynamical mass generation, and chiral symmetry breaking.
In the case of the SDEs, several major results were derived within the
framework provided by the synthesis of the pinch technique (PT) with the
background field method (BFM), known in the literature as the PT-BFM
scheme [4]. Most notably, the formulation of the gluon SDE in this scheme
furnishes considerable advantages, because it allows for a systematic trunca-
tion that respects manifestly, and at every step, the gauge invariance [5].
In this formalism, an auxiliary function, denoted by G(q2) plays a central
role. This function is the gµν co-factor in the Lorentz decomposition of
a special Green’s function, denoted by Λµν(q), which appears in a variety
of field-theoretic contexts. In particular, Λµν(q) enters in all “background-
quantum” identities (BQIs), i.e. the infinite tower of non-trivial relations
connecting the PT-BFM Green’s functions to the conventional ones [4], as
shown in Fig. 1.

= (1 +G)⊗

∆̃(q) = [1 +G(q)]∆(q)

= (1 +G)2⊗

∆̂(q) = [1 +G(q)]2∆(q)
Figure 1: The“background-quantum” identities (BQIs) connecting the conventional gluon prop-

agator ∆(q2) with the PT-BFM gluon propagators ∆̂(q2) and ∆̃(q2).

Most importantly, the same auxiliary function, jointly with the gluon prop-
agator and the constant coupling αs(µ

2) = g2/4π, enter into the definition
of the renormalization group invariant (RGI) - µ-independent quantity [6]

d̂(q2) = αs(µ
2)

∆(q2, µ2)

[1 +G(q2, µ2)]2
, (1)

which is a fundamental ingredient in many phenomenological applications [7].
In this poster we will present our first steps towards the derivation of an
improved calculational scheme for the dynamical equation governing the be-
havior of the auxiliary function 1 +G(q2).

The Formalism

Let us first introduce the notation and define some of the basic quantities
appearing in the problem under study.
In the Landau gauge, the gluon propagator ∆µν(q) has the form

∆µν(q) = −iPµν(q)∆(q2), Pµν(q) = gµν − qµqν/q
2 (2)

In addition, the full ghost propagator, D(q2), and its dressing function,
F (q2), are related by

D(q2) =
iF (q2)

q2
. (3)

Moreover, the all-order ghost vertex (after factoring out the color structure
and the coupling constant g) will be denoted by Γµ(k, q), with k represent-
ing the momentum of the gluon and q that of the anti-ghost. Its tensorial
structure is given by [6]

−Γµ(−k − q, k, q) = B1(−k − q, k, q)qµ + B2(−k − q, k, q)kµ. (4)

Thus, at tree-level Γ
(0)
µ (−k − q, k, q) = −qµ.

The central quantity of the present study, namely G(q2), originates from the
two-point function Λµν(q), represented in Fig. 2, defined as

Λµν(q) = −ig2CA

∫

k
H

(0)
µρD(k + q)∆ρσ(k)Hσν(−k − q, k, q),

= gµνG(q2) +
qµqν

q2
L(q2), (5)

Hσν(k, q) = H(0)
σν

+

+Λµν(q) = νµ µ ν

k, σ

k + q

q
ν

Figure 2: Diagrammatic representation of the functions H and Λ.

The function Hµν(k, q) (see Fig. 2 for a diagrammatic definition) is in fact a
familiar object: it appears in the all-order Slavnov-Taylor identity satisfied
by the standard three-gluon vertex, and is related to the full gluon-ghost
vertex by

qνHµν(−k − q, k, q) = −iΓµ(−k − q, k, q). (6)

At tree-level, H
(0)
µν = igµν. Finally, using the most general Lorentz decom-

position of Hµν [6],

−iHµν(−k − q, k, q) = A1gµν +A2qµqν + A3kµkν +A4qµkν +A5kµqν,

we obtain from Eq. (4) and Eq. (6) two constrains for the various form-
factors, namely

B1 = A1 + q2A2 + (k · q)A4, B2 = (k · q)A3 + q2A5. (7)

where Ai = Ai(−k − q, k, q) and Bj = Bj(−k − q, k, q).

Let us study the functions G(q2) and L(q2) more closely. From Eq. (5) we
have that (in d dimensions)

G(q2) = Cd

[∫

k
∆ρσ(k)HσρD(k + q) + i

1

q2

∫

k
qρ∆ρσ(k)Γ

σD(k + q)

]
,

L(q2) = −Cd

[
i
d

q2

∫

k
qρ∆ρσ(k)Γ

σD(k + q)+

∫

k
∆ρσ(k)HσρD(k + q)

]
.

where we have defined Cd = g2CA/(d − 1), with CA the Casimir of the
adjoint representation [CA = N for SU(N )].
Inserting the decomposition of Eq. (4) and Eq. (7) in the above equation,
we obtain [6]

G(q2) = Cd

∫

k

{
(d− 1)A1 −

[
1−

(k · q)2

k2q2

] [
B1 − q2A2

]}
∆(k)D(k + q),

L(q2) = Cd

∫

k

{
(1− d)A1 +

[
1−

(k · q)2

k2q2
)

] [
dB1 − q2A2

]}
∆(k)D(k + q),

(8)

( )−1 = ( )−1 +

k

q q q k + q

Figure 3: The SDE for the ghost.

At this point, let us consider the standard SDE of the ghost propagator,
given in Fig. 3; substituting in it the decomposition of Eq. (4), we obtain

F−1(q2) = 1+g2CA

∫

k

[
1−

(k · q)2

k2q2

]
B1(−k−q, k, q)∆(k)D(k+q). (9)

Then, it is straightforward to show that Eqs. (9) and (8) satisfies the rela-
tion [6]

F−1(q2) = 1 +G(q2) + L(q2). (10)

This special relation, which is valid only in the Landau gauge, may also be
formally derived within the framework of the Batalin-Vilkovisky quantiza-
tion formalism [8].
Turning to the actual evaluation of the above quantities, notice that the in-
tegrals appearing in Eq. (8) involve the form factors A1, A2 and B1, whilst
in the integral of Eq. (9) enters only B1. The form factor B1 was determined
from its own SDE in the limit of vanishing ghost momentum (q = 0) [9] (See
Fig. 4).
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Figure 4: The form factor B1(−k, k, 0) obtained in Ref. [9] from its own SDE, in the limit of

vanishing ghost momentum (q = 0).

On the other hand, the form factors A1 and A2 are not known. In order
to proceed further, we will consider the first relation in Eq. (7), and we will
neglect the contributions of A2 and A4, thus obtaining A1 = B1. Imple-
menting these approximations, one obtains the final set of equations [6]

1 +G(q2) = Zc + Cd

∫

k

[
(d− 2) +

(k · q)2

k2q2

]
B1(−k, k, 0)∆(k)D(k + q),

F−1(q2) = Zc + (d− 1)Cd

∫

k

[
1−

(k · q)2

k2q2

]
B1(−k, k, 0)∆(k)D(k + q),

L(q2) = Cd

∫

k

[
1−

(k · q)2

k2q2

]
B1(−k, k, 0)∆(k)D(k + q), (11)

where the renormalization constant Zc is determined from the MOM condi-
tion F (µ2) = 1.

Numerical Results

The numerical results for Eqs. (11) were obtained using the lattice data for
∆(k) given in the Ref. [2], while for D(k) we use the solution obtained from
the ghost SDE. The renormalization constant was fixed at µ = 4.3 GeV, and
αs(µ) = 0.22 throughout.
In Fig. 5 and Fig. 6, we compare our numerical results for [1+G(q2)]−1, L(q2)
and F (q2) given by Eq. (11) in two different scenarios: (i) B1(−k, k, 0) = 1,

which corresponds to the tree level approximation for the gluon-ghost ver-
tex (red dashed curve), and (ii) an improved version of the vertex, where
B1(−k, k, 0) is given as in Fig. 4 (black continuous curve).
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Figure 5: Comparison of the solutions for 1 +G(q2) (right panel) and L(q2) (left panel) deter-

mined from Eq. (11) using the form factor correction B1(−k, k, 0) (black curve) and the bare vertex

(red curve).
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Figure 6: Comparison of the solutions for F (q2) (right panel) determined from Eq. (11) using

the form factor correction B1(−k, k, 0) (black curve) and the bare vertex (red curve). In the right

panel we compare the solutions for F (q2) and the inverse of 1 + G(q2) in the presence of the form

factor B1.
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Figure 7: The corresponding dimensionful RGI combination, d̂(q2), given by Eq (1) (left panel),

and the dimensionless quantity, q2d̂(q2) (right panel), for the cases where 1 + G(q2) was computed

with the form factor correction B1(−k, k, 0) (black curve) or just with the bare vertex (red curve).

Conclusions

We have clearly established that B1(−k, k, 0) has a sizable effect on both
[1 + G(q2)] and L(q2). We have also checked that the fundamental rela-
tion given by Eq. (10) is numerically satisfied in both approximations. In
addition, we notice that even though L(q2) vanishes at the origin, it has a
non-vanishing support in the region of physical interest (see the right panel of
Fig.5). Therefore, the approximation F−1(q2) ≈ 1+G(q2), often employed
in the literature, is not sufficiently accurate in this case.
In Fig. 7 we present the same comparison for the dimensionful d̂(q2) and the

dimensionless q2d̂(q2) RGI quantities given by Eq. (1). Again, we notice the
significant impact caused by the form factor B1 in the interaction strengths.
It would be interesting to quantify what would be the effect on the 1+G(q2)
caused by form factors A2 and A4 which were neglected our analysis. Most
certainly, these corrections will reflect in changes in the RGI interaction
strengths. Calculations in this direction are already in progress.
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