
Constituent Gluons in Static Quark Systems

Jeff Greensite

San Francisco State University

TNT IV
Unraveling the Tapestry...

IlhaBela, Brazil

September 2015

with Adam Szczepaniak

Jeff Greensite (SFSU) constituent gluons IlhaBela 1 / 36



Gluons as constituent particles?

Perturbative degrees of freedom: quarks and gluons.

But do particle-like gluons make any sense as constituents of hadronic bound states, particularly
highly excited bound states?
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Regge trajectories =⇒ “spinning stick,” or string, or flux tube between the quark and antiquark.

Does this line-like object have a point-like (constituent gluon) substructure?
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Gluon chain model

An old idea: The gluon chain model (Thorn and JG, 2001)

!

1. Introduction

In recent work[1], Greensite and Thorn described a simple procedure to produce wave
functions for states that may describe stringlike features for hadrons in QCD. As an
Ansatz, a wave function was taken of the form

ψ(x⃗1, x⃗2, · · · , x⃗N−1) = A
N∏

i=1

φ(u⃗i) , (1.1)

where

u⃗i = x⃗i − x⃗i−1 , x⃗0, x⃗N fixed. (1.2)

They then propose to use a variational principle: φ is chosen such that the total energy
E , defined by

E =
∑

T kin +
∑

V Coulomb , (1.3)

is minimized. Here, V Coulomb is taken to be simply the Coulomb potential,

V Coulomb =
∑

i

V C(u⃗i) , V C(u⃗) = −αs

|u⃗| . (1.4)

Subsequently, it is proposed to try “improved Ansätze”, and it is suspected that those
wave functions that give a string like appearance will carry the lowest amounts of total
energy E .

Some aspects of this proposal, however, are less than satisfactory. Certainly, perma-
nent confinement is not at all a guaranteed property. If we consider the complete set of
elements of Fock space, we must include all those states in which gluons do not form a
chain, and therefore it is to be expected that unitarity will not hold if we restrict ourselves
to chainlike states. A complete set of stringlike states could be found by replacing the
Coulomb potential by a confining potential, but can one justify such a prescription in
a theory where the classical limit would not exhibit any resemblance to a confinement
mechanism?

g
q q

Figure 1:
The Gluon Chain Model

1Representation in Coulomb gauge:

|n〉qq =

∫ n∏
i=1

d3xi Ψk1...kn (x1, x2, . . . , xn)q†(0)Ak1 (x1)Ak2 (x2) . . .Akn (xn)q†(R)|0〉vac
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Gluon chain model, continued

In its original incarnation it was thought that the Coulomb potential between static
sources would eventually rise faster than linear.

This turns out not to be true...the Coulomb potential is asymptotically linear.
(Olejnik and JG, 2003)

In that case, there seems to be no energetic advantage to adding gluons. The energy
expectation value can only go up.

However, the Coulomb string tension is far larger than the gauge-invariant asymptotic
string tension. It can’t be the whole story.
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(Over)Confining Coulomb potential

The instantaneous Coulomb potential is derived from the energy VEV of a qq state

|0〉qq = q†i (0)q†i (R)|0〉vac

where |0〉vac is the non-perturbative vacuum state. There are no constituent gluons. Then

V (R) = qq〈0|H|0〉qq

= − lim
t→0

d
dt

log
{
〈0|q(R)q(0)e−Ht q†(0)q†(R)|0〉

}
= − lim

t→0

d
dt

log
〈
Tr[Lt (0)L†t (R)]

〉
where

Lt (x) ≡ T exp
[

ig
∫ t

0
dtA0(x, t)

]

is a Wilson line of length t in the time direction.
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Coulomb potential II

On the lattice :

V (R) = lim
β→∞

(
VL(RL, β)

a(β)

)

VL(R, β) = − log
〈1

3
TrU0(0, 0)U†0 (R, 0)

〉

We get the Coulomb potential from the correlator of timelike links in Coulomb gauge.
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Coulomb potential III

From numerical simulations the Coulomb potential turns out to be linearly confining, and fits the
form

Vcoul (R) = σcoul R −
π
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The Coulomb string tension σcoul = (891MeV)2 is about four times larger than the asymptotic
string tension. Too much of a good thing!
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In fitting the data, in physical units, to

V (R) = σR − γ

R
+

c
a

we are able to isolate (and subtract) the self energy c/a, and find that the continuum limit of γ
seems to be Lüscher’s value of π/12.
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This is actually a little puzzling: what does the Coulomb energy have to do with string theory?

But the greater puzzle is why the asymptotic string tension is a factor of four lower than the
Coulomb string tension.
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A toy model

Vcoul (R) is the energy of a zero constituent-gluon state

|0〉qq = q†i (0)q†i (R)|0〉vac

It seems like adding more gluons (gluon-chain model) would just increase the energy.
However, |0〉qq is not an eigenstate of H.

Let |n〉qq denote a state with n constituent gluons arranged more-or-less in a line between the
quark and antiquark. The distance between gluons is ≈ R/n, and we’ll suppose fluctuations in the
transverse direction are of order 1/a. Then the kinetic energy of each gluon is roughly

KE ≈
√

n2

R2
+ a2 (1)

(a dynamical mass can be absorbed in the a2 term). Adding up all the inter-gluon Coulomb
interactions,

total Coulomb energy ≈ σcR (2)
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toy model II

Then the energy of the n-gluon state is the diagonal element of the Hamiltonian

Hnn = n

√
n2

R2
+ a2 + σcR

We suppose, in this toy model, that states with different numbers of constituent gluons are
orthogonal. But what is the effect of off-diagonal terms?
Let us suppose that these have the form

Hn,n+1 = Hn+1,n = (n + 1)α

(
R

n + 1

)p

Pick some parameters a, α and power dependence p, diagonalize H, and find the lowest energy
eigenvalue. This is the interquark potential V (R).

Can it be lower than σcR? Is it still linear?
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toy model III

The uppermost line is the Coulomb potential σcR, with units σc = 1. All other lines
have a smaller slope.
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Remarkably, the off-diagonal elements lower the Coulomb string tension while
preserving the linearity of the potential, almost irrespective of the R-dependence of the
off-diagonal terms.
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toy model IV

One can also compute the excitation spectrum in this model, and the excitations are
also linear in separation R,
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The question is whether we can go beyond this toy model. Is this really what is going
on?
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Lattice-improved tree diagrams

Hmn is calculated much like S-matrix elements in renormalized perturbation theory.

Hmn = − lim
t→0

d
dt
〈m|e−Ht |n〉

There are a finite number of tree diagrams contributing to each Hmn.

The building blocks are dressed propagators, and 1PI n-point vertex functions.

We propose to

construct a finite basis

keep all the tree diagrams

obtain dressed propagators from the lattice

truncate vertex functions

diagonalize the Hamiltonian in the (orthogonalized) basis
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The gluon chain spectrum

This procedure, if successful, gives us a spectrum of states containing a static
quark-antiquark pair, with the spectrum dependent on the quark-antiquark separation
R. Of course the excited states will be unstable to decay into glueballs. But so are
states on Regge trajectories.

First step: only n = 0, 1 constituent gluons, (M + 1)× (M + 1) Hamiltonian matrix. The
finite basis consists of the zero-gluon state and a set of M one-gluon states.
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Coulomb gauge preliminaries

The classical Hamiltonian:

H = Hglue + Hcoul + Hmatter

Hglue =
1
2

∫
d3x (~E tr,a · ~E tr,a + ~Ba · ~Ba),

Hcoul =
1
2

∫
d3xd3y ρa(x)K ab(x , y ; A)ρb(y)

K ab(x , y ; A) =
[
M−1(−∇2)M−1

]ab

xy
,

M = −∇ · D(A)

ρa = ρa
q + ρa

q̄ + ρa
g ,

= gq†i (x)ta
ij qj (x) + gq̄i (x)ta

ij q̄†j (x)− gf abcAb
k (x)Ec

k (x)

In tree-level formalism we have to expand K ab(x , y ; A) and do a partial resummation into dressed
ghost and Coulomb propagators.
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Decomposition of the Coulomb vertex

K

...

= . . . .

...

K G

KG

G G

KG G G

G G+

+ . . . .

+

 .  . 

+

G G G K

...

 .  . 

 .  . 

(tree diagrams)

. . . .. . . .KG G G

Diagrammatic notation

static quark

Coulomb

ghost

transverse gluon

E−A propagator

These are dressed propagators.

The decomposition involves only RG-invariant combinations of operators.

The approximation is the factorization of the VEV into a product of dressed propagators.
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Decomposition details

The perturbative expansion of the ghost operator G(A) = 1/(−∇ · D) is the series

G(A) =
1

(−∇2)

∞∑
n=0

Mn , M = gfAi∂i
1

(−∇2)

For the Coulomb operator K (A) = G(A)(−∇2)G(A)

K =
1

(−∇2)

∞∑
m=0

Mm(−∇)2 1
(−∇2)

∞∑
n=0

Mn

=
1

(−∇2)

∞∑
N=0

(N + 1)MN

Suppose one M operator, call it M∗, contracts with an A field in the initial or final states.
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Decomposition details ||

Call K A the operator with one A operator contracting with the initial or final state.

K A =
1

(−∇2)

∞∑
N=0

(N + 1)

N−1∑
m=0

MmM∗MN−m−1

With a little bit of combinatorics, one can show that

K A =
1

(−∇2)

∞∑
m=0

∞∑
n=0

(m + n + 2)MmM∗Mn

=
1

(−∇2)

∞∑
m=0

(m + 1)Mm(gfA∗∂)
1

(−∇2)

∞∑
n=0

Mn

+
1

(−∇2)

∞∑
m=0

Mm(gfA∗∂)
1

(−∇2)

∞∑
n=0

(n + 1)Mn

= K (gfA∗∂)G + G(gfA∗∂)K (3)

This KG + GK structure generalizes to any number of gluons emerging from the K (A) operator.
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Decomposition of the Coulomb vertex

K

...

= . . . .
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K G

KG

G G
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Diagrammatic notation

static quark
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E−A propagator

These are dressed propagators.

The decomposition involves only RG-invariant combinations of operators.

The approximation is the factorization of the VEV into a product of dressed propagators.
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The relevant tree diagrams
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truncated basis

The initial/final “blobs” represent one-gluon states in a trucated basis. The construction of
one-gluon basis states begins with the one-parameter state

~Ψ = ∇×

 −y
x
0

F (x , y , z) =

 −x∂zF
−y∂zF

2F + x∂x F + y∂y F


F (x , y , z) = exp

[
−1

a

(√
x2 + y2 + z2 +

√
x2 + y2 + (R − z)2

)]

where a is a variational parameter.

Motivation: ~Ψ is dimensionless, transverse
~∇ · ~Ψ = 0, and concentrated in a cylindrical
region of radius a.

-5  0  5  10  15-10
-5

 0
 5

 10
 0

 0.2
 0.4
 0.6
 0.8

 1

F

z
x

F

For a large basis, the precise choice of a is irrelevant, but it makes a difference in a small basis.
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basis II

Construct a set of non-orthogonal one-gluon states with the ansatz

Ψk = ∇×

 −y
x
0

Fnm(r , z)

Fnm(r , z) = fn(z)L1
m

(
4r
a

)
exp

[
−1

a

(√
r2 + z2 +

√
r2 + (R − z)2

)]

where L1
m is an associated Laguerre polynomial, r2 = x2 + y2, and

fn(z) =


1 n = 1

sin
(

2πn
R+2 a

3
(z + a

3 )

)
n > 1
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basis III

From the overlaps

Ojk = 3CF

∫
d3xd3y ~Ψj (x) · ~Ψk (y)D(x − y)

and Hamiltonian matrix elements

〈Ψj |H|Ψk 〉

we can construct (via stabilized Gram-Schmidt) an orthonormal set of one-gluon states
|α〉, α = 1, 2, ... (the zero-gluon state is denoted |0〉).

In this truncated basis of zero and one gluon states we can obtain the Hamiltonian matrix
elements 〈α|H|β〉.

Then diagonalize H to obtain the spectrum, optimized wrt the parameter a.
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The transverse gluon propagator

The Coulomb propagator K̃ (R) is related to the Coulomb potential via

Vcoul (R) = −g2CF K̃ (R)

Still need the ghost G(R) and equal-times transverse gluon Dij (R) propagators. Because ~Ψ is
transverse, it suffices to compute

D(R) =
1
8
δij 〈Tr[Ai (x, t)Aj (y, t)]〉

where, on the lattice

Ai (x, t) =
1

2iga

(
Ui (x, t)− U†i (x, t))

In lattice simulations, it turns out that the data is very sensitive to lattice volume; more so at higher
β. Our data does seem to have converged for R ≤ 0.7 fm or so on a 304 lattice volume, but
requires larger volumes at larger R.
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volume dependence of the gluon propagator

Strong lattice volume dependence...
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(d) β = 6.0
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gluon propagator II

...but on a 304 volume the results converge up to R ≈ 0.7 fm.
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The data suggests that multiplicative renormalization ZA is almost constant in this
range of β.
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gluon propagator III

We have tried to fit the data to either a massive propagator...

Dmass(R,m) = c
∫

d3k
(2π)3

eik·x

2(k2 + m2)
1
2

= c
m

4π2R
K1(mR)

...or a Gribov propagator

DGrib(R,m) = c
∫

d3k
(2π)3

eik·x

2(k2 + m4/k2)
1
2

which can be expressed in terms of MeijerG functions. Neither gives a very good fit.
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gluon propagator IV
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In the region where the data has converged, massive and Gribov propagators do not seem to give
a good fit to the data. We use instead

D(R) = 0.0469
exp[−5.35R2 + 2.35R]

R2
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The Ghost Propagator

The lattice ghost propagator

Gab(R) =
〈(
M−1)

ax,by

〉
= δab 1

8

〈(
M−1)

cx,cy

〉

is the inverse of the lattice Faddeev-Popov operatorM = −∇ · D. A complication is thatM has
eight eigenvectors with zero eigenvalues (c = 1− 8)

ψ
(c)
ax =

1
L3/2

δac with Max,byψ
(c)
by = 0

associated with a remnant global SU(3) color symmetry, and is therefore not invertible as it
stands.

Solution: invertM on a subspace orthogonal to these zero modes. This is automatic in
momentum space, and can be done numerically.

Jeff Greensite (SFSU) constituent gluons IlhaBela 29 / 36



ghost II

The ghost propagator in Coulomb gauge has been computed by a German-Japanese
collaboration Nakagawa et al. (2009) for the SU(3) group, and by Langfeld and Moyaerts
(2004) and Burgio et al. (2012) for SU(2). We will use the SU(3) result found in the
infrared region:

G(p) =
(

d(β)
p0.44

)
1
p2

which translates, in position space, to

G(R) =

√
6

8
c(β)

R0.56

At β = 6, Nakagawa et al. have c(β) = 1.63.
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ghost III

Lattice simulations provide the bare propagators, and in particular the ghost propagator contains a
constant factor c(β) which is coupling dependent.

In Coulomb gauge, however, the combination gGAµ(x) is RG invariant, as is g2K (R).

Our spectrum calculation should be RG invariant, at sufficiently weak coupling, providing we use
ghost, transverse gluon, and Coulomb propagators computed at the same β.

There are two questions:

1 Does the energy of the ground state, computed in our zero + one-gluon basis, rise linearly
with R?

2 If yes, and we fit c(β) to get the right string tension, how close do we get to the value
c(β) = 1.63 reported by Nakagawa et al.?
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The Static Quark Potential

Diagonalize Hαβ in the truncated basis, and plot the lowest energy eigenvalue vs. R.
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A linear potential is obtained, with string tension below the Coulomb string tension.

To get the asymptotic string tension of (440 MeV)2, we need c = 2.35, to be compared
to the value c = 1.63 of Nakagawa et al.. However, this is a variational calculation, and
the agreement may improve with an improved ansatz for the basis states.
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Spectrum of excited states:
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These excitations are far above the glueball threshold, and would rapidly decay to the
ground state. It is also likely that two-gluon chain states, in addition to the zero and
one-gluon states, would make an important contribution to the excitations.
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eigenstate composition

The minimal energy state at each R is a superposition

|ψ〉 = c0(R)|0 gluons〉qq + c1(R)|1 gluon〉qq

The relative proportions of the zero and one-gluon states are given by |c2
0 | and |c1|2

respectively.

The proportions are fairly constant in the range 1.0− 2.2 fm, with c2
0 decreasing from

0.77 to 0.72.
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Conclusions

The gluon chain model looks promising.

A single constituent gluon, up to R = 2.2 fm, seems sufficient to lower the Coulomb
string tension by the factor required, without spoiling the linearity of the potential.

At the quantitative level, however:

1 We need much better lattice Monte Carlo data for the transverse gluon (and,
perhaps, ghost) propagators in position space, at larger volumes.

2 The sensitivity of our results to different ansatze for the truncated basis needs to
be explored systematically.
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Next steps

Gluelump spectra (compare with lattice data)

Glueballs (compare with lattice pure gauge theory)

quarkonia (compare with experiment)

The tree diagrams for Hmn are essentially the same, although for glueballs and
quarkonia it is preferable to work in momentum space.
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