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Departamento de Fı́sica Teórica
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Introductory remarks

The (R)GZ type theories, that takes into account the presence of
Gribov copies in non-abelian gauge theories, provide an effective
description of systems displaying confinement.

These are remarkable theories that are written in terms of fields whose
fundamental excitations cannot be associated with physically
propagating degrees of freedom.

An outstanding task in this context is to make sense of the theory as
consistent description of physical reality.
⇒We have to study the predictions of the theory.

The purpose of this talk is to provide an overview of some of the
applications of the (R)GZ theories developed over the last few years.
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The Gribov-Zwanziger theory

The action has a non-local term that can be localized with auxiliary fields, resulting in the
Gribov-Zwanziger action

SGZ =

∫
dDx

(
1

4
FaµνF

a
µν + iba∂µA

a
µ + c̄a∂µD

ab
µ c

b

)
+

∫
dDx

(
−ϕ̄acµ ∂νDabν ϕbcµ + ω̄acµ ∂νD

ab
ν ω

bc
µ + gfamb(∂ν ω̄

ac
µ )(Dmpν cp)ϕbcµ

)
+

∫
dDx

(
γ2 g fabcAaµ(ϕbcµ − ϕ̄bcµ )−D(N2 − 1)γ4

)
←− Gribov’s restriction

A very important aspect of this formulation is that the Gribov parameter γ is not free, but
determined by the gap equation.

∂E(γ)

∂γ
= 0

where

Z = e−V E(γ) =

∫
DΦ e−SGZ

where Φ stands for all fields. This is a fully quantum mechanical statement. The Gribov
restriction is a modification of the path integral measure.
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The Refined Gribov-Zwanziger theory

The GZ action describes a system that allows for the Horizon function condensation (gap
equation or horizon condition). In fact, the GZ action is unstable with respect to the
dynamical formation of other condensates. These condensates can be taken into
account by modifying (refining) the GZ action.

SRGZ =

∫
dDx

(
1

4
FaµνF

a
µν + iba∂µA

a
µ + c̄a∂µD

ab
µ c

b

)
+

∫
dDx

(
−ϕ̄acµ ∂νDabν ϕbcµ + ω̄acµ ∂νD

ab
ν ω

bc
µ + gfamb(∂ν ω̄

ac
µ )(Dmpν cp)ϕbcµ

)
+

∫
dDx

(
γ2 g fabcAaµ(ϕbcµ − ϕ̄bcµ )−D(N2 − 1)γ4

)
←− Gribov’s restriction

+

∫
dDx

(
m2

2
AaµA

a
µ −M2

(
ϕabµ ϕ

ab
µ − ωabµ ωabµ

))
, ←− Dimension 2 condensates

This action is supposed to effectively implement the restriction of the Yang-Mills system to
the first Gribov region and is “refined” in the sense that it incorporates the effects of
dimension two condensates. It is renormalizable and breaks the perturbative BRST
symmetry.
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The pure gauge field propagator

The RGZ theory reproduces very well the recent lattice data on the low
energy gluon propagator in the 4D SU(3) system.

More recent results confirm this behavior. P. J. Silva, O. Oliveira, P. Bicudo and

N. Cardoso, Phys. Rev. D 89, no. 7, 074503 (2014) [arXiv:1310.5629 [hep-lat]].

D. Dudal, O. Oliveira, N. Vandersickel, Phys. Rev. D81, 074505 (2010).
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The gluon propagator

The (R)GZ gluon propagator has the general analytic structure
(θ4 = γ4g2N )

D(k) =
k2 +M2

k4 + (M2 +m2)k2 +M2m2 + 2θ4

=
R+

k2 +M2
+

+
R−

k2 +M2
−
,

Where

M2
± =

m2 +M2

2
±
√

(m2 −M2)2

4
− 2θ4

and

R± = ±
(M2 −M2

±)

M2
− −M2

+
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The gluon propagator

One can see that for any value of the parameters, as long as θ 6= 0
there will be problems in making sense of D(k) as a propagator of
physical excitations

if (m2 −M2)2 < 8θ4, the poles are complex
if (m2 −M2)2 ≥ 8θ4, the poles are real but there are negative residues.

⇒ No Källén-Lehmann representation
⇒ No way to go back to Minkowski with a physical particle
interpretation
Lattice data points to complex poles (in GeV2)

M2
± = 0.352± 0.513i.
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Scalar toy model

In order to explore the analytical properties of this kind of propagator, it
is profitable to look at a toy model version displaying the same
propagator

S =

∫
dDx

1

2
φ

(
−∂2 +m2 +

2θ4

−∂2 +M2

)
φ

such that

〈φ(k)φ(−k)〉 =
k2 +M2

k4 + (M2 +m2)k2 +M2m2 + 2θ4

=
R+

k2 +M2
+

+
R−

k2 +M2
−
,
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i-particles

In order to simplify the discussion, we choose M = m = µ,
corresponding to the region of complex poles.

M2
± = µ2 ± i

√
2θ2; R± =

1

2

The action can be localized, diagonalized and written as

S =

∫
dDx η

(
−∂2 + µ2 + i

√
2θ2
)
η + η̄

(
−∂2 + µ2 − i

√
2θ2
)
η̄

such that

〈η(k)η(−k)〉 =
1

k2 + µ2 + i
√

2θ2

〈η̄(k)η̄(−k)〉 =
1

k2 + µ2 − i
√

2θ2
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i-particles

Is it possible to identify physical states in this model?

Physical states can only appear as composite states of i-particles. See
M. A. L. Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella, Int. J. Mod. Phys. A 28,

1350034 (2013) [arXiv:1208.5676 [hep-th]]. for an interacting model where physical
bound states can be identified.

But even in the free i-particle theory we can study states that resemble physical
bound states. They are in fact the lowest order approximation to the bound
states.

We look for two point functions of wanna-be physical excitations, such as
O(x) = η(x)η̄(x)

Marcelo Santos Guimarães (DFT-IF/UERJ) 12 / 39
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Spectral representation

In momentum space the expression has the general form

〈O(q)O(−q)〉 =

∫
dDp

(2π)D
1

(q − p)2 +m2
1

1

p2 +m2
2

This is a well known integral that can be put in a Källén-Lehmann
spectral representation

〈O(q)O(−q)〉 =

∫ ∞
τ0

dτ
ρ(τ)

τ + q2
.

with

ρ(τ) =
π
D−3

2

(2π)D−2
1

2(D−1)Γ (D−12 )

[
(τ −m2

1 −m2
2)2 − 4m2

1m
2
2

]D−3
2

τ
D−2

2

τ0 = (m1 +m2)2
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Spectral representation

It turns out that these expressions work for complex masses as well
D. Dudal, M. S. Guimaraes, Phys. Rev. D83, 045013 (2011).

In our case

m2
1 = µ2 + i

√
2θ2

m2
2 = µ2 − i

√
2θ2

Therefore in D = 4

ρ(τ) =
1

(4π)2

√
1− 4µ2

τ
− 8θ4

τ2

τ0 = 2
(
µ2 +

√
µ4 + 2θ4

)
⇒ It follows that ρ(τ) is positive for τ > τ0 and we can have a particle
interpretation!
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Spectral representation

The same reasoning can be applied to more general operators, such as

∂µO(x), ∂2O(x), · · ·

The two point function of such operators

〈Oi(q)Oi(−q)〉 =

∫
d4p

(2π)4
1

(q − p)2 +m2
+

1

p2 +m2
−
f(p, q − p)

where f(p, q − p) is a polynomial in the scalar products of the momenta
(q, p), also lead to a physically consistent Källén-Lehmann spectral
representation.
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Extracting physical properties

The properties of a physical state will be encoded in the analytical
properties of the correlation functions of composite operators O(x).

Π(q2) =

∫
d4x eiqx〈O(x)O(0)〉 ,

A truly non-perturbative evaluation of Π(q2) would enable us to write
the Källén-Lehmann spectral representation

Π(q2) =
1

π

∫ ∞
0

dτ
ImΠ(τ)

τ + q2
,

The factor ImΠ(τ) carries information about the physical spectrum

ImΠ(τ)

π
=
∑
i

Ri δ(τ −m2
i ) + θ(τ − τ0)σ(τ) ,

mi are masses of stable particles and τ0 marks the threshold for
multiparticle production. Ri and σ(τ) are positive quantities.
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Infra-red moments
There are some methods to extract information about the spectrum from the
spectral function. (see M. A. L. Capri, A. J. Gomez, M. S. Guimaraes, V. E. R. Lemes,

S. P. Sorella, D. G. Tedesco, Eur. Phys. J. C71, 1525 (2011) and Phys. Rev. D 85, 085012 (2012). for
a SVZ-inspired sum rule approach)
Here we focus on a modified moment problem, adapted to the infrared, to
obtain estimates of the glueball masses.

In this approach we aim at extracting the pole, in the infrared (low q2) region, of
the two-point function

〈O(q)O(−q)〉
∣∣∣
1−loop

= Π(q2) =

∫ ∞
τ0

dτ
ρ(τ)

τ + q2
.

Since we want to analise the infrared region, we expand for small q2

Π(q2) =

∞∑
n=0

∫ ∞
τ0

dτ

(
1

τ

)n+1

ρ(τ)(−1)n(q2)n =
∞∑
n=0

νn(−1)n(q2)n .

Where νn =
∫∞
τ0
dτ
(
1
τ

)n+1
ρ(τ) are the moments associated to the espectral

function ρ(τ). There are theorems setting the conditions for a reconstruction of
ρ(τ) from its moments.

D. Dudal, M. S. Guimaraes, S. P. Sorella, Phys. Rev. Lett. 106, 062003 (2011).
Marcelo Santos Guimarães (DFT-IF/UERJ) 17 / 39



Summary
Introduction
Applications

Physical spectrum
Phases of gauge theories
Gribov and SUSY

Padé approximants

The idea now is to express Π(q2) as a rational function of the external
momentum in a approximation known as the Padé approximant. From the poles
of this function the value of the mass can be extracted.

Π(q2) =
PN−1( 1

q2
)

QN ( 1
q2

)
+O(q2N ) .

where PN and QN are N -degree polynomials in their arguments. These
functions are determined by the moments νn
For low momenta we need only the first moments, and we obtain

Π(q2) ≈
ν20
ν1

q2 + ν0
ν1

⇒ m2 =

√
ν0
ν1

leading to the determination of the mass at the pole
There are some details concerning the definition of the moments which
sometimes demand subtracted spectral representations and the consequent
introduction of a scale. We demand that the result depends minimally on this
scale (principle of minimal sensitivity).
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Glueballs

Glueballs are colorless, composite gluon states and are classified by the total
angular momentum J , Parity P and charge conjugation C. They are thus
associated with gauge invariant, composite operators carrying JPC quantum
numbers.

Lowest mass dimension glueball operators

O0++(x) = F aµν(x)F aµν(x) ,

O0−+(x) = εµνρσF
a
µν(x)F aρσ(x) .

The higher spin states may mix with the lower ones and have to be projected to
be pure. We use

[O2++(x)]µν = ∂4tµν − ∂2∂µ∂αtαν − ∂2∂ν∂αtαµ + Pµν∂α∂βtαβ

[O2−+(x)]µν = ∂2qµν −
1

3
Pµνqαα

where Pµν = δµν∂
2 − ∂µ∂ν , tµν = F aµσ(x)F aνσ(x)− 1

4
δµνF

a
αβ(x)F aαβ(x) and

qµν = ∂α∂β
(
F ∗µαFνβ +∗ FµαFνβ

)
Marcelo Santos Guimarães (DFT-IF/UERJ) 19 / 39
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Glueballs

Comparison of our results with other methods

JPC confining gluon propagator
0++ 2.27
2++ 2.34
0−+ 2.51
2−+ 2.64

JPC Lattice Flux tube model Hamiltonian QCD ADS/CFT
0++ 1.71 1.68 1.98 1.21
2++ 2.39 2.69 2.42 2.18
0−+ 2.56 2.57 2.22 3.05
2−+ 3.04 – – –

D. Dudal, M. S. Guimaraes and S. P. Sorella, Phys. Lett. B 732, 247 (2014) [arXiv:1310.2016 [hep-ph]].

D. Dudal, M. S. Guimaraes, S. P. Sorella, Phys. Rev. Lett. 106, 062003 (2011).
-Lattice: (1) Y. Chen et al. PRD 73, 014516 (2006)
-Flux tube model: M. Iwasaki et al. PRD 68, 074007 (2003).
-Hamiltonian QCD: A. P. Szczepaniak and E. S. Swanson, PLB 577, 61 (2003).
-AdS/CFT: K. Ghoroku, K. Kubo, T. Taminato and F. Toyoda, arXiv:1111.7032.

-More information in the review: V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E18, 1-49 (2009).
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Gribov Horizon and Yang-Mills-Higgs phases

We know that the no-pole condition can be implemented as a gap
equation for the vacuum energy obtained from an action functional

Z = e−V E(γ) =

∫
DA δ(∂A) detM e−(SYM+γ4H(A)−γ4V D(N2−1))

so that

∂E(γ)

∂γ
= 0⇒ 〈H(A)〉1PI = V D(N2 − 1) ,

The presence of matter will only slightly modify this, most notably
matter dynamics will contribute to the gap equation.

Marcelo Santos Guimarães (DFT-IF/UERJ) 21 / 39
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SU(2) Yang-Mills-Higgs

Consider the SU(2) action in the presence of the Higgs field, both the
fundamental and adjoint representations

SSU(2) =

∫
dDx

(
1

4
F aµνF

a
µν + |DµΦ|2 +

λ

2

(
|Φ|2 − v2

)2
+ ba∂µA

a
µ + c̄a∂µD

ab
µ c

b

)
,

where the covariant derivative is defined by

Dij
µ Φ

j = ∂µΦ
i − ig (τa)ij

2
AaµΦ

j , Fundamental

(DµΦ)
a

= ∂µΦ
a + gεabcAbµΦ

c , Adjoint

In what follows we will always work in the limit λ→∞.〈
Φi
〉

= vδi2 , Fundamental

〈Φa〉 = vδa3 , Adjoint

Marcelo Santos Guimarães (DFT-IF/UERJ) 22 / 39
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Phases of Yang-Mills-Higgs systems

The fundamental question we would like to address is the transition
between the Higgs and confinement regimes in Yang-Mills-Higgs
systems.
E. H. Fradkin and S. H. Shenker, “Phase Diagrams of Lattice Gauge Theories with Higgs Fields,”

Phys. Rev. D 19, 3682 (1979).

There are important differences between the case of the Higgs in the
fundamental and in the adjoint representations of SU(N) gauge
theories in 4D :

In the case of fundamental representation, there is a path in the phase
diagram such that the Higgs and confining phases are continuously
connected.
There may be a discontinuity in the case of adjoint representation.

Marcelo Santos Guimarães (DFT-IF/UERJ) 23 / 39
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Gribov vs Higgs

In what follows we shall work only in the fundamental representation for
illustrative purposes.

We want to analyze the phase structure of this theory as a function of
the gauge coupling g and the Higgs vacuum expectation value v.

Perturbatively we know that the theory is in a Higgs phase
characterized by massive vector boson excitations (Higgs mechanism).

On the other hand the Gribov horizon modifies the gauge propagators
rendering the excitations unphysical, confined.

⇒ How can we reconcile these views?

Marcelo Santos Guimarães (DFT-IF/UERJ) 24 / 39
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Scalars in the fundamental

We work in the quadratic approximation, such that the Horizon function
reads

H(A) = Ng2
∫

dDq

(2π)D
Aaµ(q)Aaµ(−q)

q2
.

so that the quadratic part of the action becomes

S =
1

2

∫
dDq

(2π)D

∫
dDp

(2π)D
Aaµ(p)P abµν(p, q)Aaν(q) .

where

P abµν(p, q) = δabδ(p+ q)δµν

(
q2 +

g2v2

2
+

2Nγ4g2

q2

)
.

Marcelo Santos Guimarães (DFT-IF/UERJ) 25 / 39
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Scalars in the fundamental

In this approximation we have∫
DAe−S ∼

(
detP abµν(p, q)

)− 1
2 = e−

1
2Tr lnP

ab
µν(p,q)

It follows that the vacuum energy has the form

V E(γ) =
1

2
Tr lnP abµν(p, q)− γ4V D(N2 − 1) + terms indep. from γ

and

Tr lnP abµν(p, q) = V (D − 1)(N2 − 1)

∫
dDq

(2π)D

(
q2 +

g2v2

2
+

2Nγ4g2

q2

)
Therefore, the gap equation, ∂E

∂γ4 = 0, becomes

g2N
D − 1

D

∫
dDq

(2π)D
1(

q2 + g2v2

2 + 2Nγ4g2

q2

) = 1

This equation fixes γ4 as a function of g and v.
Marcelo Santos Guimarães (DFT-IF/UERJ) 26 / 39
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Gauge propagator and phases

For D = 4, N = 2 one can solve the gap equation, obtaining

R+ ln

(
m2

+

µ̄2

)
+R− ln

(
m2
−
µ̄2

)
= 1− 32π2

3g2

where µ̄ is the scale in the MS renormalization scheme in d = 4− ε.
Note that if γ = 0, then m+ = g2v2

2 ; m− = 0; R+ = 1; R− = 0; and
the equation becomes

ln

(
g2v2

2µ̄2

)
= 1− 32π2

3g2
.

This motivates the definition of the parameter

a =
g2v2

4µ̄2e

(
1− 32π2

3g2

) .

Marcelo Santos Guimarães (DFT-IF/UERJ) 27 / 39
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gap equation, propagator and phases

The gap equation reads

2 ln(a) = g(x)

where

x =
32γ4g2N

g4v4

and

g(x) =
1√

1− x
(
−
(
1 +
√

1− x
)

ln
(
1 +
√

1− x
)

+
(
1−
√

1− x
)

ln
(
1−
√

1− x
))

.

Marcelo Santos Guimarães (DFT-IF/UERJ) 28 / 39
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Results in 4D with scalars in the fundamental

It turns out that g(x) ≤ −2 ln 2 for all x ≥ 0 and is strictly decreasing.
We can distinguish three regions connected by a line in the plane g, v,
parametrized by a, namely

i) when a > 1
2 , the gap equation has no solution for x. This means that

the restriction to the Gribov region cannot be consistently implemented
in the first place. As a consequence, the standard Higgs mechanism
takes place, yielding three massive gauge fields, according to

〈
Aaµ(q)Abν(−q)

〉
= δab

1

q2 + g2v2

2

(
δµν −

qµqν
q2

)
.

For sufficiently weak coupling g2, we underline that a will unavoidably
be larger than 1

2 .
This is an important result. It means that the Gribov copies are not
relevant for the perturbative Higgs phenomenon, as expected!

Marcelo Santos Guimarães (DFT-IF/UERJ) 29 / 39
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Results in 4D with scalars in the fundamental

ii) when 1
e < a < 1

2 , there are solutions for 0 ≤ x < 1 (masses are real).
In this region, the gauge field propagator decomposes into the sum of
two terms of the Yukawa type:

〈
Aaµ(q)Abν(−q)

〉
= δαβ

(
F+

q2 +m2
+

− F−
q2 +m2

−

)(
δµν −

qµqν
q2

)
,

where

F+ =
m2

+

m2
+ −m2

−
, F− =

m2
−

m2
+ −m2

−
,

m2
± =

1

2

(
g2v2

2
±
√
g4v4

4
− 8γ4g2N

)
∈ R .

Note that even though the masses are real, one of the residues is
negative (note the relative minus sign).
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Results in 4D with scalars in the fundamental

iii) for a < 1
e , there is a solution for x > 1. This scenario will always be

realized if g2 gets sufficiently large, that is, at strong coupling. In this
region the roots (m2

+,m
2
−) become complex conjugate and the gauge

boson propagator is of the Gribov type, displaying complex poles. We
are in the Gribov-confining regime.

In summary, we clearly notice that at sufficiently weak coupling, the
standard Higgs mechanism will definitely take place, as a > 1

2 , whereas for
sufficiently strong coupling, we always end up in a confining phase because
then a < 1

2 .
It is nice to observe that the transition between Higgs and confined phases
seems to be continuous, from the point of view of the propagators, in tune
with Fradkin and Shenker’s findings.
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Phases of Yang-Mills-Higgs systems

More details can be found in:
M. A. L. Capri, D. Dudal, A. J. Gomez, M. S. Guimaraes, I. F. Justo and S. P. Sorella, “A study of

the Higgs and confining phases in Euclidean SU(2) Yang-Mills theories in 3d by taking into

account the Gribov horizon,” Eur. Phys. J. C 73, 2346 (2013) [arXiv:1210.4734 [hep-th]].

M. A. L. Capri, D. Dudal, A. J. Gomez, M. S. Guimaraes, I. F. Justo, S. P. Sorella and

D. Vercauteren, “Semiclassical analysis of the phases of 4d SU(2) Higgs gauge systems with

cutoff at the Gribov horizon,” Phys. Rev. D 88, 085022 (2013) [arXiv:1212.1003 [hep-th]].

M. A. L. Capri, D. Dudal, M. S. Guimaraes, I. F. Justo, S. P. Sorella and D. Vercauteren,

“SU(2)× U(1) Yang-Mills theories in 3d with Higgs field and Gribov ambiguity,” Eur. Phys. J. C

73, 2567 (2013) [arXiv:1305.4155 [hep-th]].

M. A. L. Capri, D. Dudal, M. S. Guimaraes, I. F. Justo, S. P. Sorella and D. Vercauteren, “The

(IR-)relevance of the Gribov ambiguity in SU(2) x U(1) gauge theories with fundamental Higgs

matter,” Annals Phys. 343, 72 (2014) [arXiv:1309.1402 [hep-th]].
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Gribov and SUSY

Supersymmetric gauge theories are very special theories with strong
analytic properties (holomorphicity) that allows us to investigate many
of its non-perturbative properties.

But, as gauge theories, they also are afflicted by the Gribov problem. In
fact the N = 1 Super-Yang-Mills gauge theory feels the presence of
Gribov copies. Constraints from supersymmetry (zero vacuum energy)
and the constraints imposed by the Gribov gap equation (non-zero
expectation value for horizon function) are compatible and allows us to
reproduce well known non-perturbative properties of this theory, such
as a non-zero gluino condensate and confinement.
See the details in “Implementing the Gribov-Zwanziger framework inN = 1 Super-Yang-Mills in the

Landau gauge,” Eur. Phys. J. C 74, 2961 (2014) [arXiv:1404.2573 [hep-th]].

An important problem: Gribov copies seems to be related to
confinement as we have seen, so what about the superconformal
N = 4 gauge theories?
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Gribov and the superconformal N = 4 SYM

The gap equation of the Gribov formalism is a fundamental aspect of
the theory. It defines the Gribov mass parameter γ as a dynamical
mass parameter.

But in a theory without a renormalization group invariant mass scale it
is impossible to attach a dynamical meaning to the parameter γ and the
only possible solution is to impose γ = 0.

It is all because of the renormalization group equation for the vacuum
energy: (

µ̄
∂

∂µ̄
+ γγ2γ2

∂

∂γ2
+ β(g2)

∂

∂g2

)
E = 0 .

where µ̄ is the renormalization scale, γγ2 is the renormalization factor of
the Gribov parameter, and β(g2) is the β-function.

M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares and S. P. Sorella, Phys. Lett. B 735, 277
(2014) [arXiv:1404.7163 [hep-th]].
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Gribov and the superconformal N = 4 SYM

In a theory with β(g2) 6= 0 (such as QCD) the theory exhibits a genuine
renormalization group invariant scale(

µ̄
∂

∂µ̄
+ β(g2)

∂

∂g2

)
ΛQCD = 0 .

and imposing the Gribov gap equation

∂E
∂γ2

= 0 .

just tells us that the vacuum energy is RG invariant, a well known result(
µ̄
∂

∂µ̄
+ β(g2)

∂

∂g2

)
E = 0⇒ E ∼ Λ4

QCD .
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Gribov and the superconformal N = 4 SYM

But in a theory with β(g2) = 0 there are no renormalization group
invariant scale. If we use the general form for the vacuum energy in this
case, computed with the restriction to the Gribov region

E = γ4f

(
γ2

µ̄2

)
Imposing the Gribov gap equation we have

∂E
∂γ2

= 0 ⇒ γ2
(

2f

(
γ2

µ̄2

)
+
γ2

µ̄2
f ′
(
γ2

µ̄2

))
= 0.

Therefore, either γ = 0 or it is a function of µ̄. But if it is a function of µ̄,
the vacuum energy will also be a function of µ̄, which contradicts its RG
equation in this case. (

µ̄
∂

∂µ̄

)
E = 0
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Gribov and the superconformal N = 4 SYM

The only consistent solution is to have γ = 0 and E = 0. The solution
γ = 0 means that the theory does not demand the Gribov region
restriction. It does not necessarily mean that there are no Gribov
copies, only that they don’t cause problems in the quantization of the
theory.

In fact we can also show that the Faddeev-Popov operator does not
change sign as the momenta are varied, meaning that we never leave
the Gribov region.
see details in M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares and S. P. Sorella, “On

the irrelevance of the Gribov issue in N=4 Super Yang-Mills in the Landau gauge,” Phys. Lett. B 735,

277 (2014) [arXiv:1404.7163 [hep-th]].
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Conclusions

Gribov framework has provided many interesting results about the
non-perturbative structure of non-abelian gauge theories.
There are still many problems to be addressed...

More precise computation of the spectrum...

Phases of SUSY gauge theories...

Gribov’s confinement (exclusion of the fundamental degrees of freedom
from spectrum) seems to take care of gluons...

What about matter confinement? Have to understand better the proposal
for Gribov matter confinement→ origin of “matter Horizon function”, vertex
modification? What about heavy fundamental matter (how to make sense
of the area law)?

Connection with topological defects? Finite temperature? Polyakov
Loops...

What are the consequences of the BRST resurrection in its new
non-perturbative life?!?!
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Conclusions

Thank you!
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