The Gribov Tapestry

Bob Holdom

QCD-TNT4

Unraveling the organization of the QCD tapestry Ilhabela, Sao Paulo, Brazil August 31- September 4, 2015

- by presenting us with QCD, nature shows us how a nontrivial mass spectrum can be dynamically generated
- QCD is the gold standard for what a natural and UV complete continuum theory looks like
- by comparison the Higgs sector of the standard model fails in all these respects
- the theory of quantum gravity is similarly lacking
- ♦ the QCD tapestry is interesting not just for its own sake
- new insights, even of just a qualitative nature, may be useful for fundamental issues beyond QCD

- ♦ at least three modes of attack represented at this workshop
- ♦ study dynamics directly in the continuum
 - ♦ Schwinger-Dyon equations and related approaches
- ♦ Gribov copies
 - ♦ these are effects that are explicitly built into the theory
 - ♦ nondynamical but nonperturbative and nonlocal
- ♦ lattice
 - opening up the black box by gauge fixing
 - ♦ compare to and check the continuum studies
 - ♦ combines both dynamical and nondynamical effects

- ♦ focus on Gribov copies
- ♦ steady increase of interest

- but still largely ignoredby the mainstream
- ♦ common reaction —
 "Gribov copies are gauge dependent and so physics cannot depend on them"
- ♦ response in any gauge that has copies, copies are a necessary part of the correct (nonperturbative) description
- ♦ in this sense physics does depend on Gribov copies

- ♦ some gauges are more sensible for nonperturbative studies
 - ♦ covariant gauge (e.g. Landau)
 - ♦ Coulomb gauge has at least rotational invariance, reflects the space and time split of Hamiltonian dynamics, and makes Gauss law manifest in the path integral
- that these sensible gauges have Gribov copies should be viewed as a bonus
- these gauges are giving a direct view into nonperturbative features that underlie confinement
- ♦ in both gauges gluon propagation is suppressed in infrared

- ♦ continuum path integral for gauge theory should sample each gauge orbit once
- ♦ integrate over a suitable slice in configuration space
- ♦ after Gribov, such a slice became known as the fundamental modular region (FMR)

$$Z = \int \mathcal{D}A_{\mathrm{FMR}}e^{iS(A)}$$

- the boundary of the FMR is highly nontrivial, and so this definition is not too useful
- an insertion of unity converts this into an integral over the whole configuration space (FMR times gauge transformations)

♦ the resolution of unity before Gribov (Faddeev-Popov)

$$1 = \int \mathcal{D}U \,\delta(F(A^U)) \det\left(\frac{\delta F(A^U)}{\delta U}\right)$$

♦ the resolution of unity after Gribov

$$1 = \frac{1}{1 + N(A)} \int \mathcal{D}U \, \delta(F(A^U)) \left| \det \left(\frac{\delta F(A^U)}{\delta U} \right) \right|$$

 $\Diamond N(A)$ is the number copies on a gauge orbit picked by A

♦ 37 years old but still not found in textbooks

- ♦ note in passing the naïve FP measure might also be correct
 - ♦ explicit simple model (Freedberg Lee Pang Ren 1996)
 - \Diamond explicit counting N(A) in SU(2) gauge theory in Coulomb gauge with spherically symmetric configurations
- \Diamond N(A) is even and copies come in pairs with alternating sign for $\det(FP)$
- \diamond so all copies cancel out if absolute value is removed and then can replace 1/(1+N(A)) with unity
- ♦ but then you are stuck with an alternating sign measure
- restricting to first Gribov region keeps a set of positive sign copies
- the set of negative sign copies that would cancel these are ignored
 - ♦ in this sense, a maximal error is made

- ♦ in Coulomb gauge, ldet(FP)l is in fact canceled, and so in this gauge the absolute value is properly accounted for
- the resulting action is nonlocal and still sensitive to the FP
 operator via the instantaneous color Coulomb potential
- ♦ IR enhancement of the FP operator (⇒ confinement)
- ♦ can be understood as a clumping together of the copies ...

 \Diamond the factor 1/(1+N(A)) is left to suppress gluon propagation in IR in both gauges

 \Diamond what do we know about N(A)?

- \Diamond N(A) is scale invariant two orbits related by a scale transformation have the same number of copies
- ♦ consider a scale invariant strongly coupled gauge theory (eg. sitting at some fixed point)
- ♦ Gribov copies would be expected to have nontrivial effects on all scales
- ♦ on the other hand, approximations to deal with Gribov copies usually end up with a mass parameter in some modified action
 ♦ contradiction?
- ♦ in QCD the effects of copies turn on at the strong coupling scale
 - \Rightarrow Λ does enter the description of Gribov copies in QCD

- $\Diamond N(A)$ is an integer
 - \lozenge $N(A) \equiv 0$ for a certain bounded region within the FMR
 - ♦ this region includes the perturbative regime

- \diamond consider a configuration with typical momentum k and with amplitude A_k
- \diamond since N(A) is scale invariant, it should depend on the scale invariant ratio A_k/k
- \Diamond N(A) becomes nonzero at some critical value of $A_k \propto k$

 \diamond can see that critical $A_k \propto k$ directly from the Gribov equation

different lines are for different models of spherical plane waves

♦ typical size of a gauge field fluctuation is

$$A_k^2 pprox rac{1}{k^2}$$

♦ Gribov copies are only important when

$$A_k^2 \gtrsim \frac{k^2}{\Lambda^4}$$

- \Diamond at large $k^2 \gg \Lambda^2$ this is much larger than typical
- \diamond the path integral suppresses the required large fluctuations by an exponential factor, in this case $\sim \exp(-k^4/\Lambda^4)$
- \Diamond thus the corrections to the propagator at high k^2 are exponentially small

$$V(A) = \frac{1}{1 + N(A)}$$

$$V(A)$$

$$\frac{1}{k}$$

$$\frac{k}{\Lambda^2}$$

♦ consider path integral with toy version of Gribov measure over free part of action

(again ignore Lorentz structure)

$$\int \mathcal{D}Ae^{S_0} = \left(\prod_k \int dA_k \frac{1}{1 + N(A_k)}\right) \exp(\sum_k -\frac{1}{2}k^2 A_k^2 + j_k A_k)$$

$$\Diamond$$
 if $N(A_k) \approx \left(\frac{\Lambda^2 A_k}{k}\right)^{\alpha}$ for $A_k > \frac{k}{\Lambda^2}$ then:

$$G(k^{2} \to \infty) = \frac{1}{k^{2}} \left(1 - \alpha \sqrt{\frac{2}{\pi}} \frac{\Lambda^{2}}{k^{2}} \exp(-\frac{1}{2} \frac{k^{4}}{\Lambda^{4}}) + \dots \right)$$

$$G(k^2 \to 0) = \frac{1}{3} \frac{\alpha - 1}{\alpha - 3} \frac{k^2}{\Lambda^4} \quad (\alpha > 3)$$

♦ for spherically symmetric configurations, copies can be counted from the Gribov equation

 \diamond we see power law growth (N ranges up to 14000)

♦ clumping together of copies on gauge orbit

- ♦ a copy every time red line has integer value

- \Diamond "N(A) is an integer" is a sign of extreme nonlocality
- ♦ all the proposed approximations for dealing with Gribov copies produce power law rather than exponential corrections
- ♦ these approximations are more local than the real thing

- power law corrections are associated with condensates via the
 operator product expansion
- ♦ effects of Gribov copies are not sufficiently local to produce condensates
- the physics of confinement (Gribov copies) may not be the physics of condensates

- \Diamond another implication of "N(A) is an integer"
- \Diamond except for exceptional points in configuration space, a variation in the field does not produce a change in N(A)
- ♦ on the other hand a variation of the fields in the path integral is used to derive the Schwinger-Dyson equations
- \Diamond in this sense SD equations are blind to N(A)

- ♦ SD equations capture conventional quantum effects not included in our discussion of Gribov copies
- ♦ for example SD equations capture the origin of chiral condensates

- ♦ where does all this leave the gluon condensate?
- ♦ if it is not associated with confinement physics then do conventional quantum effects generate it?
- \Diamond thus use SD equations to study the asymptotic UV behavior of the gluon mass function $m^2(p^2)$
- ♦ linked to the gluon condensate via the OPE

$$\lim_{-p^2 \to \infty} \Sigma(p^2) = c_1(p/\mu) m_{\psi}(\mu) + \frac{c_2(p/\mu) \langle \overline{\psi} \psi \rangle_{\mu}}{p^2} + \dots$$

$$\lim_{-p^2 \to \infty} p^2 m^2(p^2) = a_1(p/\mu) \langle G_{\alpha\beta} G^{\alpha\beta} \rangle_{\mu} + \frac{a_2(p/\mu) \langle \overline{\psi} \psi \rangle_{\mu}^2}{p^2} + \dots$$

$$m_{\psi} \to 0$$

- ♦ explored SD equations of Aguilar, Binosi, Ibanez, Papavassiliou
- \Diamond found rapid fall off of $m^2(p^2)$ and no evidence of gluon condensate

- how do we know that a gluon condensate exists in the limit of zero quark masses?
- ♦ fundamental question, since it is related to our understanding (or lack thereof) of vacuum energy

$$\Theta_{\alpha}^{\alpha} = \frac{\beta}{2g} G_{\alpha\beta} G^{\alpha\beta} + m_{\psi} (1 + \gamma_m) \overline{\psi} \psi$$

- \Diamond lattice studies of the gluon propagator in Landau gauge indicate $G(k^2) \Rightarrow$ finite value at $k^2 = 0$
- \Diamond thus consider a simple interpolation between the IR and UV (set Λ and constants to 1)

$$G(k^{2}) = \frac{1}{k^{2}} \left(1 - f(k^{2}) \exp(-\frac{1}{2}k^{4}) \right)$$
where $f(0) = 1$ and $f(k^{2} \to \infty) = \frac{1}{k^{2}}$

- \Diamond f(0) = 1 eliminates the pole at $k^2 = 0$
- ♦ lack of power law corrections implies no complex conjugate poles
- \Diamond $G(k^2)$ could be an entire function on the complex k^2 plane

♦ for example:

$$f(k^2) = \frac{1}{k^2} \left(1 - \left[1 - k^2 - bk^4 - ck^6 \right] e^{-\frac{1}{2}k^4} \right)$$

- ♦ turn to gravity
- ♦ consider pure quadratic gravity with action

$$S = \int d^4x \sqrt{g} \left[\frac{R^2}{6f_0^2} + \frac{\frac{1}{3}R^2 - R_{\mu\nu}^2}{f_2^2} \right]$$

- ♦ PRO can be asymptotically free and renormalizable
- \Diamond CON $1/k^4$ graviton propagator, while if Einstein term is added then massive spin-2 ghost emerges

- ♦ but this is in perturbation theory
- perturbative QCD is similarly misleading since it predicts a
 propagating gluon

- ♦ asymptotically free gravity can also grow strong at some scale
- ♦ as for QCD, the true infrared behavior can completely change
- ♦ like the gauge theory, a standard gauge fixing procedure is required
- ♦ if so then the possible affects of Gribov copies need to be considered
- \diamond a resolution of unity in gravity, given a gauge fixing $F(g_{\mu\nu})=0$

$$1 = \frac{1}{1 + N(g_{\mu\nu})} \int \mathcal{D}U \, \delta(F(g^U_{\mu\nu})) \left| \det \left(\frac{\delta F(g^U_{\mu\nu})}{\delta U} \right) \right|$$

 \Diamond now U represents a coordinate transformation

- now suppose the effect of Gribov copies is similar to gauge theories
- \Diamond it is most similar if we simply replace $1/k^2 \rightarrow -1/k^4$ (we are again suppressing the tensor structure)

$$G(k^{2}) = -\frac{1}{k^{4}} \left(1 - f(k^{2}) \exp(-\frac{1}{2}k^{4}) \right)$$
where $f(0) = 1$ and $f(k^{2} \to \infty) = \frac{1}{k^{2}}$

 \Diamond for $f(k^2)$ we choose the same parameters as before

- \Diamond -1/ k^4 graviton pole has been softened to 1/ k^2 pole
- \Diamond this is the only singularity on the complex k^2 plane
- ♦ there is a zero instead of a massive ghost pole

♦ expanding the inverse propagator:

$$G(k^2)^{-1} = \frac{1}{1+2b}k^2 + 4\frac{1-c}{(1+2b)^2}k^4 + O(k^6)$$

- this points to an effective theory with the Einstein term appearing as the leading term in a derivative expansion
- ♦ but in UV, quadratic gravity is approached exponentially quickly
- ♦ theory is weakly coupled in the UV and IR limits, with a strong intermediate regime just like QCD/chiral Lagrangian
- \diamond the difference is that gravity has no mass gap, confinement or chiral symmetry breaking, and the same field $g_{\mu\nu}$ appears in both UV and IR

- ♦ look for evidence of Gribov copies in gravity
- ♦ the gravity analog of the Gribov equation is difficult
 - ♦ look instead for the existence of Gribov horizons
 - ♦ i.e. look for zero eigenvalues of the analog of the FP operator

- \diamond write spherically symmetric metric as $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(r)$
- \diamond consider an infinitesimal coordinate transformation $x'_{\mu} = x_{\mu} + \xi_{\mu}(r)$
- \diamond consider corresponding shift $\delta_{\xi}h_{\mu\nu}$
- \diamond choose a gauge fixing condition $F(h_{\mu\nu}) = 0$
- \Diamond then $F(\delta_{\xi}h_{\mu\nu}) = 0$ is analog of a zero eigenvalue of FP operator

- \Diamond we have found solutions of $F(h_{\mu\nu}) = 0$ and $F(\delta_{\xi}h_{\mu\nu}) = 0$ for some $\xi_{\mu}(r)$ and $h_{\mu\nu}(r)$
- ♦ gauge fixing condition has become degenerate in a certain gauge direction
 - \Rightarrow pair of Gribov copies connected by the infinitesimal coordinate transformation $\xi_{\mu}(r)$
- then also expect pairs of copies connected by finite coordinate transformations on either side of horizon

♦ structure of horizons, relation to FMR etc. is unknown

Conclusions

- ♦ gauge dependent views of the world are useful
- the Gribov measure introduces extremely nonlocal, and thus extremely UV soft, features into gauge theories
 - ♦ gives picture of confinement but not condensates
- Gribov may motivate a picture of gravity that leverages our understanding of QCD
 - ♦ Einstein emerges in the infrared due to the Gribov measure of an asymptotically free theory (quadratic gravity)