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◊ by presenting us with QCD, nature shows us how a nontrivial 
mass spectrum can be dynamically generated 

◊ QCD is the gold standard for what a natural and UV complete 
continuum theory looks like

◊ by comparison the Higgs sector of the standard model fails in all 
these respects 

◊ the theory of quantum gravity is similarly lacking

◊ the QCD tapestry is interesting not just for its own sake 
◊ new insights, even of just a qualitative nature, may be useful for 

fundamental issues beyond QCD



◊ lattice 
◊ opening up the black box by gauge fixing 
◊ compare to and check the continuum studies 
◊ combines both dynamical and nondynamical effects

◊ at least three modes of attack represented at this workshop

◊ Gribov copies 
◊ these are effects that are explicitly built into the theory 
◊ nondynamical but nonperturbative and nonlocal

◊ study dynamics directly in the continuum 
◊ Schwinger-Dyon equations and related approaches



citation history◊ focus on Gribov copies 
◊ steady increase of interest

◊ but still largely ignored 
by the mainstream 

◊ common reaction —  
“Gribov copies are gauge dependent  
and so physics cannot depend on them” 

◊ response — in any gauge that has copies, copies are a necessary 
part of the correct (nonperturbative) description 

◊ in this sense physics does depend on Gribov copies

1978                                                         present



◊ some gauges are more sensible for nonperturbative studies 
◊ covariant gauge (e.g. Landau) 
◊ Coulomb gauge — has at least rotational invariance, reflects 

the space and time split of Hamiltonian dynamics, and makes 
Gauss law manifest in the path integral

◊ that these sensible gauges have Gribov copies should be viewed as 
a bonus 

◊ these gauges are giving a direct view into nonperturbative features 
that underlie confinement

◊ in both gauges gluon propagation is suppressed in infrared



◊ the boundary of the FMR is highly nontrivial, and so this 
definition is not too useful 

◊ an insertion of unity converts this into an integral over the whole 
configuration space (FMR times gauge transformations)

◊ continuum path integral for gauge theory should sample each 
gauge orbit once 

◊ integrate over a suitable slice in configuration space 
◊ after Gribov, such a slice became known as the fundamental 

modular region (FMR)



◊ the resolution of unity before Gribov    (Faddeev-Popov)

◊ the resolution of unity after Gribov

◊ N(A) is the number copies on a gauge orbit picked by A

◊ 37 years old but still not found in textbooks



◊ note in passing — the naïve FP measure might also be correct 
◊ explicit simple model (Freedberg Lee Pang Ren 1996) 
◊ explicit counting N(A) in SU(2) gauge theory in Coulomb 

gauge with spherically symmetric configurations 
◊ N(A) is even and copies come in pairs with alternating sign for 

det(FP)

◊ so all copies cancel out if absolute value is removed and then can 
replace 1/(1+N(A)) with unity 

◊ but then you are stuck with an alternating sign measure

◊ restricting to first Gribov region keeps a set of positive sign copies 
◊ the set of negative sign copies that would cancel these are ignored 

◊ in this sense, a maximal error is made



◊ in Coulomb gauge, |det(FP)| is in fact canceled, and so in this 
gauge the absolute value is properly accounted for 

◊ the resulting action is nonlocal and still sensitive to the FP 
operator via the instantaneous color Coulomb potential 

◊ IR enhancement of the FP operator    (⇒ confinement) 
◊ can be understood as a clumping together of the copies …

◊ the factor 1/(1+N(A)) is left to suppress gluon propagation in IR 
in both gauges

◊ what do we know about N(A)?



◊ N(A) is scale invariant — two orbits related by a scale 
transformation have the same number of copies 

◊ consider a scale invariant strongly coupled gauge theory (eg. 
sitting at some fixed point) 

◊ Gribov copies would be expected to have nontrivial effects on all 
scales

◊ in QCD the effects of copies turn on at the strong coupling scale 
⇒Λ does enter the description of Gribov copies in QCD

◊ on the other hand, approximations to deal with Gribov copies 
usually end up with a mass parameter in some modified action 
◊ contradiction?



◊ N(A) is an integer 
◊ N(A) ≡ 0 for a certain bounded region within the FMR 
◊ this region includes the perturbative regime

◊ consider a configuration with typical momentum k and with 
amplitude Ak 

◊ since N(A) is scale invariant, it should depend on the scale 
invariant ratio Ak/k 

◊ N(A) becomes nonzero at some critical value of Ak ∝ k



different lines are for different 
models of spherical plane waves

◊ can see that critical Ak ∝ k directly from the Gribov equation

critical Ak

k



◊ at large k2 ≫ Λ2 this is much larger than typical 

◊ the path integral suppresses the required large fluctuations by an 
exponential factor, in this case ~ exp(–k4/Λ4) 

◊ thus the corrections to the propagator at high k2 are exponentially 
small

◊ Gribov copies are only important when

◊ typical size of a gauge field fluctuation is



V(A)

A



◊ consider path integral with toy version of Gribov measure over 
free part of action  
(again ignore Lorentz structure)

◊  



◊ for spherically symmetric configurations, copies can be counted 
from the Gribov equation

◊ we see power law growth   (N ranges up to 14000)

log N

log Ak (for fixed k)



◊ clumping together of copies on gauge orbit

◊ a copy every time red line has integer value 
◊ 13856 copies



◊ “N(A) is an integer” is a sign of extreme nonlocality  
◊ all the proposed approximations for dealing with Gribov copies 

produce power law rather than exponential corrections 
◊ these approximations are more local than the real thing

◊ power law corrections are associated with condensates via the 
operator product expansion 

◊ effects of Gribov copies are not sufficiently local to produce 
condensates 

◊ the physics of confinement (Gribov copies) may not be the 
physics of condensates



◊ another implication of  “N(A) is an integer” 
◊ except for exceptional points in configuration space, a variation in 

the field does not produce a change in N(A) 
◊ on the other hand a variation of the fields in the path integral is 

used to derive the Schwinger-Dyson equations 
◊ in this sense SD equations are blind to N(A)

◊ SD equations capture conventional quantum effects not included 
in our discussion of Gribov copies 

◊ for example SD equations capture the origin of chiral condensates



◊ where does all this leave the gluon condensate? 
◊ if it is not associated with confinement physics then do 

conventional quantum effects generate it? 
◊ thus use SD equations to study the asymptotic UV behavior of the 

gluon mass function m2(p2) 
◊ linked to the gluon condensate via the OPE



◊ explored SD equations of Aguilar, Binosi, Ibanez, Papavassiliou 
◊ found rapid fall off of m2(p2) and no evidence of gluon condensate

◊ how do we know that a gluon condensate exists in the limit of 
zero quark masses? 

◊ fundamental question, since it is related to our understanding (or 
lack thereof) of vacuum energy



◊ lattice studies of the gluon propagator in Landau gauge indicate 
G(k2) ⇒ finite value at k2 = 0 

◊ thus consider a simple interpolation between the IR and UV 
(set Λ and constants to 1)

◊ f(0) = 1 eliminates the pole at k2 = 0

◊ lack of power law corrections implies no complex conjugate poles  
◊ G(k2) could be an entire function on the complex k2 plane



◊ for example:

(refined Gribov form)

G(k2)



◊ turn to gravity 
◊ consider pure quadratic gravity with action

◊ PRO  — can be asymptotically free and renormalizable 
◊ CON — 1/k4 graviton propagator, while if Einstein term is added 

then massive spin-2 ghost emerges

◊ but this is in perturbation theory 
◊ perturbative QCD is similarly misleading since it predicts a 

propagating gluon



◊ asymptotically free gravity can also grow strong at some scale 
◊ as for QCD, the true infrared behavior can completely change

◊ like the gauge theory, a standard gauge fixing procedure is 
required 

◊ if so then the possible affects of Gribov copies need to be 
considered

◊ a resolution of unity in gravity, given a gauge fixing F(gµν)=0

◊ now U represents a coordinate transformation



◊ now suppose the effect of Gribov copies is similar to gauge 
theories 

◊ it is most similar if we simply replace 1/k2 –› -1/k4 (we are again 
suppressing the tensor structure)

◊ for f(k2) we choose the same parameters as before



◊ –1/k4 graviton pole has been softened to 1/k2 pole 
◊ this is the only singularity on the complex k2 plane 
◊ there is a zero instead of a massive ghost pole 



◊ expanding the inverse propagator:

◊ this points to an effective theory with the Einstein term appearing 
as the leading term in a derivative expansion

◊ but in UV, quadratic gravity is approached exponentially quickly

◊ theory is weakly coupled in the UV and IR limits, with a strong 
intermediate regime — just like QCD/chiral Lagrangian

◊ the difference is that gravity has no mass gap, confinement or 
chiral symmetry breaking, and the same field gµν appears in both 
UV and IR



◊ look for evidence of Gribov copies in gravity 
◊ the gravity analog of the Gribov equation is difficult 

◊ look instead for the existence of Gribov horizons 
◊ i.e. look for zero eigenvalues of the analog of the FP operator

◊ write spherically symmetric metric as gµν = ηµν + hµν(r) 
◊ consider an infinitesimal coordinate transformation  

x´µ = xµ + ξµ(r) 
◊ consider corresponding shift δξhµν 

◊ choose a gauge fixing condition F(hµν) = 0 
◊ then F(δξhµν) = 0 is analog of a zero eigenvalue of FP operator



◊ gauge fixing condition has become degenerate in a certain gauge 
direction 
⇒pair of Gribov copies connected by the infinitesimal 

coordinate transformation ξµ(r) 
◊ then also expect pairs of copies connected by finite coordinate 

transformations on either side of horizon

◊ we have found solutions of F(hµν) = 0 and F(δξhµν) = 0 for some 
ξµ(r) and hµν(r)

◊ structure of horizons, relation to FMR etc. is unknown



Conclusions

◊ gauge dependent views of the world are useful

◊ the Gribov measure introduces extremely nonlocal, and thus 
extremely UV soft, features into gauge theories 
◊ gives picture of confinement but not condensates

◊ Gribov may motivate a picture of gravity that leverages our 
understanding of QCD 
◊ Einstein emerges in the infrared due to the Gribov measure of 

an asymptotically free theory (quadratic gravity)


