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Isospin symmetry and its breaking in QCD

Consider QCD with the three light degenerate flavours: mu = md = ms = M

With the quark spinor expressed as

Ψ(x) = (ψu(x), ψd(x), ψs(x)) ,

the Lagrangian

L(x) = LYM(x) + Ψ(x) [(i∂/ + gB/ −M)⊗ I3×3] Ψ(x)

has a SU(3) isospin global symmetry

However, in nature mu < md � ms

the baryon number B = 1
3 I3×3 is a good quantum number

in addition, the Cartan subgroup I3 = 1
2 diag(1,−1, 0), Y = 1

3 diag(1, 1,−2)
defines global symmetries [Y = B + S, S strangeness]

the SU(2) subgroup containing I3 is softly broken (mu ∼ md)
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Isospin breaking by QED interactions

If electromagnetic interactions are switched on

L(x)→ L(x)− 1
4

Fµν(x)Fµν(x)− eΨ(x)A/ QΨ(x) , Q = I3 +
1
2

Y

We observes that

I3, Y and B are good quantum numbers also for QED-induced breaking

Isospin breaking by electromagnetic interactions is perturbative in
α = e2/(4π)

In real-world Quantum Chromodynamics, QCD-induced breaking and
QED-induced breaking are of the same order of magnitude

Both QCD and QED isospin breaking patterns suggest to classify the spectrum in
the ideal situation of unbroken symmetry and to consider breaking effects starting
from this ideal case
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Isospin classification of hadrons

Irreducible representations of isospin flavour (singlet and octet for mesons, singlet,
octet and decuplet for baryons) used to classify hadrons

Lowest-lying pseudoscalar
meson octet

Lowest-lying spin-1/2 baryon
octet

(Figures from http://www.cbooth.staff.shef.ac.uk/phy304/propquark.html)

In the absence of isospin breaking, particles in the same isospin multiplets would
be degenerate

Still approximately degeneracy in SU(2) isospin, but breaking effects have
important consequences in nature
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Why does isospin breaking matters?

For instance, proton-neutron mass splitting

∆M = mn − mp = 1.2933322(4) MeV

Since mn > mp

The hydrogen atom is stable

The β-decay of the neutron is allowed

Relative abundance

nn

np
' e−∆M/T

important parameter for Big Bang nucleosynthesis

Even small variations of ∆M have dramatic consequences on the evolution of the
Universe [see e.g. A. Portelli, arXiv:1505.07057]
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Towards a lattice formulation of QED+QCD

A first-principle calculation of isospin breaking effects should be possible
using lattice gauge theory techniques

Lattice formulation of QCD well known by now and corroborated by several
precision calculations

Periodic (antiperiodic) boundary conditions for gauge fields (fermions) allow
to reduce finite size effects

Extraction of results on finite lattices in QCD benefits from the existence of a
mass gap⇒ finite size corrections are exponentially suppressed

The absence of a mass gap in QED already indicates that finite size effects
are going to be power-law with the lattice size

However, it is even worse than that: QED on a periodic finite volume is
inconsistent with a non-zero charge

We would need to handle this system differently from QCD alone!
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Only zero charge on a periodic box

Classically, it is an immediate consequence of the Gauss law

Q =

∫

V
ρ(x) dV =

∫

V

~∇ · ~E(x) dV =

∫

Σ

~E(x‖) · d~σ = 0

since because of PBC for each ~E · d~σ contribution to the integral there is
another with opposite sign

in QED the generator of gauge transformations in the Schrödinger picture is

Ĝ(x) = ~∇ · ~̂E(x)− ρ̂(x)

Charge operator

Q̂ =

∫

V

(
~∇ · ~̂E(x)− Ĝ(x)

)
dV = −

∫

V
Ĝ(x) dV

if |ψ〉 is Physical, Ĝ(x)|ψ〉 = 0⇒ Q|ψ〉 = 0

Absence of charge connected to gauge invariance
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Gauge fixing and zero modes

Define the gauge-fixed field ψGF(x)⇒ Action still invariant for ψGF(x)→ eiαψGF(x)

As a consequence, the action is left invariant by

ψ(x) → e
∑
ρ

2πnρ
Lρ

xρ
ψ(x)

Aµ(x) → Aµ(x) +
2πnρ

Lρ

which do survive gauge fixing

Hence, because of these zero modes, correlators of the form 〈ψGF(x)ψGF(y)〉 = 0
if x 6= y

At finite volume

Gauss law⇔ gauge invariance⇔ zero models⇔ large gauge transformations
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QED+QCD simulations: the story so far

Electroquenching [Various authors]
The back reaction of quarks on photons is neglected
↪→ Uncontrolled systematic error (but expansion in α possible)

Non-relativistic QED [e.g. Lee and Tiburzi, arXiv:1508.04165]
↪→ Antiparticle contribution needs to be kept into account

QEDL [Hayakawa and Uno, Prog. Theor. Phys. 120(3), 413 (2008)]
Zero modes are removed time slice by time slice
So far gives the best numerical results [Borsanyi et al., Science 347 (2015)]
↪→ Very large lattices are required and the non-locality of the theory
generates difficult to quantify systematic effects
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The BMWc calculation (QEDL)
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[Borsanyi et al., Science 347 (2015)]
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Infinite volume extrapolation (QEDL)
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[Borsanyi et al., Science 347 (2015)]
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QED+QCD simulations: new proposals

Different approaches needed for robust results

Recent promising proposals all at an early stage

Twist averaging[Lehner, Izubuki, arXiv:1503.04395]
QCD fields replicated, twisted fermions and QED in infinite volume
↪→ Requires efficient sampling over momenta of the photon

Massive QED [Endres, Schindler, Tiburzi, Walker-Loud, arXiv:1507.0891]
A small mass is given to the photon and the zero-mass limit is taken
↪→ Promising electroquenched results, but the extrapolation to zero mass
might be hard

QCD+QED on C? lattices [Lucini, Patella, Ramos, Tantalo, in preparation]
Local formulation at finite volume exploiting charge conjugation symmetry
for the BC [Polley, 1991]
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Locality

A Lorentz-invariant QFT with a Lagrangian L(x) depending on the fields and their
first derivatives, with fields evolving according to the equations derived from the
minimal action principle, respects microcausality: if A and B are polynomial in the
fields and their derivatives

[A(~x, t),B(~y, t)] = 0 ~x 6= ~y

Consequences are

Existence of antiparticles

Renormalisation by power counting

Volume-independence of renormalisation constants

Operator Product Expansion

No UV- IR mixing

. . .

Those properties underpin Lattice Gauge Theory methods (e.g., combined
extrapolation in the volume and in the lattice spacing possible because of UV-IR
separation)

In non-local theories, the validity of those properties needs to be proved
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QEDC

QEDC is QED in a finite box closed with C? boundary conditions

With C charge conjugation matrix, C? boundary conditions defined by
[Polley, 1991]

Aµ(x + Lk k̂)→ −Aµ(x) , ψ(x + Lk k̂)→ C−1ψ
T
(x) , ψ(x + Lk k̂)→ −ψT(x)C

Based on an invariance of the action⇒ respects the spacetime symmetries
of the system (charge discussed later)

Gauge fields free from zero modes

Classically there is no obstruction to the Gauss law

Hamiltonian proof of existence of single-charge states given by Polley
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Charge and mass in QEDC

Multiple charges in QEDC require a dedicated discussion

In QED at infinite volume the charge is defined through a global U(1) invariance
and the electric charge takes values in Z

In QEDC possible gauge transformations are

Ω(x) = ±eiα(x) , α(x + Lk k̂) = −α(x)

Usual U(1) gauge group, global symmetry group Z2 ⇒ Q no longer is a good
quantum number, but (−1)Q is conserved
↪→ States with even charge mix with states with even charge and states with odd
charge mix with states with odd charge

It is still possible to define the mass of the electron under the physically motivated
assumption that the electron itself is the lightest state in the sector with negative
charge
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Charged operators and mass

Gauge-fixed definition of ψ possible, but gauge-covariant definition desirable

Solution known: provide the fermion field with a Mandelstam string, e.g.

Ψ(~x, t) = e−i
∫ d3y Φ(~x−~y)~∇y·~A(~y,t)ψ(~x, t)

with Φ(~x, t) electric potential generated by a unit charge at~x in a C? box:

∇2Φ(~x) = δ3(~x)

Φ(~x + Lk k̂) = −Φ(~x)

In the Coulomb gauge, Ψ(~x, t) = ψ(~x, t)⇒ The construction is a covariant
generalisation of the Coulomb gauge

Construction not unique, argument more general: any Ψ such that
Ψ is invariant under local gauge transformations
Ψ picks up the defining U(1) factor under a global gauge transformation

can be used

We can define the electron mass through
〈

Ψ(~0, 0)

(∑

~x

Ψ(~x, t)

)〉
t→∞→ ce−mel t
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A classical view on charge sectors

Field transmitting walls with PBC

S

Charges are replicated in
sublattices

Field inverting walls with C? BC

S

Charges are reflected in
sublattices

Classically C? boundaries act as a charge-conjugation mirror of the charge
↪→ Each unit charge is seen as its anticharge through the boundary

Through the boundary, arrows on the field are flipped by C? BC and field lines can
connect charges with the same sign
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Recovering charge superselection

On a C? box (fixed gauge, 〈~n〉 =
∑

k nk mod 2, nk wrapping in direction k)

〈ψ(x)ψ̄(y)〉 =
∑

〈~n〉=0

S(x− y + nkLk k̂)

〈ψ(x)ψT(y)〉 = −
∑

〈~n〉=1

S(x− y + nkLk k̂)C−1

〈ψ̄T(x)ψ̄(y)〉 =
∑

〈~n〉=1

CS(x− y + nkLk k̂)

Charge-violating Feynman diagrams

�

e+

e+

(a)

e+

e+

e+

e�

(b)

Figure 1: (a) Diagram contributing to the e+e+ ! � process, which involves one e+

traveling around the torus and flipping charge. (b) Diagram contributing to the e+e+e+ !
e� process.

with a three-electron state but not with the vacuum, see figure 1. This in particular means
that, chosen some suitable interpolating operator as we will discuss in section 3, single-
electron states can be selected by looking at the leading decaying exponential in two-point
functions. However two-electron states cannot be extracted in the same way, as the leading
decaying exponential in a two-point function constructed with an operator with charge
equal to 2 will select always the vacuum. As we will discuss in section 4 this is sufficient in
most of the interesting low-energy applications in QCD+QEDC.

From the discussion above it is obvious that the violation arises only from the charged
particle that travels at least once around the torus. If the fermion is massive we have

h (x) T (y)i ⇠ h ̄T (x) ̄(y)i ⇠
⇣m

L

⌘ 3
2
e�mL , (2.27)

for L ! 1, and the charge-violating diagrams are exponentially suppressed.

In the case of Nf flavours the infinite-volume theory has a U(1)Nf flavour symmetry cor-
responding to independent phase rotations of each flavour. We will denote the generator
of the f -th U(1) by Ff . Notice that the electric charge is a linear combination of the
flavour-symmetry generators,

Q =

NfX

f=1

qfFf , (2.28)

where qf is the electric charge of the f -th flavour. In infinite volume each Ff is conserved
independently. C? boundary conditions break the flavour symmetry group down to a ZNf

2 ,3

3 If nf out of the Nf flavours are degenerate (i.e. same mass and same electric charge), the U(1)nf

flavour subgroup is lifted to a U(nf ) flavour symmetry. C? boundary conditions break this down to its
natural O(nf ) subgroup. We mention this special case for completeness, but it is not relevant for the
purpose of this paper.

– 10 –

Effects exponentially suppressed with the lattice size

〈ψ(x)ψT(y)〉 ∼ 〈ψ̄T(x)ψ̄(y)〉 ∼
(m

L

) 3
2 e−mL
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Flavour symmetry in (QCD + QED)C

QEDC can be coupled to QCD in the usual way, with the proviso that since matter
obeys C? BC, also the SU(3) gauge fields need to satisfy C? BC⇒ (QCD + QED)C

Internal quantum numbers:

Ff , F =

Nf∑

f=1

Ff , Q =

Nf∑

f=1

qf Ff , B = F/3 , ∆Ff = 0 mod 2

For a large enough box, confinement implies

∆Q = 0 mod 2 , ∆B = 0 mod 2 , ∆F = 0 mod 6

↪→ In the presence of confinement

Flavour violation in C? BC is such that fractional charges never emerge

In pure QCD, because of the mass gap, again we expect processes that
violate these quantum numbers to be exponentially suppressed

However, we do have photons in this theory: are they a problem?
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Mixing of hadrons in a C? box

The importance of mixing effects can be evaluated in an effective theory of
hadrons on a C? box

All possible QCD processes included in vertices

The vertices in a C? box are the same as in infinite volume

Propagators with an even wrapping do not violate flavour

Propagators with an odd wrapping violate flavour

Allowed mixing are related to (virtually) allowed physical processes
Example: mixing Ξ− − p possible (for instance) by virtue of

Ξ− →
(

Λ0 + K−
)∗

,
(

Λ0 + K+
)∗
→ p

Results

Finite-size effects giving rise to spurious hadron mixing suppressed
exponentially

The corresponding processes are typically O(10−8 − 10−10) in physically
interesting cases

Even with mixing, masses of lowest-lying particles (e.g. proton, neutron) can be
extracted by looking at the large-time behaviour of effective masses at finite (large)
volume
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Flavour-violating diagrams

Example: Ξ− mixing possibilities

Simple case: mixing with p
⌅� ⇤0

K� K+

p

s

s

d

u

u

d

Figure 3: Schematic representation of a possible process responsible for the ⌅�/p mixing.
The process goes through a uū pair creation. The colourless K� = sū travels around the
torus and turns into a K+ = s̄u. Finally an ss̄ pair annihilates.

which is not a multiple of 6, then it must be accompanied by violation in the conservation
of some other flavour. For example the ⌦� = sss will mix, via a K� = sū traveling around
the torus, with the ⌃+ = suu + 2� and with other two particle states like ⇤0⇡+. This
process has �Fs = �2 and �Fu = +2. In particular this implies that the ⌦� mass cannot
be extracted from the long-distance behaviour of a two-point function at finite volume. In
order to extract the ⌦� mass one has to take the infinite-volume limit of the two-point
function (or effective mass) first, and then extract the long-distance behaviour. Similarly
the ⌅� = ssd mixes with the p = uud via a K� = sū traveling around the torus (see
figure 3). This process has again �Fs = �2 and �Fu = +2.

In QCDC alone, flavour violation is an exponentially-suppressed effect in the size of the
box, like any other finite volume correction. Adding electromagnetic interactions make
finite volume corrections generically inverse powers of L, due to the massless photon. The
detailed analysis of flavour violating process in QCD+QEDC requires to keep track of the
flavour numbers in the process. This analysis, in the framework of an effective field theory
of hadrons, is carried out in detail in the appendix B, but the main results that we prove in
this appendix can be easily explained. Flavour violating process in QCD+QEDC cannot be
mediated by the photon. A particle with the same flavour numbers that are violated must
travel around the torus, and since only massive particles carry flavour in QCD+QEDC,
these effects are exponentially suppressed.

For example, in the case of the already-mentioned mixing between the ⌅� and the proton,
the one-loop diagram of figure 3 is of order exp(�mKL). But the general case is much
more complicated, since the ⌅� can also mix with the proton and an arbitrary number
of photons, or with a neutron-⇡+ state. As it is proved in appendix B, flavour violating
process in this case are suppressed by a factor exp(�µL) with

µ =

"
M2

K± �
✓

M2
⌅� � M2

⇤0 + M2
K±

2M⌅�

◆2
#1/2

. (4.7)

– 16 –

Amplitude of order e−mK L, mixing suppression factor e−2mK L

Other possibilities: mixing with p + γ + γ, n + π+(+γ + . . . )

One can prove that mixing suppression never larger than e−2µ ,

µ =


M2

K± −
(

M2
Ξ−
−M2

Λ0 + M2
K±

2MΞ−

)2



1/2

,

(O(10−10) in current settings for lattice calculations)
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Finite size corrections in (QCD+QED)C

At first order in α

m(L)− m
m

=
∆m(L)

m

∣∣∣∣
universal

+
∆m(L)

m

∣∣∣∣
structure−dependent︸ ︷︷ ︸

QED only

+
∆m(L)

m

∣∣∣∣
QCD+QED

From first principles we can prove that

∆m(L)

m

∣∣∣∣
universal

=
e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2

}

∆m(L)

m

∣∣∣∣
structure−dependent

= − e2

16π2m

∞∑

`=1

(−1)`(2`)!
`!L2+2`

T`ξ(2 + 2`)

∆m(L)

m

∣∣∣∣
QCD+QED

= O(e−mπL) + αO(e−
√

3
2 mπL)
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Finite size corrections in (QCD+QED)C

At first order in α

m(L)− m
m

=
∆m(L)

m

∣∣∣∣
universal

+
∆m(L)

m

∣∣∣∣
structure−dependent︸ ︷︷ ︸

QED only

+
∆m(L)

m

∣∣∣∣
QCD+QED

From first principles we can prove that

∆m(L)

m

∣∣∣∣
universal

=
e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2

}

∆m(L)

m

∣∣∣∣
structure−dependent

= − e2

16π2m

∞∑

`=1

(−1)`(2`)!
`!L2+2`

T`ξ(2 + 2`)

∆m(L)

m

∣∣∣∣
QCD+QED

= O(e−mπL) + αO(e−
√

3
2 mπL) negligible

Let’s analyse the first two in more detail
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The universal corrections

∆m(L)

m

∣∣∣∣
universal

=
e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2

}

Fixed by Ward identities⇒ Independent of the spin and of the structure of
the hadron

Effects of the C? BC encoded in the generalised zeta function

ξ(s) =
∑

~n 6=~0

(−1)
∑

j∈C? nj

|~n|s .

1C? 2C? 3C?

ξ(1) −0.77438614142 −1.4803898065 −1.7475645946
ξ(2) −0.30138022444 −1.8300453641 −2.5193561521
ξ(4) 0.68922257439 −2.1568872986 −3.8631638072
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The structure-dependent corrections

∆m(L)

m

∣∣∣∣
structure−dependent

= − e2

16π2m

∞∑

`=1

(−1)`(2`)!
`!L2+2`

T`ξ(2 + 2`)

Starts at O(1/L4) (no term in the whole correction is of O(1/L3)!)

Runs only in even powers of 1/L

Boundary conditions still enter through ξ

Details of the structure and spin encoded in T`
With Tµµ(ik,~k) forward Compton scattering amplitude of a photon of
momentum ~k on the hadron at rest

T` =
d`

d(k2)`
Tµµ(ik,~k)

∣∣∣∣∣
k2=0
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Comparison with QEDL

∆m(L)

m

∣∣∣∣
QEDC

=
e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2
− 1

4π2m

∞∑

`=1

(−1)`(2`)!
`!L2+2`

T`ξ(2 + 2`)

}
+ . . .

VS.

∆m(L)

m

∣∣∣∣
QEDL

=
e2

4π

{
− q2k

2mL
− q2k

(mL)2
+O

(
1
L3

)}
+ . . .

In QEDL, structure-dependent corrections start at O(1/L3), while in QEDC
they start at O(1/L4) (and run in even powers of 1/L)
structure-independent corrections smaller in QEDC

QEDC vs. QEDL: the universal contributions
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at mL = 4, universal finite volume e↵ects are:

• 2 times smaller, C?-BC along 3 directions

• 5 times smaller, C?-BC along 1 direction
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U(1) gauge theory on the lattice

1 Non-compact formulation

Sγ =
1

2e2

∑

x,µ<ν

(Fµν(x))2 ,

Fµν(x) = Aµ(x) + Aν(x + µ̂)− Aµ(x + ν̂)− Aν(x)

I Gauge-invariant
I Requires to fix the gauge in simulations⇒ Not a problem

2 Compact formulation

Sγ =
1
e2

∑

x,µ<ν

(1− cos Θµν(x)) ,

Θµν(x) = θµ(x) + θν(x + µ̂)− θµ(x + ν̂)− θν(x) , θµ(x) = arg
(

eiAµ(x)
)

I Gauge-invariant
I Does not require to fix a gauge
I More natural on the lattice

Focus on compact formulation
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Lattice formulation of charged operators

A Mandelstam string localised on a line gives the easiest case for the
discretisation of an electrically charged operator

In C? BC a possibility is

Ψs(x) = e
− ıq2

∫ 0
−xk

ds Ak(x+ŝk)
ψ(x)e

ıq
2

∫ L−xk
0 ds Ak(x+ŝk) .

Figure 2: Graphical representation of the interpolating operator  s defined in eq. (3.9).
The black circle represents the electric charge, and the white circles are the image anti-
charges. The lines with arrows represent the electric flux (i.e. the Wilson lines), which
has to escape the box in a symmetric way through the two opposite planes because of the
boundary conditions.

symmetric with respect to  c(x) but, as discussed in section 6, it might be more practical
to use in numerical simulations, especially in the framework of compact QEDC.

Another choice that might look more convenient because of its explicit O(4) covariance is
given by

Jµ(x) = @µ�(x) , @µ@µ�(x) = �4(x) , (3.10)

where �(x) is anti-periodic in space and has appropriate boundary conditions in time. With
this choice the operator  J(x) can be written as

 `(x) = e�ıq
R

d4y @⇢A⇢(y) �(y�x)  (x) . (3.11)

In Landau gauge we get  `(x) =  (x), and the operator  `(x) is the unique gauge-invariant
extension of the operator  (x) defined in Landau gauge. Even though the Landau and other
covariant gauges are often used in perturbative calculations, notice that the operator  `(x)

is non-local in time and interferes with the dynamics by effectively generating a time-
dependent contribution to the Hamiltonian. One can show that this contribution vanishes
at large time separations, and therefore the same masses will be obtained, but in practical
situations the asymptotic behavior could be reached very slowly. These complications can
be avoided in the first place by sticking to a gauge-invariant formalism with the local-in-time
interpolating operators introduced before.

– 14 –
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Lattice formulation of charged operators

A Mandelstam string localised on a line gives the easiest case for the
discretisation of an electrically charged operator

In C? BC a possibility is

Ψs(x) = e
− ıq2

∫ 0
−xk

ds Ak(x+ŝk)
ψ(x)e

ıq
2

∫ L−xk
0 ds Ak(x+ŝk) .

Solve the problem of the square root of the link by considering a theory in
which the physical charge comes in multiples of two

Sγ =
4
e2

∑

x,µ<ν

(1− cos Θµν(x))

Charged operator on a lattice given by

Ψs(x) =

−1∏

s=−xk

U(x + sk̂, k)−1 ψ(x)

L−xk−1∏

s=0

U(x + sk̂, k) , U(i, µ) = eiθµ(i)



QCD+QED
with C? BC

Biagio Lucini

Isospin

QCD + QED
on the lattice

QEDC

Charge and
flavour in
(QCD+QED)C

Finite size
corrections to
∆M

Lattice
discretisation

Conclusions

The lattice action of (QCD+QED)C

Full Action S = Sg + Sγ + Sm

Wilson action for QCD

Sg =
2
g2

∑

x,µ<ν

Tr (1− Qµν(x))

Qµν(x) = Re
(

V(x, µ)V(x + µ̂, ν)V(x + ν̂, µ)−1V(x, ν)−1
)
, V(x, µ) ∈ SU(3)

Fractionary charges of quarks change the normalisation in Sγ

Sγ =
36
e2

∑

x,µ<ν

(1− cos Θµν(x))

Matter-field interaction accounted for by the Dirac operator

Sm =
∑

f

∑

x

ψ̄f (x)Df [U,V]ψf (x)

Standard matter-field coupling for the QCD interaction, parallel transport U2 rather
than U in the QED part
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No new sign problem in (QCD+QED)C

In QCD with non-degenerate quark mass, away from the continuum limit,
the Dirac operator with Wilson fermions can have negative eigenvalues

However, these are lattice artefacts⇒ mild sign problem that can be dealt
with

Fermionic contribution to the path integral with C? BC

∫

C? BC
Dψ̄Dψ e−ψ̄D[V]ψ = PfK CDJ

with the Pfaffian defined by

(PfK CDJ )2 = DetK CDJ = DetK DJ ,

and the indices K and J hiding modifications to the Dirac operators induced
by C? BC (represented by linear operators in the SU(2) algebra acting on
Majorana components of the spinors)

One can prove that the reality of PfK CDJ is a consequence of the reality of
DJ
At the same time, PfK CDJ < 0⇔ DJ < 0 No new sign problem!
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Conclusions

C? BC enable us to provide a local formulation of QCD+QED on a finite
volume

The price to pay is a partial violation of flavour and charge conservation, but
I charged states relevant for isospin breaking effects can still be defined
I conservation laws are recovered exponentially fast in some mass

parameter related to the mK mass
I in current lattice setups, the effect of the violations are negligible

Finite-volume QED corrections to hadron masses are significantly smaller
than in QEDL and can be understood in terms of physical considerations⇒
no spurious effect

The framework is amenable to lattice simulations⇒ non-perturbative results
can be extracted

In passing by: developed novel analytical techniques for determining finite
volume effects⇒ potentially useful for other applications

Next step: Monte Carlo simulations to see how this framework performs in practice
and get robust determinations of isospin breaking effects
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