# Exclusive production of pions and the pion distribution amplitude\*

## Emerson Luna Federal University of Rio Grande do Sul

## Workshop QCD - TNT4 Unraveling the organization of the QCD tapestry Ilhabela, Brazil, 2015

\* in collaboration with A. Natale, D. Fagundes and M. Pelaez

• The pion distribution amplitude (DA) at leading twist:

$$\varphi_{\pi}(\mathbf{x}) = \frac{N_{c}}{4\pi^{2}f_{\pi}^{2}} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} \int_{0}^{\infty} du \frac{F(u+i\lambda\bar{\mathbf{x}}, u-i\lambda\mathbf{x})}{D(u-i\lambda\mathbf{x})D(u+i\lambda\bar{\mathbf{x}})} \times [\mathbf{x}\Sigma(u+i\lambda\bar{\mathbf{x}}) + \bar{\mathbf{x}}\Sigma(u-i\lambda\mathbf{x})]$$

 $\Rightarrow$  **u**-variable plays the role of the quark transverse momentum squared

 $\Rightarrow \lambda x$ ,  $-\lambda \overline{x}$ : longitudinal projections of the quark momentum on the light cone directions ( $\overline{x} = (1 - x)$ )

$$D(u) \equiv u + \Sigma^2(u)$$

 $\Rightarrow \Sigma(u)$  is the dynamical quark mass

#### The pion DA from the BSE

 $\Rightarrow$  the function  $\ensuremath{\textit{F}}$  (the momentum dependent part of the quark-pion vertex) can be approximated by

$${\cal F}(
ho^2,
ho'^2)=\sqrt{\Sigma(
ho^2)\Sigma(
ho'^2)}$$

 $\Rightarrow$  the pion decay constant:

$$f_{\pi}^{2} = \frac{N_{c}}{4\pi^{2}} \int_{0}^{\infty} du \, \frac{u\Sigma(u)}{D^{2}(u)} \left(\Sigma(u) - \frac{1}{2}u\Sigma'(u)\right)$$

where  $\Sigma'(u) = d\Sigma(u)/du$ 

The pion DA is normalized as

$$\int_0^1 dx \, \varphi_\pi(x) = 1$$

#### The pion DA from the BSE

Its is know that

$$\Sigma(p^2) pprox \Phi^P_{BS}(p,q)|_{q 
ightarrow 0}$$

 $\Rightarrow$  consequence of the fact that they are related through the Ward-Takahashi identity

• The homogeneous BSE can be, in general, written as

$$\Phi(k,\mathcal{P})=-i\int_q^\infty rac{d^4q}{(2\pi)^4}\,\mathcal{K}(k;q,\mathcal{P})\,\mathcal{S}(q_+)\,\Phi(q;\mathcal{P})\,\mathcal{S}(q_-)$$

 $\Rightarrow$  the amplitude depends on the quarks total (*P*) and relative (*q*) momenta

- $\Rightarrow$  **K** is the fully amputated quark-antiquark kernel
- $\Rightarrow$  **S**(*q<sub>i</sub>*) are the dressed quark propagators

$$\Rightarrow$$
  $q_+ = q + \eta P$  and  $q_- = q - (1 - \eta)P$ , where  $0 \le \eta \le 1$ 

 $\Rightarrow$  the homogeneous BSE is valid on-shell (i.e.  $P^2 = 0$  in the pion case)

- In QCD the fermion masses are dynamically generated along with bound state Goldstone bosons (pions)
- The homogeneous BSE can be transformed into a second order differential equation

 $\Rightarrow$  two solutions can be found; the first one is characterized by a soft asymptotic behavior

$$\Phi_{\pi}(p^2)\sim \Sigma(p^2\gg\mu^2)\sim rac{\mu^3}{p^2}$$

 $\Rightarrow$  this solution leads to the standard DA  $\varphi_{\pi}^{as}(x) = 6x(1-x)$ 

#### The pion DA from the BSE

 $\Rightarrow$  the second one is characterized by an extreme hard high-energy asymptotic behavior of a bound state wave function:

$$\Phi_{\pi}(\boldsymbol{p}^{2}) \sim \Sigma(\boldsymbol{p}^{2} \gg \mu^{2}) \sim \mu \left[1 + \boldsymbol{b}\boldsymbol{g}^{2}\left(\mu^{2}\right) \ln\left(\boldsymbol{p}^{2}/\mu^{2}\right)\right]^{-\gamma} \quad (1)$$

where  $b = (11N_c - 2n_f)/48\pi^2$ , c = 4/3 and  $\gamma = 3c/16\pi^2 b$ 

 $\Rightarrow$  this solution satisfies the Callan-Symanzik equation

⇒ it is constrained by the BSE normalization condition:  $\gamma > 1/2$  ( $n_f > 5$ ) ⇒ otherwise it is not consistent with a possible bound state solution in a *SU*(3) non-Abelian gauge theory

- (1) also appears when using an improved RG approach in QCD [L.-N.Chang,N.-P.Chang,PRL54(1985)2407]
- (1) minimizes the vacuum energy as long as n<sub>f</sub> > 5 [J.C.Montero *et al.*,PLB161(1985)151]

In sum:

 $\Rightarrow$  (1) is the hardest (in momentum space) asymptotic behavior allowed for a bound state solution in a non-Abelian gauge theory

 $\Rightarrow$  no matter this solution is realized in Nature or not, it will lead to the flattest pion DA

 $\Rightarrow$  nowadays it is known that the chiral phase diagram for a non-Abelian theory may change considerably as we change the number of flavors

 $\Rightarrow$  if  $n_f \ge 6$  QCD may have a chiral broken phase whose self-energy is given by (1)

So, if (1) is a possible solution, how it affects the pion DA?

- In order to compute the pion DA we need perform an integral over the wave function in the full range of momenta
- To obtain the extreme field theoretical limit on the pion DA we adopt

$$\Sigma(p^2) = \mu \left[ 1 + bg^2 \left( \mu^2 
ight) \ln \left( rac{p^2 + \mu^2}{\mu^2} 
ight) 
ight]^{-\gamma}$$

 $\Rightarrow$  it is a simple interpolating expression that reflects the full behavior of (1)

 $\Rightarrow$  the  $\mu$  factor into the logarithm numerator leads to the right infrared behavior of  $\Sigma(p^2 \rightarrow 0) = \mu$ 

#### The pion DA from the BSE

 $\Rightarrow$  the coupling constant  $g^2$  is calculated at the chiral symmetry breaking scale  $\mu$ , and given by

$$g^2(k^2) = rac{1}{b \ln[(k^2 + 4m_g^2)/\Lambda_{QCD}^2]}$$

 $\Rightarrow$  it is an infrared finite coupling determined in QCD where gluons have an effective mass  $m_g$ 

 $\Rightarrow$  for the model calculations we take  $\mu = 100$  MeV,  $\Lambda_{QCD} = 300$  MeV and  $m_g = 321.18$  MeV

 $\Rightarrow$  the pion DA numerical result can be reproduced by using the normalized form

$$arphi_{\pi}(x) = rac{\Gamma(2+2\epsilon)}{\Gamma^2(1+\epsilon)} \, x^{\epsilon} (1-x)^{\epsilon} \, .$$

where  $\epsilon \approx 0.024802$ 

#### The pion DA from the BSE



QCD-TNT4 Ihabela, Brazil, September 2015

 $\Rightarrow$  The pion DA turns out to be quite flat

 $\Rightarrow$  we have not observed any significant variation as we change  $m_g$  and  $\mu$  as long as we do not modify the  $f_{\pi}$  value

 $\Rightarrow$  it should be noticed that the result is more dependent on the ratio  $m_g/\Lambda_{QCD}$  than the proper  $\Lambda_{QCD}$  value

 $\Rightarrow$  the flat DA behavior is totally credited to the hard asymptotic self-energy behavior

 $\Rightarrow$  the asymptotic behavior as  $x \rightarrow 0$  is

$$arphi_{\pi}(m{x} o m{0}) \sim \left(\lnrac{1}{m{x}}
ight)^{-\gamma/2}$$

 At sufficiently high Q<sup>2</sup> it is expected that the standard factorization approach can be applied. Thus:

$$\mathcal{F}_{\gamma^*\gamma\pi}(\mathsf{Q}^2) = rac{\sqrt{2}\,f_\pi}{3}\int_0^1 dx\, arphi_\pi(x)\,\mathcal{T}^{\mathcal{H}(LO)}_{\gamma\pi}(x,\,\mathsf{Q}^2)$$

 $\Rightarrow$  the hard scattering amplitude  $T_{\gamma\pi}^{H(LO)}(x, Q^2)$  is

$$T^{H(LO)}_{\gamma\pi}(x,\mathbf{Q}^2)=rac{1}{x\mathbf{Q}^2}$$

 $\Rightarrow$  in this way:

$$\mathcal{F}_{\gamma^*\gamma\pi}(\mathsf{Q}^2)=rac{\sqrt{2}}{3}\,f_\pi\int_0^1dx\,rac{arphi_\pi(x)}{x\mathsf{Q}^2}$$

 $\Rightarrow$  for a totally flat DA this integral should diverge...

... however, the finite size  $R \approx 1/M$  of the pion provides a cut-off for the *x* integral [A.V.Radyushkin,PRD**80**(2009)094009]

 $\Rightarrow$  therefore the xQ<sup>2</sup> in the denominator will be changed as

$$xQ^2 \rightarrow xQ^2 + M^2$$

 $\Rightarrow$  the parameter *M* in such modification is usually treated as the average transverse momentum of the propagating particle

 $\Rightarrow$  it was proposed by Radyushkin that the factor *M* could be treated as an effective gluon mass

#### **Pion transition form factor - LO**



QCD-TNT4 Ihabela, Brazil, September 2015

#### **Pion transition form factor - LO**



#### **Pion transition form factor - NLO**

• The one loop correction for the  $\gamma^*\gamma \to \pi$  form factor is given by

$$\int_{0}^{1} dx \, \frac{\varphi_{\pi}(x)}{xQ^{2}} \to \int_{0}^{1} dx \, \frac{\varphi_{\pi}(x,\mu)}{xQ^{2}} \left\{ 1 + \frac{4}{3} \frac{\alpha_{s}}{2\pi} \left[ \frac{1}{2} \left( \ln^{2} x - 9 - \frac{x \ln x}{(1-x)} \right) + \left( \frac{3}{2} + \ln x \right) \ln \left( \frac{Q^{2}}{\mu^{2}} \right) \right] \right\}$$

 $\Rightarrow$  if we take  $\mu^2 = \mathbf{Q}^2$ :

$$T_{\gamma\pi}^{H(NLO)}(x, \mathbf{Q}^2) = \frac{1}{x\mathbf{Q}^2} \left(1 + \frac{4}{3} \frac{\alpha_s}{2\pi} f(x)\right)$$

where

$$f(x) = \ln^2 x - \frac{x \ln x}{\bar{x}} - 9$$

QCD-TNT4 Ihabela, Brazil, September 2015



 The pion form factor *F*<sub>π</sub>(Q<sup>2</sup>) is also going to be changed if the pion DA is flat

 $\Rightarrow$  the QCD prediction for  $F_{\pi}(Q^2)$  is also dependent on IR nonperturbative behavior of the gluon propagator

• The QCD expression for the pion factor is

$$F_{\pi}(\mathbf{Q}^2) = \frac{f_{\pi}^2}{12} \int_0^1 d\mathbf{x} \int_0^1 d\mathbf{y} \, \varphi^*(\mathbf{y}, \tilde{\mathbf{Q}}_y) T^H(\mathbf{x}, \mathbf{y}, \mathbf{Q}^2) \varphi(\mathbf{x}, \tilde{\mathbf{Q}}_x)$$

where  $\tilde{Q}_x = \min(x, 1 - x)$ 

 $\Rightarrow$  the function  $\varphi(\mathbf{x}, \tilde{\mathbf{Q}}_{\mathbf{x}})$  is the momentum dependent pion DA

 $\Rightarrow$  it gives the amplitude for finding the quark or antiquark within the pion carrying the fractional momentum x or 1 - x

 $\Rightarrow T^{H}(x, y, Q^{2})$  is the hard scattering amplitude that is obtained by computing the following quark-photon scattering diagram:



#### The pion form factor

 $\Rightarrow$  the lowest-order expression of  $T^{H}(x, y, Q^{2})$  is given by

$$T_{H}(x, y, Q^{2}) = \frac{64\pi}{3} \left[ \frac{2}{3} \alpha_{s}(K^{2}) D(K^{2}) + \frac{1}{3} \alpha_{s}(P^{2}) D(P^{2}) \right]$$

where  $K^2 = (1 - x)(1 - y)Q^2$  and  $P^2 = xyQ^2$ 

 $\Rightarrow$   $D({\it K}^2)$  is related to the gluon propagator. In Landau gauge:

$$D_{\mu
u}(q^2) = \left(\delta_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) D(q^2), \quad D(q^2) = rac{1}{q^2}$$

 $\Rightarrow$  we replace the perturbative  $D(q^2) = \frac{1}{q^2}$  by

$$D(q^2) = rac{1}{q^2 + M_g^2(q^2)}$$

where  $M_g^2(q^2)$  is the dynamical gluon mass

#### The pion form factor

 $\Rightarrow M_g^2(q^2)$  is roughly given by

$$M_g^2(q^2)pprox rac{m_g^4}{q^2+m_g^2}$$

 $\Rightarrow$  since the mass decays very fast with momentum we just assume

$$M_g^2(q^2) pprox m_g^2$$

⇒ the inclusion of radiative corrections imply that  $T^{H}(x, y, Q^{2})$  has to be multiplied by [F.del Aguila,M.K.Chase,NPB**193**(1981)517]

$$\left[1 - \frac{5}{6} \frac{\alpha_s(\mathsf{Q}^2)}{\pi}\right]$$

#### **Pion form factor**



QCD-TNT4 Ihabela, Brazil, September 2015

- In the area of exclusive processes, two-photon processes are of special interest since they can provide very clean tests of QCD
- Exclusive processes with hadronic final states test various model calculations motivated by perturbative and non-perturbative QCD
- Two-photon production of exclusive hadronic final states is particularly attractive due to the absence of strong interactions in the initial state
- We focus on photon-photon annihilation into two flavor-singlet helicity-zero mesons,  $\gamma\gamma \rightarrow \pi^+\pi^-$

#### Hard exclusive two photon production

 The helicity amplitudes for a pion pair production in exclusive two photon collisions at high energies and large center of mass scattering angles θ<sub>CM</sub> is given by

$$\mathcal{M}^{\lambda\lambda'} = \int_0^1 dx \int_0^1 dy \,\varphi^*(x, \tilde{Q}_x) \,\varphi^*(y, \tilde{Q}_y) \,T_H^{\lambda\lambda'}(x, y, Q^2) \quad (2)$$

where  $\tilde{Q}_x = \min(x, 1-x)\sqrt{s} |\sin \theta_{CM}|$  and where  $s = W_{\gamma\gamma}^2$ 

 The spin-averaged cross section for producing the pion pair:

$$rac{d\sigma}{dz}=rac{1}{32\pi s}\langle|\mathcal{M}^{\lambda\lambda'}|^2
angle$$

with  $z = \cos \theta_{CM}$  and

$$\langle |\mathcal{M}|^2 
angle = rac{1}{4} |\mathcal{M}^{\lambda\lambda'}|^2$$

#### Hard exclusive two photon production

 The hard scattering amplitudes (at LO) for different helicity structures:

$$\left. \begin{array}{l} T_{H}^{(0)}(++) \\ T_{H}^{(0)}(--) \end{array} \right\} = \frac{16\pi\alpha_{s}}{3s} \frac{32\pi\alpha}{x(1-x)y(1-y)} \left[ \frac{(e_{1}-e_{2})^{2}a}{1-z^{2}} \right]$$

$$\frac{T_{H}^{(0)}(+-)}{T_{H}^{(0)}(-+)} = \frac{16\pi\alpha_{s}}{3s} \frac{32\pi\alpha}{x(1-x)y(1-y)} \left[ \frac{(e_{1}-e_{2})^{2}a}{1-z^{2}} + \frac{e_{1}e_{2}[x(1-x)+y(1-y)]}{a^{2}-b^{2}z^{2}} + \frac{(e_{1}^{2}-e_{2}^{2})(x-y)}{2} \right]$$

where  $e_i$  are the quark charges and

$$\left. \begin{array}{c} a \\ b \end{array} \right\} = (1-x)(1-y) \pm xy$$

 $\Rightarrow$  in order to restrain the calculation at the perturbative QCD level we multiply (2) by the factor

$$\mathcal{F}^{pQCD}(s) = 1 - \exp\left(rac{-(s-4m_\pi^2)^4}{\Lambda_{pQCD}^8}
ight)$$

 $\Rightarrow$  this factor smoothly switches off the pQCD contribution at low energies [M.K.-Gawenda,A.Szczurek,PRC87(2013)054908]

 $\Rightarrow$  in this approach we can finally compute the total and differential cross sections for charged pion pair exclusive production:

#### Total cross section for charged pion pair exclusive production



#### Differential cross section for charged pion pair production



QCD-TNT4 Ihabela, Brazil, September 2015

□ The BaBar results suggested many authors to propose a (phenomenological) flat pion DA

 $\Rightarrow$  we have observed that the pion DA can be related to the fundamental QCD Green's functions as a function of the quark self-energy and the quark-pion vertex...

 $\Rightarrow$  ... which in turn are associated with the pion wave function through the Bethe-Salpeter equation

 $\Rightarrow$  we provide a theoretical basis for the flat behavior

 $\Box$  In principle we did not may expect that the quark self-energy should follow the behavior (1)

 $\Rightarrow$  thus the results that we could obtain with our "almost" flat DA would just give an extreme limit to the physical quantities that we have calculated

 $\Box$  However the description of the data is quite reasonable and seems to indicate that the pion wave function may be well approximated at large momentum by (1)

### THANK YOU!