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Plan of the Talk

We use lattice gauge theory to study (in Landau gauge) the

consequences of the restriction of the path integral to the Gribov

region Ω, as prescribed in the so-called Gribov-Zwanziger confinement

scenario.

Lattice approach allows access to the (physically relevant) gauge

configurations, which are used to compute ”observables” (e.g.

propagators and vertices) ⇒ try to extract the most information from

them!

In fact, we can also visit nearby configurations, that likely do not have

significant statistical weight, and see what information they carry

By conveniently crossing the Gribov horizon, we determine geometric

properties of Ω, and investigate why the predicted ghost enhancement

is not found in lattice simulations
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫
DU e−Sg

∫
DψDψ e−

∫
d4x ψ(x)K ψ(x) =

∫
DU e−Sg detK(U)
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫
DU e−Sg

∫
DψDψ e−

∫
d4x ψ(x)K ψ(x) =

∫
DU e−Sg detK(U)

Evaluate expectation values

〈O〉 =

∫
DU O(U)P (U)

with the weight

P (U) =
e−Sg(U) detK(U)

Z

Very complicated (high-dimensional) integral to compute!

⇒ Monte Carlo simulations: sample representative gauge

configurations, then compute O and take average
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Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

quantities

integration volume is finite: no need for gauge-fixing

when gauge fixing, procedure is incorporated in the

simulation, no need to consider Faddeev-Popov matrix

get FP matrix without considering ghost fields explicitly

Lattice momenta given by p̂µ = 2 sin (π nµ/N) with

nµ = 0, 1, . . . , N/2 ⇔ pmin ∼ 2π/(aN) = 2π/L,

pmax = 4/a in physical units

QCD–TNT 4 Ilhabela, August–September 2015 – p. 4



Gribov-Zwanziger Confinement Scenario

Formulated for Landau gauge, predicts gluon propagator D(p2)

suppressed in the IR limit, a result that may be viewed as an

indication of gluon confinement
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Gribov-Zwanziger Confinement Scenario

Formulated for Landau gauge, predicts gluon propagator D(p2)

suppressed in the IR limit, a result that may be viewed as an

indication of gluon confinement

Long range effects are felt in the ghost propagator G(p):

Infinite volume favors configurations on the first Gribov

horizon, where minimum nonzero eigenvalue λmin of

Faddeev-Popov operator M goes to zero

In turn, G(p) should be IR enhanced, introducing long-range

effects, which are related to the color-confinement

mechanism
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Ghost Enhancement (I)

Ghost-enhanced scenario natural in Coulomb gauge. Since

(∂iAi)
a = 0, the color-electric field is decomposed as

Etr
i − ∂iφ(~x, t) and the classical (non-Abelian) Gauss law

(DiEi)
a(~x, t) = ρaquark(~x, t)

is written for a color-Coulomb potential in terms of

Faddeev-Popov operator: Mφa(~x, t) = ρa(~x, t) , where

G−1 ∼ M = −Di∂i. In momentum space

φa(~x, t) ≈

∫
d3p

∫
d3y G(~p, t) exp[i~p · (~x− ~y)] ρa(~y, t)

IR divergence of ghost propagator G(~p, t) as 1/p4 leads to

linearly rising potential
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Ghost Enhancement (II)

Gribov’s restriction beyond quantization using Faddeev-Popov

(FP) method implies taking a minimal gauge, defined by a

minimizing functional in terms of gauge fields and gauge

transformation

⇒ FP operator (second variation of functional) has non-negative

eigenvalues. First Gribov horizon ∂Ω approached in

infinite-volume limit, implying ghost enhancement

Ω
Λ

Γ
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Ghost Propagator on the Lattice

Ghost fields are introduced as one evaluates functional integrals

by the Faddeev-Popov method, which restricts the space of

configurations through a gauge-fixing condition. The ghosts are

unphysical particles, since they correspond to anti-commuting

fields with spin zero.

On the lattice, the (minimal) Landau gauge is imposed as a

minimization problem and the ghost propagator is given by

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
〈M−1(a, x; a, y) 〉 ,

where the Faddeev-Popov (FP) matrix M is obtained from the

second variation of the minimizing functional.

Early simulations: Suman & Schilling, PLB 1996; Cucchieri, NPB 1997
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Lattice Landau Gauge

The lattice Landau gauge is imposed by minimizing the functional

S[U ;ω] = −
∑

x,µ

Tr Uωµ (x) ,

where ω(x) ∈ SU(N) and Uωµ (x) = ω(x) Uµ(x) ω
†(x+ a eµ) is the

lattice gauge transformation.

By considering the relations Uµ(x) = ei a g0 Aµ(x) and ω(x) = ei τ θ(x) ,
we can expand S[U ;ω] (for small τ ):

S[U ;ω] = S[U ; 1⊥] + τ S
′

[U ; 1⊥](b, x) θb(x)

+
τ2

2
θb(x)S

′′

[U ; 1⊥](b, x; c, y) θc(y) + . . .

where S
′′

[U ; 1⊥](b, x; c, y) = M(b, x; c, y)[A] is a lattice discretization of

the Faddeev-Popov operator −D · ∂ .
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Overview of Lattice Results

Note: large-lattice results (L ≈ 27 fm)

Gluon sector:

Gluon propagator is suppressed in the limit p→ 0, while the

real-space propagator violates reflection positivity
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Overview of Lattice Results

Note: large-lattice results (L ≈ 27 fm)

Gluon sector:

Gluon propagator is suppressed in the limit p→ 0, while the

real-space propagator violates reflection positivity

D(0) > 0 (good fit to e.g. Gribov-Stingl form)

Ghost sector:

λmin → 0 with the volume

G(p) shows no enhancement in the IR

Consistent with so-called massive solution of DSEs and refined

GZ scenario. Not consistent with scaling solution
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Ghost Propagator Results

Fit of the ghost dressing function p2G(p2) as a function of p2 (in GeV)

for the 4d case (β = 2.2 with volume 804). We find that p2G(p2) is best

fitted by the form p2G(p2) = a− b[log(1 + cp2) + dp2]/(1 + p2), with

 1
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p2  G
(p

),
 a

-b
[lo

g(
1+

c 
p2 )+

d 
p2 ]/(

1+
p2 )

p2

4D Results

a = 4.32(2),

b = 0.38(1)GeV 2,

c = 80(10)GeV −2,

d = 8.2(3)GeV −2.

In IR limit p2G(p2) ∼ a.
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Upper and Lower Bounds for G(p)

On the lattice, the ghost propagator is given by

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
M−1(a, x; a, y)

=
1

N2
c − 1

∑

i,λi 6=0

1

λi

∑

a

|ψ̃i(a, p)|
2 ,

where ψi(a, x) and λi are the eigenvectors and eigenvalues of the FP

matrix. Then, one can prove (A.Cucchieri, TM, PRD 78, 2008) that

1

N2
c − 1

1

λ1

∑

a

|ψ̃1(a, p)|
2 ≤ G(p) ≤

1

λ1
.

If λ1 ≡ λmin behaves as L−α in the infinite-volume limit, α > 2 is a

necessary condition to obtain an IR-enhanced ghost propagator G(p).
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Upper bound for G(pmin)

2κ = 0.043(8), α = 1.53(2)
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The Infinite-Volume Limit

One can check if lattice data support λmin[A] → 0 in the infinite-volume

limit =⇒ A ∈ ∂Ω (Gribov horizon).

Infinite-volume limit extrapolation λmin[A] ∼ Lc for the 3d SU(2) case

(A.Cucchieri, A.Maas, TM, PRD 74, 2006). Similarly in 4d.
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The Infinite-Volume Limit (II)

We thus see that, as the infinite-volume limit is

approached, the sampled configurations (inside Ω = region

for which M is positive semi-definite) are closer and closer

to the first Gribov horizon ∂Ω

Ω
Λ

Γ
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The Infinite-Volume Limit (II)

We thus see that, as the infinite-volume limit is

approached, the sampled configurations (inside Ω = region

for which M is positive semi-definite) are closer and closer

to the first Gribov horizon ∂Ω

Ω
Λ

Γ

Can we learn more about the geometry of this region?

QCD–TNT 4 Ilhabela, August–September 2015 – p. 15



Reaching (and Crossing!) the Horizon

How many roads have I wondered?

None, and each my own

Behind me the bridges have crumbled

No question of return

Nowhere to go but the horizon

where, then, will I call my home?

The Same Song, Susheela Raman

QCD–TNT 4 Ilhabela, August–September 2015 – p. 16

http://www.youtube.com/watch?v=i4xyZFa1TWw


Reaching (and Crossing!) the Horizon

How many roads have I wondered?

None, and each my own

Behind me the bridges have crumbled

No question of return

Nowhere to go but the horizon

where, then, will I call my home?

The Same Song, Susheela Raman

— They say that communism is just over the horizon. What’s

a horizon?

— A horizon is an imaginary line which continues to recede

as you approach it.

Russian joke from Khrushchev’s time
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Relating λmin and Geometry

A. Cucchieri, T.M., PRD 2013
It is generally accepted that

At very large volumes the functional integration gets

concentrated on the boundary ∂Ω of the first Gribov

region Ω.

But

The key point seems to be the rate at which λmin goes

to zero, which, in turn, should be related to the rate at

which a thermalized and gauge-fixed configuration

approaches ∂Ω.
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Relating λmin and Geometry

A. Cucchieri, T.M., PRD 2013
It is generally accepted that

At very large volumes the functional integration gets

concentrated on the boundary ∂Ω of the first Gribov

region Ω.

But

The key point seems to be the rate at which λmin goes

to zero, which, in turn, should be related to the rate at

which a thermalized and gauge-fixed configuration

approaches ∂Ω.

These are only qualitative statements!✓

✒

✏

✑
How do we relate λ1

to the geometry of the Gribov region Ω ?
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The Region Ω: Properties

Three important properties have been proven

(D.Zwanziger, NPB 209, 1982) for the Gribov region Ω:

1. the trivial vacuum Aµ = 0 belongs to Ω;

2. the region Ω is convex;

3. the region Ω is bounded in every direction.

(The same properties can be proven also for the fundamental modular

region Λ)

The first property is trivial, since Aµ = 0 implies that

M(b, x; c, y)[0] is (minus) the Laplacian −∂2 (which is a

semi-positive-definite operator).

QCD–TNT 4 Ilhabela, August–September 2015 – p. 18



Convexity of Ω

The gauge condition ∂ ·A = 0 and the operators Dbc(x, y)[A],

M(b, x; c, y)[A] = −∂2 +K[A] and K[A] are linear in the gauge field Aµ:

M[γA1 + (1− γ)A2] = −∂2 +K[γA1 + (1− γ)A2]

= γ
(
−∂2 +K[A1]

)
+ (1− γ)

(
−∂2 +K[A2]

)

= γM[A1] + (1− γ)M[A2]

and, for γ ∈ [0, 1], M[γA1 + (1− γ)A2] is semi-positive definite if

M[A1] and M[A2] are semi-positive definite. Also

γ ∂ ·A1 + (1− γ) ∂ ·A2 = 0

if ∂ ·A1 = ∂ ·A2 = 0. =⇒ The convex combination γA1 + (1− γ)A2

belongs to Ω, for any value of γ ∈ [0, 1], if A1, A2 ∈ Ω.
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Boundary of Ω

Using properties 1 and 2 and with A1 = 0, A2 = A, 1− γ = ρ we have

M[ρA] = −∂2 +K[ρA] = (1− ρ) (−∂2) + ρM[A]

and, if A ∈ Ω, then ρA ∈ Ω for any value of ρ ∈ [0, 1].

Since the color indices of K[A] are given by Kbc[A] ∼ f bceAeµ, we have

that all the diagonal elements of K[A] are zero =⇒ the trace of the

operator K[A] is zero.

The operator Kbcxy[A] is real and symmetric (under simultaneous

interchange of x with y and b with c) and its eigenvalues are real =⇒ at

least one of the eigenvalues of K[A] is (real and) negative. If φneg is

the corresponding eigenvector, that for a sufficiently large (but finite)

value of ρ > 1 the scalar product (φneg,M[ρA]φneg) must be negative

=⇒ M[ρA] is not semi-positive definite and ρA /∈ Ω.
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The Infinite-Volume Limit

In order to study the infrared sector of the theory on the lattice

we need to remove the infrared cutoff =⇒ take the

infinite-volume limit.

At very large volumes the functional integration gets

concentrated on the boundary ∂Ω of the first Gribov

region Ω.

For very large dimensionality and for large volumes, by

considering the interplay among the volume of the configuration

space, the Boltzmann weight and the step function used to

constrain the functional integration to Ω, one expects that

entropy favors configurations near the boundary ∂Ω.

⇒ As said above: now relate λ1 to geometry of Ω
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Lower bound for λ1 (I)

Consider a configuration A′ belonging to the boundary ∂Ω of Ω and

write

λ1 [M[ρA′] ] = λ1
[
(1− ρ) (−∂2) + ρM[A′]

]
.

From the second property, ρA′ ∈ Ω for ρ ∈ [0, 1]. Since

λ1
[
(1− ρ) (−∂2) + ρM[A′]

]

= min
χ

(
χ ,

[
(1− ρ) (−∂2) + ρM[A′]

]
χ
)
,

with (χ , χ) = 1 and χ 6= constant, we can use the concavity of the

minimum function

min
χ

(χ, [M1 +M2]χ) ≥ min
χ

(χ,M1χ) + min
χ

(χ,M2χ) .
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Lower bound for λ1 (II)

We find

λ1
[
M[ρA′]

]
= λ1

[
(1− ρ) (−∂2) + ρM[A′]

]

≥ (1− ρ)min
χ

(
χ, (−∂2)χ

)
+ ρmin

χ

(
χ ,M[A′]χ

)

= (1− ρ) p2min .

Recall that A′ ∈ ∂Ω =⇒ the smallest non-trivial eigenvalue of the

FP matrix M[A′] is null, and that the smallest non-trivial

eigenvalue of (minus) the Laplacian −∂2 is p2min.

✗

✖

✔

✕

In the Abelian case one has M = −∂2 and λ1 = p2min. =⇒

All non-Abelian effects are included in the (1− ρ) factor

(and in the inequality).
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Lower bound for λ1 (III)

As the lattice side L goes to infinity, λ1 [M[ρA′] ] cannot go to

zero faster than (1− ρ) p2min. Since p2min ∼ 1/L2 at large L =⇒

λ1 behaves as L−2−α in the same limit, with α > 0, only if 1− ρ

goes to zero at least as fast as L−α.

With ρA′ = A the above inequality may also be written as

λ1 [M[A] ] ≥ [1− ρ(A)] p2min .

Here 1− ρ(A) ≤ 1 measures the distance of a configuration

A ∈ Ω from the boundary ∂Ω (in such a way that ρ−1A ∈ ∂Ω).

This result applies to any Gribov copy belonging to Ω.
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Summarizing

Using properties of Ω and the concavity of the minimum function, one

can show (A. Cucchieri, TM, PRD 2013)

λmin [M[A] ] ≥ [1− ρ(A)] p2min

Here 1− ρ(A) ≤ 1 measures the distance of a configuration A ∈ Ω

from the boundary ∂Ω (in such a way that ρ−1A ≡ A′ ∈ ∂Ω). This result

applies to any Gribov copy belonging to Ω.

Recall that A′ ∈ ∂Ω =⇒ the smallest non-trivial eigenvalue of the FP

matrix M[A′] is null, and that the smallest non-trivial eigenvalue of

(minus) the Laplacian −∂2 is p2min.

✎

✍

☞

✌
In the Abelian case one has M = −∂2 and λmin = p2min
=⇒ non-Abelian effects are included in the (1− ρ) factor
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Simulating the Math

We used 70 configurations, for the SU(2) case at β = 2.2, for V = 164,

244, 324, 404 and 50 configurations for V = 484, 564, 644, 724, 804.

In order to verify the third property of the region Ω we applied scale

transformations Â
(i)
µ (x) = τiA

(i−1)
µ (x) to the gauge configuration A with

τ0 = 1,

τi = δ τi−1,

δ = 1.001 if λ1 ≥ 5 × 10−3,

δ = 1.0005 if λ1 ∈ [5 × 10−4, 5 × 10−3)

and δ = 1.0001 if λ1 < 5 × 10−4,

where λ1 is evaluated at the step i− 1. After n steps, the modified

gauge field Â
(n)
µ (x) does not belong anymore to the region Ω, i.e. the

eigenvalue λ1 of M[Â(n)] is negative (while λ2 is still positive).
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Crossing the Horizon (I)

N max(n) min(n) 〈n〉 Rbefore Rafter

16 30 6 17.2 15(3) -30(12)

24 27 4 15.1 20(7) -26(6)

32 19 5 11.7 26(9) -51(20)

40 18 4 9.4 155(143) -21(6)

48 13 2 7.8 21(5) -21(5)

56 12 3 7.6 16(4) -21(7)

64 11 2 6.8 20(7) -42(18)

72 11 2 6.1 129(96) -42(13)

80 12 3 6.1 15(4) -24(4)

The maximum, minimum and average number of steps n, necessary to “cross the Gribov

horizon” along the direction Ab
µ(x), as a function of the lattice size N . We also show the

ratio R[A] = (S′′′)2/(S′′ S′′′′), divided by 1000, for the modified gauge fields

τn−1Ab
µ(x) and τnAb

µ(x), i.e. for the configurations immediately before and after

crossing ∂Ω.
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Crossing the Horizon (II)

The case of a typical configuration.
R

i

Plot of the ratio R, as a func-

tion of the iteration step i,

for a configuration with lat-

tice volume 164.

i

Plot of λ2 (full circes), |E ′′′ |

(full squares) and E ′′′′ (full

triangles) as a function of

the iteration step i, for the

same configuration.
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Crossing the Horizon (III)

The case R ≈ 0 (configuration on ∂Ω ∩ ∂Λ).
R

i

Plot of the ratio R, as a func-

tion of the iteration step i,

for a configuration with lat-

tice volume 484.

i

Plot of λ2 (full circes), |E ′′′ |

(full squares) and E ′′′′ (full

triangles) as a function of

the iteration step i, for the

same configuration.

QCD–TNT 4 Ilhabela, August–September 2015 – p. 29



New Inequality

Using A′ = τ̃ A ≡ A(τn−1 + τn)/2 ∈ ∂Ω

and ρ = 1/τ̃ < 1:

plot of the inverse of the (previous) lower

bound (empty circles), of 1/G(pmin) (full tri-

angles), of λ1 (full squares) and of the quan-

tity (1− ρ) p2min (full circles) as a function of

the inverse lattice size 1/N .

The new inequality λ1 [M[A] ] ≥ [1− ρ(A)] p2min becomes an

equality if and only if the eigenvectors corresponding to the

smallest nonzero eigenvalues of M[A] and −∂2 coincide. =⇒

The eigenvector ψmin is very different from the plane waves

corresponding to pmin.

These results explain the non-enhancement of G(p) in the IR.
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Conclusions

We’ve ventured outside the region Ω (away from

sampled configurations)
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Results suggest that all non-perturbative features of a

minimal-Landau-gauge configuration A ∈ Ω are related

to its normalized distance ρ from the “origin” A = 0 or,

equivalently, to its normalized distance 1− ρ from the

boundary ∂Ω
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Conclusions

We’ve ventured outside the region Ω (away from

sampled configurations)

Comparison of measurements for non-representative

configurations to usual ones allows test of new bounds

Results suggest that all non-perturbative features of a

minimal-Landau-gauge configuration A ∈ Ω are related

to its normalized distance ρ from the “origin” A = 0 or,

equivalently, to its normalized distance 1− ρ from the

boundary ∂Ω

We now begin to understand why no ghost

enhancement (scaling solution) is seen on the lattice
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