Chiral symmetry breaking in continuum QCD

(in the "quenched" limit)

Mario Mitter

Ruprecht-Karls-Universität Heidelberg

Ilhabela, September 4, 2015

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

talk based on: MM, J. Pawlowski, N. Strodthoff, Phys.Rev. D91 (2015) 054035

fQCD collaboration: J. Braun, A. K. Cyrol, L. Fister, W. J. Fu, T. K. Herbst, MM N. Müller, J. M. Pawlowski, S. Rechenberger, F. Rennecke, N. Strodthoff

Table of Contents

Motivation

- 2 "Quenched" Landau gauge QCD with the FRG
- 3 Phenomenological Applications (Preliminary!)
- 4 Technical Comments

Functional approaches to QCD at $T \neq 0$, $\mu = 0$

• lattice QCD: crossover at $\mathcal{T} \approx 150-160$ MeV, $\mu=0$

Functional approaches to QCD at $T \neq 0$, $\mu = 0$

• lattice QCD: crossover at $\mathcal{T} pprox 150 - 160$ MeV, $\mu = 0$

- interaction measure
- 2+1 flavor Polyakov loop extended quark-meson model
- functional renormalization group

[Herbst, MM, Pawlowski, Schaefer, Stiele, 2013]

Functional approaches to QCD at $T \neq 0$, $\mu = 0$

• lattice QCD: crossover at $\mathcal{T} pprox 150 - 160$ MeV, $\mu = 0$

- interaction measure
- 2+1 flavor Polyakov loop extended quark-meson model
- functional renormalization group

- chiral condensate
- 2+1 flavor quark propagator Dyson-Schwinger equation

[Luecker, Fischer, Welzbacher, 2014]

[Luecker, Fischer, Fister, Pawlowski, 2013]

Functional appr. to QCD phase diagram

- 2-flavor Polyakov loop extended quark-meson model
- functional renormalization group

[Herbst, Pawlowski, Schaefer, 2013]

• 2(+1)-flavor quark propagator Dyson-Schwinger equation

[Luecker, Fischer, Fister, Pawlowski, 2013]

Functional appr. to QCD phase diagram II

- work well at $\mu = 0$: agreement with lattice
- disagreement at large μ (possibly already at small μ)
- shown results used model input:
 - quark-meson model:
 - ★ inital values at $\Lambda \approx \mathcal{O}(\Lambda_{QCD})$
 - * deconfinement dynamics via Polyakov loop potential
 - quark propagator DSE:
 - ★ quark-gluon vertex

Functional appr. to QCD phase diagram II

- work well at $\mu = 0$: agreement with lattice
- disagreement at large μ (possibly already at small μ)
- shown results used model input:
 - quark-meson model:
 - ★ inital values at $\Lambda \approx \mathcal{O}(\Lambda_{QCD})$
 - * deconfinement dynamics via Polyakov loop potential
 - quark propagator DSE:
 - ★ quark-gluon vertex

possible explanation:

µ ≠ 0: relative importance of diagrams changes
 ⇒ summed contributions vs. individual contributions

Back to QCD in the vacuum

- use only perturbative QCD input
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

Back to QCD in the vacuum

- use only perturbative QCD input
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- Wetterich equation with initial condition $S[\Phi] = \Gamma_{\Lambda}[\Phi]$

$$\partial_k \Gamma_k = \frac{1}{2}$$
 $($

 \Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

Back to QCD in the vacuum

- use only perturbative QCD input
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- Wetterich equation with initial condition $S[\Phi] = \Gamma_{\Lambda}[\Phi]$

$$\partial_k \Gamma_k = \frac{1}{2}$$
 \wedge \wedge \wedge

 \Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

- derivatives \Rightarrow equations for 1PI *n*-point functions
- similar to DSE but different resummation scheme: importance of diagrams can be different

Effective action

• $\lim_{k\to 0} \Gamma_k[\phi; \alpha(\Lambda), m_q(\Lambda)]$ depends on approximation

Effective action

• $\lim_{k\to 0} \Gamma_k[\phi; \alpha(\Lambda), m_q(\Lambda)]$ depends on approximation

 \Rightarrow goal: perform vertex expansion until stabilization is achieved

Effective action

• $\lim_{k\to 0} \Gamma_k[\phi; \alpha(\Lambda), m_q(\Lambda)]$ depends on approximation

 \Rightarrow goal: perform vertex expansion until stabilization is achieved

where we are:

• Landau gauge: transversally projected n-point functions

Contributions

[MM, Strodthoff, Pawlowski, 2014]

- $\bullet~\mbox{FRG}$ result \Rightarrow self-consistent calculation within FRG approach
- sets the scale in comparison to lattice QCD

Quark propagator

- FRG bare mass vs. lattice bare mass
- FRG-quenched vs. lattice quenched
- FRG scale vs. lattice scale

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

- vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - classical tensor
 - chirally symmetric
 - break chiral symmetry

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis ⇒ sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_{\sigma}\}q$ $(\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- anom. chromomagn. momentum $(\mathcal{T}_{\bar{a}Aq}^{(4)})$ increases M_q moderately

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- ► $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$ $(\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- ▶ anom. chromomagn. momentum $(\mathcal{T}_{\bar{a}Aq}^{(4)})$ increases M_q moderately
- \Rightarrow considerably less chiral symmetry breaking with full tensor basis

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q\ (\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- ▶ anom. chromomagn. momentum $(\mathcal{T}_{\bar{q}Aq}^{(4)})$ increases M_q moderately
- \Rightarrow considerably less chiral symmetry breaking with full tensor basis
- also important ingredient for bound-state equations

M. Mitter (U Heidelberg)

Chiral symmetry breaking in continuum QCD Ilhabela, September 2015 12 / 24

• missing strength?

• missing strength?

• expansion in tensor structures ightarrow expansion in operators $ar{\psi} { ot\!\!/}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} {D\!\!\!/}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors (q
 Aq)
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} {D\!\!\!/}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors (q
 Aq)
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} {
 ot\!\!/}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors $(\bar{q}Aq)$
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant
- explicit calculations of AAqq-vertex:

[MM, Pawlowski, Strodthoff, in prep.]

- full basis: 63 chirally symmetric tensor elements
- 15 chirally symmetric tensor elements $(\bar{\psi} \not{D}^3 \psi)$:
 - ★ all seem important
 - * order of effect similar to $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho},D_\sigma\}q$
 - ★ why? underlying principle?

Effective running couplings

- agreement in perturbative regime required by symmetry
- non-degenerate in nonperturbative regime: reflects gluon mass gap
- $\alpha_{\bar{q}Aq} > \alpha_{cr}$: necessary for chiral symmetry breaking

4-Fermi interaction

• chiral symmetry breaking \Leftrightarrow resonance in 4-Fermi interaction

4-Fermi interaction

- chiral symmetry breaking ⇔ resonance in 4-Fermi interaction
- without momentum dependencies: [Braun,2011]
 resonance in one (pion) channel ⇒ singularities in all channels:
 - ▶ 4 symmetric channels: (S-P)₊, V, AV, (V-A)^{adj}
 - 2 $SU(N_f)_A$ -breaking channels
 - ▶ 2 $U(1)_A$ -breaking channels: $(S+P)_{-}^{(adj)}$ ('t Hooft determinant(s))
 - 2 $U(N_f)_A$ -breaking channels

4-Fermi interaction

- chiral symmetry breaking ⇔ resonance in 4-Fermi interaction
- without momentum dependencies: [Braun,2011] resonance in one (pion) channel \Rightarrow singularities in all channels:
 - ▶ 4 symmetric channels: (S-P)₊, V, AV, (V-A)^{adj}
 - 2 $SU(N_f)_A$ -breaking channels
 - ▶ 2 $U(1)_A$ -breaking channels: $(S+P)^{(adj)}_{-}$ ('t Hooft determinant(s))
 - 2 $U(N_f)_A$ -breaking channels
- what should happen with momentum dependence:

[Braun,2011]

- non-perturbative momenta: α_s grows
- large contribution to four-fermi vertex due to two-gluon exchange
- resonance four-fermi vertex due to quark-loop
- infinitesimally small quark-mass grows through tadpole
- system is stabilized by quark-gap
- connection to $D\chi SB$ in DSEs?

Contributions again

[MM, Strodthoff, Pawlowski, 2014]

4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 2002]

- change of variables: particular 4-Fermi channels \rightarrow meson exchange
- efficient inclusion of momentum dependence \Rightarrow no singularities
- identifies relevant effective low-energy dofs from QCD

[MM, Strodthoff, Pawlowski, 2014]

[Braun, Fister, Haas, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]

Dynamical hadronization and bound states

• dynamical hadronization:
$$\Gamma_{(\bar{q}q)^2}^{(4)} \rightarrow \frac{\Gamma_{\bar{q}q\pi}^{(3)}\Gamma_{\bar{q}q\pi}^{(3)}}{\Gamma_{\pi}^{(2)}}$$

• at pion pole: $\Gamma_{\bar{q}q\pi}^{(3)} \propto$ Bethe-Salpeter amplitude
• $\Rightarrow \Gamma_{\bar{q}q\pi}^{(3)}$ and $\Gamma_{\bar{q}q}^{(2)}$: $f_{\pi} \approx 90$ MeV (PRELIMINARY!)

[MM, Pawlowski, Strodthoff, in prep.]

(2) = (2)

other 4-Fermi channels

- bosonized only σ - π -channel \Rightarrow sufficient diquark momentum configuration more important
- other channels: do not feed back

't Hooft determinant

- $m_{\eta'} m_\pi \propto$ 't Hooft determinant
- two contributions to 't Hooft determinant:
 - ► U_A(1)-anomaly
 - (explicit and spontaneous) chiral symmetry breaking

't Hooft determinant

- $m_{\eta'} m_\pi \propto$ 't Hooft determinant
- two contributions to 't Hooft determinant:
 - ► U_A(1)-anomaly
 - (explicit and spontaneous) chiral symmetry breaking
- chiral symmetry breaking: large contribution to 't Hooft determinant
 - $m'_{\eta} \approx 800 900$ MeV (screening mass)
 - ▶ lattice (*N_f* = 2): 880 MeV [Hashimoto, 2008]
- effect of $U_A(1)$ -anomaly on $m_{\eta'}$ small?

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- experiment: drop in η' mass at chiral crossover

[Csörgo et al., 2010]

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- experiment: drop in η' mass at chiral crossover

 Polyakov-Loop extended Quark-Meson model N_f = 2

[Csörgo et al., 2010]

- (RG-)scale dependent 't Hooft determinant
- match RG-scale to T via chiral crossover
- screening masses!

[Heller, MM, in preparation]

• chiral symmetry restoration alone: \Rightarrow drop in $m_{\eta'}$

M. Mitter (U Heidelberg)

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- experiment: drop in η' mass at chiral crossover

[Heller, MM, in preparation]

• chiral symmetry restoration alone: \Rightarrow drop in $m_{n'}$ [Csörgo et al., 2010]

- Polyakov-Loop extended Quark-Meson model N_f = 2
- (RG-)scale dependent 't Hooft determinant
- match RG-scale to T via chiral crossover
- screening masses!
- QM-Model $N_f = 2 + 1$:

M. Mitter (U Heidelberg)

[MM, Strodthoff, Pawlowski, 2014]

• quark propagator and quark-gluon vertex: all relevant parts included

- quark propagator and quark-gluon vertex: all relevant parts included
- possibly missing contributions within included correlation functions:
 - 4-gluon vertex approximated via STI from 3-gluon vertex
 - non-classical tensors in 4-gluon vertex
 - 2-quark-2-gluon vertex approximated from quark-gluon vertex
 - field dependence of Yukawa interaction: 5-10% [Pawlowski, Rennecke, 2014]

- quark propagator and quark-gluon vertex: all relevant parts included
- possibly missing contributions within included correlation functions:
 - 4-gluon vertex approximated via STI from 3-gluon vertex
 - non-classical tensors in 4-gluon vertex
 - 2-quark-2-gluon vertex approximated from quark-gluon vertex
 - field dependence of Yukawa interaction: 5-10% [Pawlowski, Rennecke, 2014]
- possible effects of neglected vertices:
 - ▶ fermionic 6- and 8-point functions: (partially) included via mesons
 - ghost and ghost-gluon 4-point functions: small in first checks

- quark propagator and quark-gluon vertex: all relevant parts included
- possibly missing contributions within included correlation functions:
 - 4-gluon vertex approximated via STI from 3-gluon vertex
 - non-classical tensors in 4-gluon vertex
 - 2-quark-2-gluon vertex approximated from quark-gluon vertex
 - field dependence of Yukawa interaction: 5-10% [Pawlowski, Rennecke, 2014]
- possible effects of neglected vertices:
 - ▶ fermionic 6- and 8-point functions: (partially) included via mesons
 - ghost and ghost-gluon 4-point functions: small in first checks
- effect of $U(1)_A$ -anomaly: comparably small in first checks [Pawlowski, 1996]

How we treat this large set of equations

used/written programs - fQFT framework

- Derivation of diagrams: DoFun/ERGE [Huber, Braun, 2011]/[Fister, unpublished]
- tracing: FORMTracer [Cyrol, MM, Strodthoff, in preparation]
- automatic c++ code for kernels: CreateKernels [Cyrol, MM, Strodthoff, unpublished]
- parallelized c++ framework: frgsolver [Cyrol, MM, Strodthoff, unpublished]

more automatization in development

• automatic (GPU-)parallelized c++ code from given action

Summary and Outlook

FRG with dynamical hadronization

- sole input $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$: (too?) good agreement with lattice simulations
- (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
- phenomenology:
 - Bethe-Salpeter Amplitude $\Rightarrow f_{\pi}, \dots$
 - η' -meson and pion mass splitting

Summary and Outlook

FRG with dynamical hadronization

- sole input α_S(Λ = O(10) GeV) and m_q(Λ = O(10) GeV): (too?) good agreement with lattice simulations
- (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
- o phenomenology:
 - Bethe-Salpeter Amplitude $\Rightarrow f_{\pi}, \dots$
 - η' -meson and pion mass splitting

wish list

- unquenching (no confinement without $D\chi SB$?)
- (more) bound-state properties (form factor, PDA...)
- finite temperature/chemical potential
- more checks on convergence of vertex expansion