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Motivation: the confinement problem
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[Yang-Mills gauge theories] and QCD:

Fundamental degrees of freedom are 
unphysical: not part of the spectrum;

Physical spectrum of bound states 
dynamically generated at low energies.

➠ What is the mechanism??

➠ What happens to quarks and gluons 
in the IR?            

?
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gluônica.

A
fim

de
investigar

o
papel das

interações
de

cor, nosso
cálculo

irá
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Quantizing Yang-Mills theory 
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Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

How to quantize the Yang-Mills theory?

Yang-Mills theory

SYM =
1

4

�
dxF a

µ�F
a
µ� ,

F a
µ� = �µA

a
� � ��A

a
µ + gfabcAb

µA
c
�

It is not known how to formulate a quantum theory for this system.
�

DAe�SY M

Gauge redundancy must be fixed to properly define the path integral.

Aµ ⇥ UAµU
† � U�µU

†

We only know how to do it perturbatively.

Marcelo Santos Guimarães (DFT-IF/UERJ) 4 / 38
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Quantizing Yang-Mills theory perturbatively
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Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

Faddeev-Popov procedure

The procedure amounts to disentangle the gauge redundancy from the
integral measure

⇥
DAe�SY M �

⇥
D�

⇥
DA ⇥[G(A)] detMe�SY M

supposing we can write
⇥

D� ⇥[G(A)] detM = 1

with the Faddeev-Popov operator

Mab(A) =
⇥Ga[A(g)]

⇥�b

����
�=0

Marcelo Santos Guimarães (DFT-IF/UERJ) 5 / 38
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Quantizing Yang-Mills theories beyond Pert. Theory?
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Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

The Gribov problem

In the Landau gauge, for instance, the theory assumes the form
⇤

DADc̄DcDb e�SY M+Sgf

Sgf = ba⇥µA
a
µ � c̄aMabcb , Mab = �⇥µ

�
�ab⇥µ + gfabcAc

µ

⇥

Gribov copies ⇥ zero eigenvalues of the Faddeev-Popov operator Mab.

Copies cannot be reached by small fluctuations around A = 0
(perturbative vacuum) ⇥ pertubation theory works.

Once large enough gauge field amplitudes have to be considered
(non-perturbative domain) the copies will show up enforcing the
effective breakdown of the Faddeev-Popov procedure.

V. N. Gribov, Nucl. Phys. B 139, 1 (1978).
Marcelo Santos Guimarães (DFT-IF/UERJ) 6 / 38

[Gribov (1978)]
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Quantizing Yang-Mills theories: the Gribov approach

• Gribov proposed a way to eliminate (infinitesimal) Gribov copies from the integration 
measure over gauge fields: the restriction to the (first) Gribov region Ω

7

� =
�
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µ ; �Aa = 0,Mab > 0
 

Z
[DA]�(⇥A) det(M)e�SYM

Z

⌦
[DA]�(⇥A) det(M)e�SYM

�µAµ = 0

A = 0

with

(Faddeev-Popov operator)

Mab = �⇥µ
�
�ab⇥µ + fabcAc

µ

�
= �⇥µD

a
µ

SYM =
1

4

Z

x

F 2

• The FP operator is related to the 
ghost 2-point funtion:

positivity of      No-pole condition 
for the ghost prop.

Mab

Gab(k;A) = �k|cac̄b|k⇥ = �k|
�
Mab

��1 |k⇥
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The Gribov approach to all orders

• The no-pole condition can be computed to all orders for an external A field:

8

Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

The exact Gribov’s no-pole condition

The connected two-point ghost function is the inverse of the
Faddeev-Popov operator

Gab(k;A) = ⇥k|
�
Mab

⇥�1 |k⇤

A way to implement the restriction to the region � is to require that
Gab(k;A) has no poles at finite nonvanishing values of k2, so that it
stays always positive.

The color trace of the ghost propagator is parametrized as

⇥G(k;A)⇤ = 1

k2
(1 + ⇥⇥(k;A)⇤) = 1

k2

⇤
1

1� ⇥⇥(k;A)⇤1PI

⌅
.

The expectation values are taken with respective to an appropriate
action for the gauge fields.

M. A. L. Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella, Phys. Lett. B 719, 448
(2013).

Marcelo Santos Guimarães (DFT-IF/UERJ) 9 / 38

where σ is a monotonically decreasing function of the momentum k, so that the absence of 
poles to all orders is guaranteed by:  

Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

The exact Gribov’s no-pole condition

The quantity ⇥(k;A) turns out to be a decreasing function of the
momentum k. Thus, the no-pole condition becomes

⇥⇥(0;A)⇤1PI = 1 .

⇥(0, A) can be exactly evaluated as

⇥(0, A) = � g2

V D(N2 � 1)

⇤
dDp

(2�)D

⇤
dDq

(2�)D
Aab

µ (�p)
�
M�1

⇥bc
pq

Aca
µ (q) .

=
H(A)

V D(N2 � 1)

and the no-pole condition can also be written as

⇥H(A)⇤1PI = V D(N2 � 1)

H(A) is known as the Horizon function

M. A. L. Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella, Phys. Lett. B 719, 448
(2013).
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or

(Horizon Function)

H(A) =

Z

p

Z

q
Aa

µ(�p)
�
Mab

��1
Ab

µ(q)

(No-pole condition)

[Capri,Dudal,Guimaraes,LFP,Sorella, PLB(2013)]
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Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

A confining action

The no-pole condition can be implemented as a gap equation for the
vacuum energy obtained from an action functional

Z = e�V E(�) =

�
DA ⇥(⇤A) detM e�(SY M+�4H(A)��4V D(N2�1))

so that

⇤E(�)
⇤�

= 0 ⇥ ⇤H(A)⌅1PI = V D(N2 � 1) ,

Marcelo Santos Guimarães (DFT-IF/UERJ) 11 / 38

The Gribov-Zwanziger action

• The no-pole condition can be implemented as a gap equation for 
the vacuum energy obtained as:
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Gap equation:

• Using auxiliary fields, this can be cast in a local form: Z =

Z
[D�] �(⇥A) detM e�SGZ

Summary
Introduction
Applications

Perturbative quantization
Non-perturbative domain

The Gribov-Zwanziger theory

The action has a non-local term that can be localized with auxiliary fields, resulting in the
Gribov-Zwanziger action

SGZ =

Z
dDx

✓
1

4
Fa
µ�F

a
µ� + iba⌅µA

a
µ + c̄a⌅µD

ab
µ cb

◆

+

Z
dDx

⇣
�⇤̄ac

µ ⌅�D
ab
� ⇤bc

µ + ⇥̄ac
µ ⌅�D

ab
� ⇥bc

µ + gfamb(⌅� ⇥̄
ac
µ )(Dmp

� cp)⇤bc
µ

⌘

+

Z
dDx

⇣
�2 g fabcAa

µ(⇤
bc
µ � ⇤̄bc

µ )�D(N2 � 1)�4
⌘
 � Gribov’s restriction

Marcelo Santos Guimarães (DFT-IF/UERJ) 12 / 38

trivial aux. term

Gribov restriction

=: +�4H
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The Refined Gribov-Zwanziger action

• The GZ theory is unstable against the formation of certain dimension 2 
condensates, giving rise to a refinement of the effective IR action:
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Gap equation for 
the Gribov param.:

SGZ = SYM + �4H

SRGZ = SYM + �4H +
m2

2
AA�M2 (⇤⇤� ⇥⇥)

SYM Gribov 
restriction
(UV→IR)

Dynamical generation of dim.2 condensates

The parameters M and m are obtained via minimization of an effective potential for:

hA2i 6= 0h''� !!i 6= 0

(�,M,m) / e
� 1

g2• Non-perturbative effects included:
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Gribov parameter in the UV

• The one-loop solution of the gap equation in the GZ theory gives:

11

2Ng2�4 = �̃4 = µ4e
5
3�

128�2

3Ng2

• Using the definition of the MSbar YM scale Λ (RG-invariant scale):

�̃4

�
= e5/12


�

µ

� ab0�
2N ab0�

2N
⇠ 3.9

5 10 15 20
0.000
0.002
0.004
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0.008
0.010
0.012

⇤��

⇥��

� = 300MeV

�̃(µ = 5GeV) ⇠ 0.008MeV

�̃(µ = 1GeV) ⇠ 4MeV
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A checklist for RGZ 

• checklist for RGZ + comparison with lattice (propagator and spectrum! + Casimir, 
thermodynamics...):  thumbs up! 

12

✓   (can be cast in a) local and renormalizable action

✓   reduces to YM at high energies 

✓  gluon confinement: confining propagator (no physical propagation; 
violation of reflection positivity) 

✓  consistent with lattice IR results

✓  physical spectrum of bound states

✓  possible to compute with! Analytical approach to non-perturbative 
phenomena

(see M. Guimaraes’ talk!)
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RGZ action and soft breaking of BRST symmetry

• The Faddeev-Popov action in the Landau gauge

13

is invariant under BRST transformations:

SYM =

Z

x

✓
1

4
F 2 + ba�Aa + c̄a(�

µ

D
µ

)abcb
◆

sAa
µ = �Dab

µ cb sca =
g

2
fabccbcc sc̄a = ba sba = 0

• The restriction to the Gribov region breaks BRST symmetry:
the horizon term is not BRST invariant

SGZ = SYM + �4H sSGZ = �2�

� =

Z

x

⇥
�gfabc(Dam

µ

cm)(⇥bc

µ

+ ⇥̄bc

µ

) + gfabcAa

µ

�bc

µ

⇤

• The BRST breaking terms have dimension less than D=4, 
so that they correspond to SOFT terms.

• The softness of the BRST breaking is crucial for keeping the UV intact. 
Perturbative results recovered at high energies!

• Can be understood as a non-pertubative BRST symmetry, that controls gauge-
par. dep. and the extension to other gauges [Capri et al, (2015)]
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Signal of BRST breaking on the lattice

• Direct signatures of BRST breaking on the lattice are related to: 

14

[Cucchieri et al, PRD(2014)]

[Capri,Dudal,Fiorentini,Justo,Guimaraes,LFP,Sorella, to appear]

⇥s(· · · )⇤ �= 0

• The first proposal was for GZ:

Ra

µ

(x) = gf

abc

Z

y

A

b

µ

(y)(M�1
xy

)ac
GZ
= hs(⇥� )iQ̃(p2) = ⇥R̃a

µ(p)R̃a
µ(�p)⇤

• This correlation can also be written in RGZ as the IR dominant part of                            : hs( fund. fields )i

⇥s
✓
c̄

a(x)c̄b(y)

Z

z
A

a
µ(z)

Z

z0
f

bnp
A

n
µ(z

0)cp(z0)

◆
⇤ = G(x� y) +Q(x� y)

G(x� y) = ⇥
�
b

a(x)c̄b(y)� c̄

a(x)bb(y)
� Z

z
A

a
µ(z)

Z

z0
f

bnp
A

n
µ(z

0)cp(z0)⇤where:

In the deep IR, there is a clear hierarchy of the 
contributions in RGZ:

G̃ p⇠0� 1

p2
Q̃ p⇠0� 1

p4

➠ A nonzero      means BRST is broken in GZ (which predicts:                     )Q̃ p⇠0� 1/p6Q̃

���

����

�����

����� ���� �� ��� ����

Q
(k

2 )
 p

4 (
k)

 (G
eV

2 )

p2(k) (GeV2)

From A. Cucchieri et. al. Phys.Rev. D90 (2014) 051501

p4Q
��
p⇠0

� constant

Good agreement 
with lattice
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Extension to the matter sector: COLOR confinement

•  The horizon term has a geometrical interpretation in terms of the 
Gribov restriction, but also has the crucial property of soft BRST 
breaking. It provides a successful scenario for the gluon sector. 

How can this be extended to the confined matter sector?
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The Faddeev-Popov operator and BRST breaking 

16

• The restriction to the Gribov region is a constraint on a quantum operator: 

➠ should naturally affect all correlation functions built with it...

Mab � 0

hR̃R̃i ⇠ 1/k4 R �
Z

AM�1
Z
[Dµ]e�S IR7!

Z
[Dµ]�e

�S

... including the ones with matter fields:

⇥M�1M�1⇤ � 1/k4{ . . .

Can in principle be checked on the lattice!

�R̃F R̃F ⇥

F I = (⇥i,�a)

RF = g

Z

z
(M�1)ab(x, z)(T b)IJF J(z)

How to construct an IR effective gauge-matter action that can account 
for these correlations?
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Extension to the matter sector: COLOR confinement

PROPOSAL:  Faddeev-Popov operator as a carrier of color confinement via soft BRST breaking.

A general gauge-matter IR action reads: SIR = SYM +
X

F

MFHF

Summary
Introduction
Applications

BRST breaking and matter confinement
Physical spectrum
Gribov and Susy
Phases of gauge theories

Confinement and BRST breaking

We thus consider the addition of the following terms in a general
gauge-matter lagrangian

H(F ) = �g2
⇤

dDp

(2�)D

⇤
dDq

(2�)D
�
T b

⇥ij
F j(�p)

�
M�1

⇥bc
pq

(T c)ik F k(q) .

where F j stands for a fundamental confined field = {Aa
µ,⇥

a,⇤i}

Note that this defines a kind of universal coupling of the confined fields
to the Faddeev-Popov operator. This is well defined, since the Horizon
function puts the system inside the Gribov region.

M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares and S. P. Sorella, arXiv:1408.3597 [hep-th].
Marcelo Santos Guimarães (DFT-IF/UERJ) 19 / 38

HF

➡ This generates a soft BRST breaking and a correlation of the form: Q=<RFRF> 

➡ Can be localized, resulting in a renormalizable action that reduces to QCD in the UV.
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Extension to the matter sector: COLOR confinement

PROPOSAL:  Faddeev-Popov operator as a carrier of color confinement via soft BRST breaking.

A general gauge-matter IR action reads: SIR = SYM +
X
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Summary
Introduction
Applications

BRST breaking and matter confinement
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Gribov and Susy
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Confinement and BRST breaking

We thus consider the addition of the following terms in a general
gauge-matter lagrangian

H(F ) = �g2
⇤

dDp

(2�)D

⇤
dDq

(2�)D
�
T b

⇥ij
F j(�p)

�
M�1

⇥bc
pq

(T c)ik F k(q) .

where F j stands for a fundamental confined field = {Aa
µ,⇥

a,⇤i}

Note that this defines a kind of universal coupling of the confined fields
to the Faddeev-Popov operator. This is well defined, since the Horizon
function puts the system inside the Gribov region.

M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares and S. P. Sorella, arXiv:1408.3597 [hep-th].
Marcelo Santos Guimarães (DFT-IF/UERJ) 19 / 38

HF

➡ This generates a soft BRST breaking and a correlation of the form: Q=<RFRF> 

➡ Can be localized, resulting in a renormalizable action that reduces to QCD in the UV.

Let’s check the predictions for confined matter: 
Predicted propagators vs lattice? Positivity violation? Spectrum? Thermodynamics?
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Propagators for confined matter

Adjoint scalar case:

Summary
Introduction
Applications

BRST breaking and matter confinement
Physical spectrum
Gribov and Susy
Phases of gauge theories

Confinement and BRST breaking

The matter sector of the resulting action is similar to the RGZ action for
the gluons, and the propagators are modified accordingly

scalar propagator in the adjoint

⇥⌅a(k)⌅b(�k)⇤ = ⇥ab
k2 + µ2

�

k4 + (µ2
� +m2

�)k
2 + 2Ng2⇤4 + µ2

�m
2
�

.

where m� is the scalar mass and µ� is the mass parameter associated to
the dimension 2 condensate.
Fermions in the fundamental

⇥⇧i(k)⇧̄j(�k)⇤ = ⇥ij
�ikµ�µ +A(k2)
k2 +A2(k2)

,

where

A(k2) = m⇥ +
g2⇤3CF

k2 + µ2
⇥

,

where m⇥ is the fermion mass and µ⇥ is the condensate mass parameter.

Marcelo Santos Guimarães (DFT-IF/UERJ) 21 / 38

➡With the obtained fit values, it is easy to show 
that the propagator displays complex-conjugated 
poles, implying positivity violation! 

Lattice data from [A. Maas (2010--2014)]

mbare = 10GeV

mbare = 1GeV

mbare = 0

GeV�2 for m = 0, 1, 10 GeV, respectively, so that the non-trivial IR limit is clear. Moreover, the ⇥ pa-
rameter – which will be directly related to the realization of a ⇥RR⇤ �= 0 in the framework of the next
Section – seems to be nonvanishing. It is also interesting to point out that the obtained fits correspond
to a combination of two complex-conjugate poles for all values of bare scalar mass, indicating the absence
of a Källén-Lehmann spectral representation for this two-point function and the presence of positivity
violation. In this sense the adjoint scalar propagators consistently represent confined degrees of freedom,
that do not exhibit a physical propagating pole.

Table 1: Fit parameters for the unrenormalized propagator in powers of GeV.

mbare µ2
� m2

� ⇥4 Z ⇤2/dof

0 120 0 4913 1.137 0.31
1 46 34 644 1.28 1.84
10 88 158 1267 1.26 0.10

An important issue to be addressed is the possibility of scheme dependence of those findings. To check
for this, we have also analyzed the scalar propagators after renormalization in another scheme. As usual,
renormalization is implemented through the inclusion of mass �m� and wave-function renormalization
�Z counterterms:

D�1
ren(p) = D�1(p) + �m2

� + �Z(p2 +m2
bare) , (40)

where the counterterms are obtained by imposing the following renormalization conditions (for � = 2
GeV):

i) ⌅p2D
�1
ren(p = �) = 1;

ii) D�1
ren(p = �) = �2 +m2

bare.

The fit functions were used to compute the counterterms and the renormalized points are obtained from
the original lattice data by adding the same counterterms4. Results are shown in Fig. 2 and Table 2.

The renormalized propagator may be rewritten in the form (39), with redefined parameters m⇥
�,⇥

⇥, Z ⇥:

Dren(p) = Z ⇥ p2 + µ2
�

p4 + p2(m⇥2
� + µ2

�) + ⇥⇥4 +m⇥2
� µ

2
�

(41)

Table 2: Counterterms, redefined fit parameters and zero-momentum values of the renormalized propagator in
powers of GeV.

mbare �m2
� �Z m⇥2

� ⇥⇥4 Z ⇥ Dren(p = 0)

0 -35.98 0.40 -28.09 3374.32 0.781 26.7
1 -36.49 0.416 -8.18 420.84 0.834 0.94
10 -69.69 0.322 79.19 902.23 0.894 0.01

All the interesting qualitative properties observed in the unrenormalized data remain valid, namely:
(i) finite IR limit, (ii) compatibility with 4-parameter fits of the same form, with non-trivial ⇥ values, (iii)

4Direct renormalization of lattice data was avoided, since we did not have access to the measurement of �p2D and the
number of data points available was not su�cient for a reliable numerical derivative to be computed.

9
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Propagators for confined matter

Quark (fundamental fermion) case:

Summary
Introduction
Applications

BRST breaking and matter confinement
Physical spectrum
Gribov and Susy
Phases of gauge theories

Confinement and BRST breaking

The matter sector of the resulting action is similar to the RGZ action for
the gluons, and the propagators are modified accordingly

scalar propagator in the adjoint

⇥⌅a(k)⌅b(�k)⇤ = ⇥ab
k2 + µ2

�

k4 + (µ2
� +m2

�)k
2 + 2Ng2⇤4 + µ2

�m
2
�

.

where m� is the scalar mass and µ� is the mass parameter associated to
the dimension 2 condensate.
Fermions in the fundamental

⇥⇧i(k)⇧̄j(�k)⇤ = ⇥ij
�ikµ�µ +A(k2)
k2 +A2(k2)

,

where

A(k2) = m⇥ +
g2⇤3CF

k2 + µ2
⇥

,

where m⇥ is the fermion mass and µ⇥ is the condensate mass parameter.

Marcelo Santos Guimarães (DFT-IF/UERJ) 21 / 38

➡With the obtained fit values, the propagator displays:
 one real pole and two complex-
conjugated ones

Quark mass function A(q2) in a lattice simulation
From Bowman et al. PRD 73, 054504 (2006) 
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Lattice size= 283 x 96                 Lattice spacing a=0.1 Fermi    
     mu = md = 14 MeV 

Lattice data from [Parappilly et al (2006)]

5

IV. ANALYSIS OF M(q) AND Zψ(q2)

In perturbative QCD (pQCD), dynamical mass of a
quark is expressed as[2, 15, 16]

M(q) = −
4π2dM ⟨q̄q⟩µ[log(q2/Λ2

QCD)]dM−1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

, (32)

where dM =
12

33 − 2Nf
. The second term is the contri-

bution of the massive quark.
In this analysis of the lattice data, the quark con-

densates −⟨q̄q(µ)⟩ and ΛQCD are the fitting parameters.
In the MILCf lattice, the bare masses are 0.0062/a =
13.6MeV and 0.0124/a = 27.2MeV for the u − d quarks
and 0.031/a = 68.0MeV for the s−quark. In the MILCc

lattice, the corresponfing masses are 0.007/a = 11.5MeV
and 0.040/a = 65.7MeV for the u − d quarks and
0.050/a = 82.2MeV for the s−quark.

The mass function eq.(32) is based on pQCD and can-
not fit the data below 2GeV and we try the phenomeno-
logical fit[3, 17]

M(q) =
cΛ3

q2 + Λ2
+ m0 (33)

where m0 is the bare quark mass. Parameters of c and
Λ are summarized in TABLE II. The fitting of the mass
function of MILCc and that of MILCf are shown in Figs.5
and 6, respectively.

1 2 3 4 5
q!GeV"

0.1

0.2

0.3

0.4

0.5

M!
q"

FIG. 5: The dynamical mass of the MILCc quark
(Staple+Naik) with bear mass m0 = 11.5MeV(stars),
65.7MeV(diamonds) and 82.2MeV(triangles) and the phe-
nomenological fits. (Color online)

We observe that as the bare quark mass becomes
heavy, c becomes smaller but the product cΛ becomes
larger. Although the MILCc configurations of bare mass
m0 = 82.2MeV, with diffeernt β agree within errors, the
MILCf configurations of bare mass m0 = 68MeV show
dependence on β. The mass function of β = 7.09 is
smaller than that of β = 7.11. In the case of β = 7.11,

1 2 3 4 5
q!GeV"

0.1

0.2

0.3

0.4

0.5

M!
q"

FIG. 6: Same as FIG. 5 but MILCf quark mith bear
mass m0 = 13.6MeV(stars), 27.2MeV(diamonds) and
68.0MeV(triangles) and the phenomenological fits.(Color on-
line)

TABLE II: The parameters c and Λ.

βimp m0(MeV) c Λ(GeV) cΛ(GeV)

6.76 11.5 0.44(1) 0.87(2) 0.383

82.2 0.30(1) 1.45(2) 0.431

6.83 65.7 0.33(1) 1.28(2) 0.420

82.2 0.30(1) 1.45(2) 0.431

7.09 13.6 0.45(1) 0.82(2) 0.368

68.0 0.30(1) 1.27(4) 0.381

7.11 27.2 0.43(1) 0.89(2) 0.383

68.0 0.32(1) 1.23(2) 0.397

the chiral limit M(0) is consistent with that of MILCc

and we find M(0)=0.37(1)GeV. However, in the case of
β = 7.09, m0 = 13.6MeV, the lowest three momentum
points of M(q) are systematically smaller than the other
points. The slope of the β = 7.09 and that of 7.11 are
almost the same. A preliminary analysis of cΛ using the
Asqtad action suggests that the data of β = 7.09 and
MILCc obtained by the Staple+Naik are underestima-
tion, and the discrepancy between MILCc and MILCf

of about 0.02GeV remain. We expect that the M(0) in
the continuum limit would be about 0.38GeV, consistent
with the value obtained by meromorphic parametriza-
tion of lattice data[18]. In an DSE approach[19], devia-
tion of the mass function M(0) from a linear function of
m(ζ = 19GeV) where ζ defines the scale of the system
is claimed. Although m(ζ = 19GeV) is not identical to
m0, M(0) − m(ζ = 19GeV) of the DSE increases near
the chiral limit in contrast to our naive fitting shown
in FIG.7, which implies that the chiral symmetry effect
monotonically decreases as the bare mass increases.

We show the lattice results of Z2(q) of MILCf and
MILCc in Figs. 8 and 9, respectively.

The apparent difference in the formulae of [7] and our
work are only in the expression and in fact they are equiv-
alent. The Z2(q) agree with each other.

µf = 82.2MeV (strange)

(up, down; 
degenerate)

µf = 11.5MeV

[Furui et al (2006)] 
Fit from [O. Oliveira (2012)]
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Violation of positivity
Positivity violation of the quark propagator 

Osterwalder-Schrader axiom of reflection positivity Z
d4xd4yf†(�x0, �x)�(x� y)f(y0, �y) � 0

where f is a test function with support for positive times. 
Making a Fourier transformation, one gets the condition 

Z
dtdt�d4yf†(t�, �p)�((t� � t), �p)f(t, �p) � 0 8�p

If  !(t’-t, p) is negative within any domain, it is easy to find a 
test function which will pinpoint this negative region, thus 
violating the O-S positivity.  In practice, one looks at p=0

�(t) =
Z

dp eitp�̃(p2 = p2
4)
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Confined quarks: violation of positivity!

For the quark propagator, we have two form factors:  

S(p) = �i�µpµ ⇥v(p2) + ⇥s(p2)

�v(t) =
Z

dp eipt�v(p2)

We need to study two functions: 

�v(t) =
Z

dp eipt�s(p2)

In the fermionic case the O-S positivity implies that 

�v(t) � 0 � �t�v(t) � �s(t)

In our case, we have 

�v(p2) =
1

p2 +A2(p2)
�s(p2) =

A(p2)
p2 +A2(p2)

We have found a clear violation of the O-S positivity  
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We have found a clear violation of the O-S positivity  
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[Dudal,Guimaraes,LFP,Sorella (2012)]
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From confined quarks to mesons...

• Estimate of the rho meson mass and decay constant:

Summary
Introduction
Applications

BRST breaking and matter confinement
Physical spectrum
Gribov and Susy
Phases of gauge theories

Results

We have also been able to obtain information about the physical
spectrum using the confined quark model.
We were able to identify not only a massless pseudoscalar (i.e. a pion)
in the chiral limit, but we also present reasonable estimates for the �
meson mass and decay constant.
In this case we employed a contact point interaction with coupling G
and a large N argument to simplify the diagrammatic spectral analysis.
We obtain for the masses
mG=5, 7.5, 10

�± � 0.84, 0.83, 0.83 GeV (mexp
�± = 775.49± 0.34 MeV)

and decay constants
fG=5, 7.5, 10
�± � 0.13, 0.10, 0.09 GeV. (fexp

�± � 0.208 GeV,
f latt
�± � 0.25 GeV)

See the details in D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella, arXiv:1303.7134 [hep-ph].
Marcelo Santos Guimarães (DFT-IF/UERJ) 29 / 38

[Dudal,Guimaraes,LFP,Sorella (2012)]

• Pion as a pseudo-Goldstone boson
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Thermodynamics of confined quarks

• Physical observables (gauge-invariant!) computed directly, and should 
satisfy the thermodynamical constraints  
➠ Direct test of the confinement scenario

• Indications of thermodynamic instabilities in quark systems with 
complex conjugated poles

• New models of low-energy QCD: true constituent quarks should be 
absent from spectrum!

[Benic, Blaschke, Buballa (2012)]

Motivation:

Pure gauge related studies:

[Reinosa, Serreau, Tissier, Wschebor (2015)] (see talk by M. Tissier)
[Canfora et al (2015)] (see poster by I. Justo)
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A model of confined quarks

• Positivity violation: sign of confinement

• D y n a m i c a l l y g e n e r a t e d m a s s , 
compatible with lattice and DSE.

[Guimaraes, Mintz, LFP (2015)]Quark mass function A(q2) in a lattice simulation
From Bowman et al. PRD 73, 054504 (2006) 
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Lattice data from [Parappilly et al (2006)]
Fit from [O. Oliveira (2012)]

(Fixed)

LIRq = �̄


i/⇥ �

✓
M3

�⇥2 +m2
+m0

◆�
�

Lowest order approximation: dressed quarks

• The partition function of this model is quadratic and can be computed 
exactly for any T and μ in the standard imaginary-time formalism
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Thermodynamics of hot confined quarks

• The leading-order contribution to the thermodynamics of these confined quarks is 
already highly non-trivial (and stable)! 
Qualitative behavior compatible with lattice (thermal crossover)

Pressure
Trace anomaly

Figure 9: The trace anomaly I = ϵ − 3p normalized by T 4 as a function of the temperature on
Nt = 6, 8, 10 and 12 lattices.

Figure 10: The pressure normalized by T 4 as a function of the temperature on Nt = 6, 8 and 10
lattices. The Stefan-Boltzmann limit pSB(T ) ≈ 5.209 ·T 4 is indicated by an arrow. For our highest
temperature T = 1000 MeV the pressure is almost 20% below this limit.

– 15 –

Figure 9: The trace anomaly I = ϵ − 3p normalized by T 4 as a function of the temperature on
Nt = 6, 8, 10 and 12 lattices.

Figure 10: The pressure normalized by T 4 as a function of the temperature on Nt = 6, 8 and 10
lattices. The Stefan-Boltzmann limit pSB(T ) ≈ 5.209 ·T 4 is indicated by an arrow. For our highest
temperature T = 1000 MeV the pressure is almost 20% below this limit.

– 15 –

[ W u p p e r t a l -
Budapest (2010)]
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Thermodynamics of cold and dense confined quarks

• gluons suppressed: good approximation, but no comparison with lattice possible

• Silver Blaze problem: ok!

• No phase transition in this approximation (T- and μ-independent parameters)

Pressure at finite density (Sign problem region)

[Guimaraes,Mintz,LFP (2015)]
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Thermodynamics of confined quarks

• Turning on the temperature, consistent physical results: 
   excitations for all values of μ, 
   smoothening of the transition, 
   shift of inflection point to lower μ’s.

[Guimaraes,Mintz,LFP (2015)]
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Final comments

Thank you for your attention!

• The mechanism of confinement is still not understood.

• The Gribov problem is present in non-Abelian gauge theories and should profoundly 
affect the IR regime. Its connection to confinement seems thus natural.

• The RGZ framework represents a consistent scenario to study the non-perturbative IR 
physics and has provided many interesting results for the gluon sector.

• BRST breaking turns out to play an important role in the non-perturbative regime of non-
Abelian gauge theories (in the Landau gauge). 
Its possible connection with confinement and the possibility of extending the non-
perturbative model to the matter sector seems fruitful.

• Thermodynamics of a confining quark model shows no instabilities and nontrivial results

• Perspectives: including gluons and Polyakov l.; phase structure; other non-perturbative 
observables (such as Casimir energy, Debye masses, ...); more spectrum predictions; 
transmission of BRST breaking from the gluon sector; other gauges...

• Many caveats, of course: approximations, physical operators, unitarity, ...


