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Introduction

Contact fermonic interactions find widespread applica-
tions in hadron physics with Nambu—Jona-Lasinio (NJL)
type of models. The lack of nonrenormalizabilty of such
models can lead to gross violations of global symmetries
due to the regularization procedure - because of ambigu-
ities arising from momentum shifts in divergent integrals.
Despite well known, practitioners at large inexplicably ig-

nore these problems.

In this work we employ a subtraction scheme [1, 2, 3]
to separate symmetry-offending parts in amplitudes in a
way independent of choices of momentum routing in di-
vergent integrals. We apply it to the contact interaction
model of Ref. [4] to heavy-light mesons. After solving
the gap equation — Dyson-Schwinger (DSE) equation —
for the u, s, and ¢ quarks, we obtain the Bethe-Salpeter
equations (BSE) for the bound states of pseudoscalar T,
K and D mesons in a way that they satisfy the Ward-
Green-Takahashi (WGT) identities for arbitrary routing of

the momenta running in loop integrals.

DSE, BSE and WGT Identities

The DSE for the quark propagator of flavour f is
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where my is the current-quark mass D, the gluon prop-
agator, and F;c the quark-gluon vertex . The meson mass,
Mpg, is the eigenvalue P2 — —m%;s that solves the homo-
geneous BSE for the pseudoscalar vertex I (k; P)
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where K(d,k;P) is the fully amputated quark-antiquark

scattering kernel; A, B, --- denote collectively color, fla-

vor, and spinor indices; q+ = q+n+P, withn, 4m_ = 1.
The Ward-Green-Takahashi (WGT) identity is

Pua(k; P) = Sy (ky)iys + ysSy ' (ko)
—i(m+mp) Tes(kP) (3)

where the pseudovector vertex Fgﬁ(k;P) satisfies an in-
homogeneous BSE. The contact-interaction scheme of

Ref. [4] amounts to make the replacements in the DSE
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together with the replacement in the BSE
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to preserve the WGT identity [5]. Here, G; is a (flavor-

independent) coupling constant. In this case, the pseu-
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Symmetry-preserving subtraction
scheme

Physical observables cannot depend on the choice of 1.
The subtraction scheme makes repeated use of the iden-
tity in the integrals in the BSE:
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Performing two of such subtractions in Eq. (2), the BSE

can be written in a matrix form
Eps(P)|  8Gs|Kin K || Eps(P)
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where
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where Zo(M#, M#, P%; MZ) is the finite integral
d
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with H(z) = z(1 — z)P* — (M# — M#)z + M? and

AH\,(MZ), Iquad(l\/lz) and Ilog(Mz) are the divergent in-

tegrals ( when A — o0)
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It is important to note that to arrive at these results, no
momentum shifts were made in divergent integrals. The
other amplitudes, K&, KCiE, and KCf are given by similar
integrals [6].

Note that whatever choice made for 1., unavoidably im-
plies translation symmetry breaking; unless the regulariza-
tion scheme leads to A, (M?) = 0.

Let us next examine the WGT identity in Eq. (3). One

needs to deal with integrals of the form
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where B, (M?) and C,po(M?) are the new structures
24,4y — (4° + M?)dy,
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Using such integrals in the WGT identity, one obtains
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We see that for arbitrary momentum routing in the loop
integrals, the subtraction scheme allows to identify in a
systematic way symmetry offending terms; they are the
integrals Ay, B,y and C 0 in Egs. (10), (13) and (14).
A consistent regularization scheme should make the inte-
grals vanish automatically. Otherwise, the vanishing of the
integrals must be imposed; in doing so, the regularization

scheme becomes part of the model. It is worth mentioning

that dimensional regularization and Pauli-Villars regular-
ization are examples of schemes that lead to A, = 0,

Buy =0, and Cypo = 0.

Numerical results

Masses and electroweak decay constants of 71, K, and D
mesons have been obtained in the NJL model in Ref. [7]
using the random phase approximation with cutoff regu-
larization - results of this reference are shown in the first
two columns of Table 1.

The last two columns in the table are the results employing

the subtraction scheme. They were obtained calculating

Ia\uad(Mf) and I{(\)Q(Mf) with proper time regularization.
We used the set parameters
lort
Ge= % agg = 0.93m, mg = 0.8GeV,
3oms

my = 0.0071GeV, m, = 0.176GeV, m. = 1.356GeV.
Auy = 0.905, A = 0.240.

and finite integrals like Zo(M#%, M%, P% M%) are inte-
grated without a cutoff.

Table 1 : Masses and e.w. decay constants (in GeV).

Meson M ps ( Ref. [7 ) fpg ( Ref. [7] ) MpS fps
T 0.135 0.092 0.140 0.100
K 0.498 0.095 0.494 0.110
D 1.869 0.079 1.730 0.132

The experimental values of the decay constants are in the
direction of f; < fx < fp. This pattern is nicely re-
produced by the subtraction scheme, while the traditional

cutoff regularization gives fp < f.
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Figure 1 : Electroweak decay constants.

Better values can be obtained using a smaller value for

the effective coupling Gg for the heavy quarks.
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