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The Gribov-Zwanziger framework implements the restriction of the 
domain of integration in the functional integral to the Gribov region  
Ω. This restriction is needed to account for the Gribov copies.
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Short summary of the Gribov-Zwanziger 
framework in the Landau gauge
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The region Ω has important properties: 1) it is bounded in all 
direction in field space, 2) it is convex, 3)  all gauge orbits crosses 
the region Ω at least once.  

As we have learned from the previous talk by D. Dudal 
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Remark: similarly to the case of the Faddeev-Popov determinant, 
the horizon function can be cast in local form by introducing a 
suitable set of localizing fields. Once cast in local form, the 
resulting action turns out to be renormalizable: GZ action.
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The massive Gribov parameter Ɣ is determined in a self-
consistent dynamical way through the gap equation 
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The GZ action breaks in a soft way the standard BRST transf., see 
previous talks by D. Dudal and A. Cucchieri 
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Recently, we have been able to find out a nilpotent non-
perturbative extension of the standard BRST operator which is an 
exact symmetry of the GZ action 
Capri et.al, arXiv:1506.06995, Phys. Rev. D 92, 045039 (2015) 
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An important step in the construction of the non-perturbative BRST 
symmetry is the introduction of the gauge invariant transverse field 
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The field Ah is transverse and invariant under infinitesimal gauge 
transformations order by order.

http://arxiv.org/abs/arXiv:1506.06995
http://arxiv.org/abs/arXiv:1506.06995


The GZ action can be rewritten in the following way 

H(A) = H(Ah)�R(A)@A bh = b� �4R(A)

SGZ = SY M +
Z �

bh@A + c̄@Dc
�

+
Z �

�̄M(Ah)�� !̄M(Ah)! + �2Ah(�̄ + �)
�

(2)

s�Aµ = �Dµc s�c = gc2 s� c̄ = bh s�bh = 0

s�!̄ = �̄ + �2Ah 1
M(Ah)

s� �̄ = 0 s�� = ! s�! = 0

s�SGZ = 0



the operator sɣ exhibits the following properties

1) it is nilpotent  

s�s� = 0
2) it depends explicitly on the non-perturbative Gribov parameter Ɣ. 
In this sense, it represents a non-perturbative extension of the 
standard BRST operator

3) it reduces to the standard operator when ɣ=0
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4) the operator sɣ  generalizes to the case of the Refined-Gribov-
Zwanziger action  
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where the dynamical parameters (m,µ) are related to dimension 
two condensates 

m2 ⇠ hAhAhi µ2 ⇠ h�̄�� !̄!i

s̃�SRGZ = 0 s̃� s̃� = 0

s̃�Aµ = �Dµc s̃�c = gc2 s̃� c̄ = bh s̃�bh = 0

s̃�!̄ = �̄ + �2Ah 1
M(Ah) + µ2

s̃� �̄ = 0 s̃�� = ! s̃�! = 0



Following the general BRST set up, we employ the operator sɣ to 
address the issue of the Gribov copies in other gauges as, for 
example, the linear covariant gauges. 

The linear covariant gauges 

The idea is that of defining the gauge-fixing as an exact sɣ -
variation, while providing a geometrical understanding in terms of 
elimination of Gribov copies.  

The linear covariant gauges are defined by the gauge condition
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Some references on linear covariant gauges

Lattice formulation: 
1) L. Giusti, hep-lat/9605032, Nucl. Phys. B498 (1997) 331
2) A. Cucchieri et al., arXiv:0907.4138, PRL 103 (2009) 141602 
3) P. Bicudo et al., arXiv:1505.05897 

Variational methods
F. Siringo, arXiv:1408.5313, PRD 90 (2014) 9094021

Schwinger-Dyson framework
A.C. Aguilar et al., arXiv:1501.07150, PRD 91 (2015) 8, 085014
M. Huber, arXiv: 1502.0457, PRD 91 (2015) 8, 085018

Gribov’s point of view
R.F. Sobreiro et al., JHEP 0506, 054 (2005) 
M. A. L. Capri et al., arXiv:1505.05467
M. A. L. Capri et al., arXiv:1506.06995, PRD 



For the analogue of the GZ action in linear covariant gauges, we 
have found 
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The action              enjoys the following properties: SLCG
GZ

1) It enables us to keep control of the gauge parameter α. From 
the explicit one-loop computation of the vacuum energy (see 
arXiv:1505.05467), it follows that both vacuum energy and Gribov 
parameter Ɣ are independent from the gauge parameter α. A two-
loop check of this statement is being worked out. 

2) Nilpotency of the operator sɣ enables us to speak about the 
cohomolgy of sɣ. In particular, local gauge invariant operators as 
F2(x), etc., belong to the cohomology of sɣ. As  a consequence, 
the correlation functions of gauge invariant quantities, < F2(x) 
F2(y)>, are independent from α, a result easily checked already at 
the first order. 

3) As we have seen from Dudal’s talk, both sɣ and              can be 
cast in local form. Local action, local Ward identities. 
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4) Geometrical picture. The action                implements the 
restriction  of the domain of integration in the functional integral to 
the following region 
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The region Ωh reduces to the Gribov region of the Landau gauge 
when α=0. 

For a given field b and for a given α, the region Ωh is convex and 
bounded in field space. This is a consequence of the linearity and 
hermiticity of the operator M(Ah)
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For sufficiently enough small values of the parameter α, it can be 
proven that the restriction to the region Ωh  implies that the 
Faddeev-Popov operator of the linear covariant gauge M(A)

has no zero modes, showing that the restriction to the region 
Ωh  enables us to eliminate infinitesimal Gribov copies. 

Observation. Unlike the operator M(Ah), the Faddeev-Popov 
operator M(A) of the linear covariant gauge is not hermitian. 

Observation. Within the GZ formulation of the linear covariant 
gauges, we have two ghosts: the Faddeev-Popov ghosts c, related 
to the non-hermitian operator M(A), and the auxiliary ghost  
ω related to the hermitian operator M(Ah). The ghost ω carries 
information about the region Ωh. The study of the ghost sector in 
linear covariant gauges requires a careful analysis. Under 
investigation. 



Gluon propagator in linear covariant gauges
As in the case of the Landau gauge, before looking at the gluon 
propagator, we need to take into account the existence of the 
dimension two condensates

hAhAhi h�̄� � !̄!i
A direct calculation shows in fact that these condensates are non-
vanishing for non-zero Gribov parameter Ɣ. 
Suppose we want to evaluate the condensate <O> of a certain 
operator O.  We introduce the operator O coupled to a source J 
and we compute the functional W(J) defined as 
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Employing dimensional regularization, a first-order calculation 
shows that  
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is perfectly convergent in both UV and IR in 4d as well as in 3d
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For the gluon propagator we get 
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The transverse part of the gluon propagator shares great similarity 
with the gluon propagator in Landau gauge. It is suppressed in the 
IR, attaining a non-vanishing value at k=0. This behavior is of the 
decoupling type. 

The longitudinal component is proportional to the gauge parameter 
α, being identical to its usual perturbative expression. 

This behavior is in agreement with the recent lattice data (see 
Cucchieri and Bicudo papers) as well as with the results found 
from the Schwinger-Dyson equations, see  Aguilar’s talk. 
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A similar result holds also in 3d. The transverse part is of the 
decoupling type, while the longitudinal part is equal to α.
The situation seems to be different in 2d. Notice in fact that the 
integral  Z
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is plagued by IR singularities. This is a signal that in 2d, the 
condensates cannot be safely introduced. The argument can be 
made more precise by looking at the Gribov’s no pole condition for 
the auxiliary ghost ω, as done in the case of the Landau gauge, 
see D. Dudal et al., PLB 680 (2009) 377. 

Similarly to the case of the Landau gauge, we expect a scaling type 
behavior in 2d for the transverse component of the gluon 
propagator 
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A few words on the MAG 
The maximal Abelian gauge is widely employed within the context 
of the dual superconductivity mechanism for confinement. Useful 
to check the Abelian dominance hypothesis. 
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The maximal Abelian gauge is a non-linear covariant gauge 
defined by the conditions 
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Some references on the MAG
For lattice formulation and gluon propagator in momentum space 
see, for example,  A. Cucchieri et al., hept-lat/0611002, 
S. Gongyo, arXiv:1411.2211

Schwinger-Dyson framework
R. Alkofer et al., arXiv:1112.6173 



Gribov’s point of view
M. A. L. Capri et al., arXiv:1507.05481 and refs. therein

The Faddeev-Popov of the maximal Abelian gauge reads
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This operator is hermitian. Similarly to the case of the Landau 
gauge, the issue of the Gribov copies can be addressed by 
restricting the path integral to the region ΩMAG

⌦MAG = {@A = 0, D↵�A� = 0, M↵�(A) > 0}
⬇

SMAG
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As in the Landau and linear covariant gauges, with the help of the 
gauge invariant field Ah we can rewrite  the GZ action of the MAG  
in such a way that it exhibits an exact nilpotent BRST symmetry
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Gluon propagator in the MAG
As in the Landau and linear covariant gauges, also here we have 
to take into account dimension two-condensates, see 
D, Dudal et al, PRD 70 (2004) 114038,
M. A. L. Capri et al., arXiv:1507.05481 and refs. therein
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A first order direct calculation with the GZ action in the MAG yields 
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Once again, the condensates can be safely introduced in both 4d 
and 3d. In 2d, IR divergences show up. 



For the gluon propagator, we have 
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Good agreement with available lattice data, see A. Cucchieri et al., 
hept-lat/0611002

In 3d we expect a similar behavior.  

In 2d, we have indication that something different might occur, as 
also advocated in a recent lattice study, see  S. Gongyo, arXiv:
1411.2211. 



Conclusion
We have presented an extension of the Landau Gribov-Zwanziger 
framework to the case of the linear covariant and maximal Abelian 
gauges. 

The resolution of the Gribov issue through the Refined Gribov-
Zwanziger action looks quite promising. The resulting gluon 
propagators in 4d look in nice agreement with the available lattice 
data. 

Our analysis shows that, in both 4d and 3d, a decoupling type 
gluon propagator emerges. Nevertheless, in 2d, the situation 
seems to be different. 

Is there a general pattern in 2d? Coleman theorem about the 
absence of Goldstone type modes? Worth for further lattice 
investigation. 



The issue of the BRST symmetry in presence of the Gribov 
horizon is a key feature. The output of our analysis shows that  
the standard BRST symmetry is plagued by a soft breaking.  

Though, recently, we have been able to construct a non-
perturbative extension of the BRST operator which is an exact 
symmetry of the (R)GZ action in Landau, linear covariant and MAG 
gauges. The Coulomb gauge can be added as well to this list. 

Obrigado!


