Hadron Spectroscopy: challenges and opportunities

Adam Szczepaniak Indiana University Jefferson Lab

Evidence of new hadrons

Role of reaction theory

The XYZ's and exotics

supported by US DOE, US NSF Long time ago hadrons were made from valence quarks

before we can address this question...

...we need to know how to interpret "peaks"

... but state of the art analyst is based on analogy with

Example of known non-ordinary: σ

lattice : simulated scattering experiment

Lusher condition :

(lattice) $Z(E_i) = T(E_i)$ (infinite volume)

Unitarity forces cuts : the name of the game is analyticity (different from microscopic models)

 $M_{\Lambda_b^0} = 5.6195, \ \mu_{K^-} = 0.4937, \ m_1 = m_{\chi_{c1}} = 3.510, \ m_2 = m_p = 0.93827$ $\lambda = m_{\Lambda^*} = 1.89 \ (\text{they take})$

Coleman-Norton requires

3.0 Pc(4380 or 4450)

Z_c(3900) Charged charmonium ?

19 20

Analyticity is a powerful constraint !

Artifact of a model (quark model wave function overlap)

Mesons with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}$: Exotic Quantum Numbers

Expected to have very similar properties to ordinary $Q\overline{Q}$ mesons

J. Dudek et al.

same pattern in ss, cc hybrid interpretation of the Y(4260)

evolution in statistics $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

CERN ca. 1970

E852 (Full sample)

"Old" a1 in $\rho\pi$ S-wave

particle exchange = "Force"

Resonance, "R" production

duality —> the production channel is dominated by spineven partial waves. What is the exotic (P-wave) dual to ?

Yp→ηπ⁰p (g12)

JPAC: helping to repair the gap

Develop theoretical,phenomenological/ computational tools for hadron experiments

Experiment-theory collaboration

GLOBAL EFFORT

Create a vibrant community

JPAC : Specific Analyses

Light meson decays and light quark resonance $\omega/\phi \rightarrow 3\pi, \pi\gamma$ (Khuri-Treiman) $\omega \rightarrow 3\pi$ (Veneziano, B4) $\eta \rightarrow 3\pi, \eta \rightarrow \eta'\pi \pi$ (Khuri-Treiman) $J/\Psi \rightarrow \gamma\pi0\pi0$

Photoproduction: (production models, FESR and duality) $\gamma p \rightarrow \pi 0 p$ $\gamma p \rightarrow p K+K-$

Exotica and XYZ's:

п-р → п-ηр & п-р→п-η'р (FESR) B0 → Ψ' п- K+ u, Ψ(4260) → J/Ψ п+п-J/Ψ → 3π (Veneziano, B4)

Resonance-Regge physics in meson-baryon scattering

$$\begin{split} \int_{\nu_0}^{\Lambda} \operatorname{Im} A^{(-)}(\nu',t)\nu'^{2k}d\nu' &= \beta(t)\frac{\Lambda^{\alpha_{\rho}(t)+2k+1}}{\alpha_{\rho}(t)+2k+1} \\ \text{Resonance} & \text{Regge} \end{split}$$

V.Mathieu, JPAC

Neutral pion photo-production

M. Shi JPAC/Pekin U.

• Light meson decays

1

 $\eta \rightarrow 3\pi \omega \rightarrow 3\pi \phi \rightarrow 3\pi$

Constrained phase space: effective (chiral) dynamics, low partial waves, amendable to dispersive methods

$$1 \to 3\pi \qquad A(s,t,u) = -\frac{1}{Q^2} \frac{M_{\kappa}^2}{M_{\pi}^2} \frac{M_{\kappa}^2 - M_{\pi}^2}{3\sqrt{3}F_{\pi}^2} M(s,t,u) \qquad \left(Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}\right)$$

η→3π

TABLE III: Dalitz plot parameters for $\eta \rightarrow 3\pi^0$. Set 1 and Set 2 correspond to (I, L) = (0, 0), (1, 1) and (I, L) = (0, 0), (2, 0), (1, 1) cases respectively (see Table I).

	α	β
GAMS-2000 [49]	-0.022 ± 0.023	-
Crystal Barrel, LEAR [50	$0] -0.052 \pm 0.020$	-
Crystal Ball, BNL [14]	-0.031 ± 0.004	-
SND [51]	-0.010 ± 0.023	-
CELSIUS-WASA [12]	-0.026 ± 0.014	-
WASA-at-COSY [52]	-0.027 ± 0.009	-
MAMI-B [53]	-0.032 ± 0.004	-
MAMI-C [46]	-0.032 ± 0.003	-
KLOE [16]	-0.0301 ± 0.0050	-
PDG average [1]	-0.0317 ± 0.0016	-
Theory		
Set 1	-0.023 ± 0.004	-0.000 ± 0.002
Set 2	-0.020 ± 0.004	-0.001 ± 0.003
NLO [21]	+0.013	-
NNLO [22]	$+0.013 \pm 0.032$	-
Kambor et al. [23]	-0.0070.014	-
NREFT [28]	-0.025 ± 0.005	-0.004 ± 0.001
Kampf et al. [29]	-0.044 ± 0.004	_

P.Guo, I.Danilkin, HASPEC/JPAC

TABLE II: Dalitz plot parameters for $\eta \to \pi^+\pi^-\pi^0$. Set 1 and Set 2 correspond to (I, L) = (0, 0), (1, 1) and (I, L) = (0, 0), (2, 0), (1, 1) cases respectively (see Table I).

	a	ь	d	f
WASA-at-COSY [11]	-1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.037$	$0.086 \pm 0.018 \pm 0.018$	0.115 ± 0.037
KLOE [15]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006^{+0.007}_{-0.016}$	$0.14 \pm 0.01 \pm 0.02$
CBarrel [13]	-1.22 ± 0.07	0.22 ± 0.11	$0.06\pm0.04(\mathrm{fixed})$	_
layter et al. [47]	-1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	-
Gormley et al. [48]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	_
Theory				
	-1.110 1 0.000	0.100 ± 0.010	0.047 ± 0.005	0.000 1 0.004
Set 2	-1.117 ± 0.035	0.188 ± 0.014	0.079 ± 0.003	0.090 ± 0.003
LO [21]	-1.371	0.452	0.053	0.027
NLO [22]	-1.271 ± 0.075	0.394 ± 0.102	0.055 ± 0.057	0.025 ± 0.160
Kambor et al. [23]	-1.16	0.240.26	0.090.10	_
VREFT [28]	-1.213 ± 0.014	0.308 ± 0.023	0.050 ± 0.003	0.083 ± 0.019

ω**⊸**π⁰γ*

JPAC memebrs

Andrew Jackura Igor Danilkin Astrid Blin (Valencia) Viktor Mokeev Vincent Mathieu Ina Lorenz Peng Guo **Emilie Passemar** (Bonn) Michael Pennington Michael Doering Alessandro Piloni (Rome) Ron Workman Cesar Ramirez **Diane Schott** Meng Shi Vlad Pauk (Mainz) Adam S. Lingun Dai Misha **Geoffrey Fox** Mikhasenko (Bonn) <u>tps://wiki.jlab.org/</u>

The differential cross section is a function of 2 variables. The first is the beam energy in the laboratory frame E₂ (in GeV) or the total energy squared s (in GeV²). The second is the cosine of the scattering angle in the rest frame $\cos \theta$ or the momentum transfered squared t (in GeV2).

The momenta of the particles are k (photon), q (pion), p2 (target) and p4 (recoil). The pion mass is µ and the proton mass is M. The Mandelstam variables, $s = (k + p_2)^2$, $t = (k - q)^2$, $u = (k - p_4)^2$ are related through $s + t + u = 2M^2 + \mu^2$.

The differential cross section is expressed in term of the parity conserving helicity invariant amplitudes in the t -channel F_i

$$\frac{d\sigma}{dt} = \frac{389.4}{64\pi} \frac{k_t^2}{4M^2 E_7^2} \Big[2\sin^2\theta_t \left(t|F_1|^2 + 4p_t^2|F_2|^2 \right) + (1 - \cos\theta_t)^2 |F_3 + 2\sqrt{t}p_t F_4|^2 + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_3 - 2\sqrt{t}p_t F_4|^2 \Big] + (1 + \cos\theta_t)^2 |F_4 - 2\sqrt{t}p_t$$

The differential cross section is expressed in μ b/GeV². We used ($\hbar c$)² = 0.3894 mb.GeV².

The t -- channel is the rest frame of the process $\gamma \pi^0 \rightarrow p_{\overline{p}}$.

In the t —channel, the momenta of the nucleon p_t and the pion k_t and the cosine of the scattering angle are

$$d_t = \frac{1}{2}\sqrt{t - 4M^2}, \quad q_t = \frac{t - \mu^2}{2\sqrt{t}}, \quad \cos \theta_t = \frac{s - u}{4p_t k_t}.$$
 (A.1)

The invariant amplitudes Fi are related through the CGLN Ai amplitudes [Chew57a] by

The F_i amplitudes have good quantum numbers of the t-channel, the naturality $n = P(-1)^J$ and the product CP.

Run the code

Choose the beam energy in the lab frame E_{γ} , the other variable (t or $\cos \theta$) and its minimal, maximal, and increment values. If you choose t (cos) only the min, max and step values of t (cos θ) are read.

E_{γ} in GeV 9	٢		
\odot t \bigcirc cos			
t in GeV ² (min max step)	- 3	-0.1	0.1
$\cos \theta$ (min max step)	0.5	0.96	0.01

Download the output file, the plot with Ox=t, the plot with Ox=cos.

In the file, the columns are: t (GeV2), cos, Dsig/Dt (micro barn/GeV2), Dsig/DOmega (micro barn)

special thanks to Vincent Mathieu

http://cgl.soic.indiana.edu/jpac

supported by NSF "Physics at the Information Frontier: Extensible Computational Services for Discovery of New Particles"