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Relevance of QCD to Nuclear Structure 

• Insight into origin of saturation? 

− minimum of binding/nucleon vs ρ 

 

• Behaviour at very high density (neutron star) 

 − transition from hadronic to quark matter 

 

• EFT assumes relevant d.o.f. :  

beware lesson of drunk looking for keys under lamp post 

  

− EFT has symmetries of QCD but is this enough? 

     We need to know the relevant d.o.f. too 

 

• Working at quark level can provide guidance 
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and now for something really different..... 
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Outline 
 

• Start from a QCD-inspired model of hadron structure 

 

• Ask how that internal structure is modified in-medium 

 

• This naturally leads to saturation  

  + predictions for all hadrons (e.g. hypernuclei...) 

 

• Derive effective forces (Skyrme type): apply to finite nuclei 

 

• Test predictions for quantities sensitive to internal  

    structure: e.g. DIS structure functions  

     and form factors in-medium 
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A different approach : QMC Model 

• Start with quark model (MIT bag/NJL...) for all hadrons 

 

• Introduce a relativistic Lagrangian  

with σ, ω and ρ mesons coupling  

to non-strange quarks 

 

• Hence only 3 parameters :  gq
 σ,ω,ρ 

 

− determine by fitting to saturation  

   properties of nuclear matter  

   (ρ0 ,  E/A and symmetry energy) 

 

• Must solve self-consistently for the internal structure  of 

baryons in-medium 

(Guichon, Saito, Tsushima et al., Rodionov et al. 

- see Saito et al., Prog. Part. Nucl .Phys. 58 (2007) 1 for a review) 
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Effect of scalar field on quark spinor  

• MIT bag model: quark spinor modified in bound nucleon 

 

 

 

• Lower component enhanced by attractive scalar field 

 

 

 

• This leads to a very small (~1% at ρ0 ) increase in bag radius 

 

• It also suppresses the scalar coupling to the nucleon as the 

scalar field increases 

 

 

 

• This is the “scalar polarizability”: a new saturation mechanism 

    for nuclear matter 

~ 
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Quark-Meson Coupling Model (QMC):  
Role of the Scalar Polarizability of the Nucleon 

The response  of the nucleon internal structure to the  

  scalar field is of great interest… and importance 

     
2

*( ) ( ) ( )
2

d
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Non-linear dependence through the scalar polarizability 

                            d ~ 0.22 R in original QMC (MIT bag) 

Indeed, in nuclear matter at mean-field level (e.g. QMC), 

 this is the ONLY place the response of the internal  

structure of the nucleon enters.   
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Summary : Scalar Polarizability 

• Can always rewrite non-linear coupling as linear coupling 

   plus non-linear scalar self-coupling – likely physical  

   origin of some non-linear versions of QHD  

 

 

• Consequence of polarizability in atomic physics is 

   many-body forces: 

 

 

 

 

  

 − same is true in nuclear physics 

V = V12 + V23 + V13 + V123 
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Summary so far ..... 

• QMC looks superficially like QHD but it’s fundamentally 

different from all other approaches 

 

• Self-consistent adjustment of hadron structure opposes 

applied scalar field (“scalar polarizability”)  

 

• Naturally leads to saturation of nuclear matter 

 − effectively because of natural 3- and 4-body forces 

 

• Only 3 parameters: σ, ω and ρ couplings to light quarks  

 

• Fit to nuclear matter properties and then predict the 

interaction of any hadrons in-medium 
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Linking QMC to Familiar Nuclear Theory 

• Since early 70’s tremendous amount of work  

 in nuclear theory is based upon effective forces 

• Used for everything from nuclear astrophysics to  

 collective excitations of nuclei 

• Skyrme Force: Vautherin and Brink  

 

       Guichon and  Thomas, Phys. Rev. Lett. 93, 132502 (2004) 
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Derivation of Density Dependent Effective Force 

• Start with classical theory of MIT-bag nucleons with 

structure modified in medium to give Meff (σ): 

 

 

  where: 
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Derivation of effective Force (cont.) 

• Nucleon Effective Mass in-medium is: 

 

 

 and the σN coupling constant in free space is: 

 

 

The classical Hamiltonian is: 

 

 

where                           yields                

 

• Include fluctuations and expand in     ; quantise 

nucleon motion; make non-relativistic expansion.... 
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Derivation of effective Force (cont.) 

• We get the Hamiltonian of the system. We use the 

Hartree-Fock approximation to evaluate the energy 

functional (in which case              ). The result is: 

 

 

 

 

where, if we define (m = p,n): 

 

 

 

the pieces are summarised on the next page. 
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Derivation of effective Force (cont.) 

Note the totally new, subtle density dependence 
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Global search on Skyrme forces 

These authors tested 233  

widely used Skyrme-type forces  

against  12 standard nuclear  

properties: only 17 survived  

including two QMC potentials 

Truly remarkable – force derived from quark level does 

a better job of fitting nuclear structure constraints than 

phenomenological fits with many times # parameters! 

Phys. Rev. C85 (2012) 035201 

au 
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Systematic Study of Finite Nuclei 
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Systematic approach to finite nuclei 

( This work is in preparation for publication: collaborators 

   are J.R. Stone, P.A.M. Guichon and P. G. Reinhard) 

• Allow 3 basic quark-meson couplings to vary so  

  that nuclear matter properties reproduced within errors 

 

  -17 < E/A < -15 MeV 

   0.14 < ρ0  < 0.18 fm-3   

         28 < S0 < 34 MeV 

          L > 20 MeV 

   250 < K0 < 350 MeV 

 

• Fix at overall best description of finite nuclei 
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Overview of Allowed Parameters 

A

B

B

B

C

C

C

D

D

D

D

D D

D

E

E

E

E

E E

E

F F

F

F

F

F

F

G

G

G

G

G

G

G

G

I

I

I I

I

I

I

J

J

J J

J

J

J

K

K

K

K

K K

K

K

L

L

L

L

L L

L

L

M

M

M

M

M

M

M

M M

M

N

N N

N

N

N

N

N

O

O

O

O

O

O

P

P

P

P

P

Q

Q

Q

R

7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8

G
o
 [fm

2
]

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

G
r
 [

fm
2 ]

10.6A
10.7B
10.8C
10.9D
11.0E
11.1F
11.2G
11.3I
11.4J
11.5K
11.6L
11.7M
11.8N
11.9O
12.0P
12.1Q
12.2R

G
s
 [fm

2
]



Page 19 

Overview of Nuclei Studied – Across Periodic Table 

Element Z N Element Z N 

C 6 6 -16 Pb 82 116 - 132 

O 8 4 -20 Pu 94 134 - 154 

Ca 20 16 – 32 Fm 100 148 - 156 

Ni 28 24 – 50 No 102 152 - 154 

Sr 38 36 – 64 Rf 104 152 - 154 

Zr 40 44 -64 Sg 106 154 - 156 

Sn 50 50 – 86 Hs 108 156 - 158 

Sm 62 74 – 98 Ds 110 160 

Gd 64 74 -100 

N Z N Z 

20 10 – 24 64 36 - 58 

28 12 – 32 82 46 - 72 

40 22 – 40 126 76 - 92 

50 28 – 50 

i.e. We look at most challenging cases of p- or n-rich nuclei 
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Overview 
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Superheavies : 0.1% accuracy 
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Quadrupole Deformation of Superheavies 
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Deformation in Gd (Z=64) Isotopes 
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Spin-orbit splitting 

Element States Exp   
[keV] 

QMC 
 [keV] 

SV-bas 
[keV] 

O16 proton 1p1/2 - 1p3/2 6.3 (1.3)a) 5.8 5.0 

neutron 1p1/2 - 1p3/2 6.1 (1.2)a) 5.7 5.1 

Ca40 proton 1d3/2 - 1d5/2    7.2 b)    6.3 5.7 

neutron 1d3/2 - 1d5/2    6.3 b) 6.3 5.8 

Ca48  proton 1d3/2 - 1d5/2    4.3 b) 6.3 5.2 

neutron 1d3/2 - 1d5/2    5.3 5.2 

Sn132 proton 2p1/2 - 2p3/2 1.35(27)a) 1.32 1.22 

neutron 2p1/2 - 2p3/2 1.65(13)a) 1.47 1.63 

neutron 2d3/2 - 2d5/2    2.71 2.11 

Pb208 proton 2p1/2 - 2p3/2 0.91 0.93 

neutron 3p1/2 - 3p3/2 0.90(18)a) 1.11 0.89 
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Shape evolution of Zr (Z=40) Isotopes 

 
• Shape co-existence sets in at N=60 

• Usually difficult to describe – e.g. Mei et al., PRC85, 

     034321 (2012) 
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Summary: Finite Nuclei 

• The effective force was derived at the quark level 

based upon changing structure of bound nucleon  

 

• Has many less parameters but reproduces nuclear 

properties at a level comparable with the best 

phenomenological Skyrme forces 

 

• Looks like standard nuclear force 

 

• BUT underlying theory also predicts modified 

internal structure and hence modified  

    −  DIS structure functions 

    −  elastic form factors...... 
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Nuclear DIS Structure Functions 

To address questions like this one MUST start  

 with a theory that quantitatively describes  

  nuclear structure – very, very few examples..... 
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• Observation stunned and electrified the  

 HEP and Nuclear communities 30 years ago 

 

• Nearly 1,000 papers have been generated….. 

 

• What is it that alters the quark momentum in the nucleus?  

Classic Illustration:  The EMC effect 

J. Ashman et al., Z. 

Phys. C57, 211 (1993) 

 

J. Gomez et al., Phys. 

Rev. D49, 4348 (1994) 

The EMC Effect: Nuclear PDFs 
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Theoretical Understanding 

• Still numerous proposals but few consistent theories 

 

• Initial studies used MIT bag1 to estimate effect of 

self-consistent change of structure in-medium 

− but better to use a covariant theory 

 

• For that Bentz and Thomas2 re-derived change of 

nucleon structure in-medium in the NJL model 

 

• This set the framework for sophisticated studies by 

Cloët and collaborators over the last decade 

1 Thomas, Michels, Schreiber and Guichon, Phys. Lett. B233 (1989) 43  
2 Bentz and Thomas, Nucl. Phys. A696 (2001) 138 
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Calculations for Finite Nuclei 

Cloët, Bentz &Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061) 

(Spin dependent EMC effect TWICE as large as unpolarized) 



Page 31 

Ideally tested at EIC with CC 

 reactions  

Parity violating EMC will be tested at JLab 12 GeV 
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Modified Electromagnetic Form Factors In-Medium 
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QMC 
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Jefferson Lab & Mainz 

  
QMC medium effect  predicted more than  

a decade years before the experiment  
(D.H. Lu et al., Phys. Lett. B 417 (1998) 217) 

 

Polarized 
4He(e,e’p)  

measuring  

recoil p  

polarization 

 (T/L : GE/GM) 

Strauch et al., EPJ Web of Conf. 36 (2012) 00016 
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Longitudinal response function 

Horikawa and Bentz, nucl-th/0506021 

Free Hartree 

In-medium Hartree 

In-medium RPA 

− revisited in expectation of new results from JLab, Meziani et al. 

QMC 

in-medium RPA 

RPA 
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Recent Calculations Motivated by:  
 
 E01-015, PR-04-015 – Chen, Choi & Meziani  

•Using NJL model with nucleon structure self-consistently 

  solved in-medium 

 

•Same model describing free nucleon form factors, structure  

  functions and EMC effect 
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Modification of Proton Form Factors 

Cloët et al., arXiv:1405.5542 

Free nucleon  

form factors  

Bentz et al. 

Phys Rec C90, 

045202 (2014) 
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Response Function 

RPA correlations repulsive 

Significant reduction in Response 

Function from modification of  bound-nucleon   

Cloët, Bentz & Thomas ( arXiv:1506.05875)       
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Comparison with Unmodified Nucleon & Data 

Data: Morgenstern & Meziani 

Calculations: Cloët, Bentz & Thomas (arXiv:1506.05875) 
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and these predictions are stable! 

Data: Morgenstern & Meziani 

Calculations: Cloët, Bentz & Thomas (arXiv:1506.05875) 

Saito et al., QMC 1999  

    (op cit) 
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Summary 

 

 

• Intermediate range NN attraction STRONG Lorentz scalar 

 

• This modifies the intrinsic structure of the bound nucleon 

  −  profound change in shell model :  

     what occupies shell model states are NOT free nucleons 

 

• Scalar polarizability is a natural source of three-body  

   force/ density dependence of effective forces 

           − clear physical interpretation 

 

• Derived, density-dependent effective force gives  

    results better than most phenomenological Skyrme forces  
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Summary 

• Initial systematic study of finite nuclei very promising 

     − Binding energies typically within 0.5% or better across periodic table  

 

• Super-heavies (Z > 100) especially good (typically better 

than 0.25%)! 

 

• Deformation, spin-orbit splitting and charge distributions 

all look good (NOT fit – only binding) 

 

• BUT need empirical confirmation:  

 − Response Functions & Coulomb sum rule (soon) 

 − Isovector EMC effect; spin EMC etc.... 

  

  − Lattice QCD etc. : any clever ideas? 
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Special Mentions…… 

Guichon Tsushima 

Stone Bentz Cloët 

Saito 
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September 11-16 2016 
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Key papers on QMC 

• Two major, recent papers: 

         1. Guichon, Matevosyan, Sandulescu, Thomas, 

               Nucl. Phys. A772 (2006) 1. 

           2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502  

 

• Built on earlier work on QMC: e.g.          

         3. Guichon, Phys. Lett. B200 (1988) 235 

           4.  Guichon, Saito, Rodionov, Thomas, 

               Nucl. Phys. A601 (1996) 349 

 

• Major review of applications of QMC to many 

      nuclear systems: 

         5.    Saito, Tsushima, Thomas,  

                    Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)   
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References to: Covariant Version of QMC 

• Basic Model: (Covariant, chiral, confining version of NJL) 

 

•Bentz & Thomas, Nucl. Phys. A696 (2001) 138 

 

• Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95 

 

• Applications to DIS: 

 

• Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302 

 

• Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210  

 

• Applications to neutron stars – including SQM: 

 

• Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495 

 

• Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667  
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Can we Measure Scalar Polarizability  
in Lattice QCD ? 

18th Nishinomiya Symposium:  nucl-th/0411014 

    −  published in Prog. Theor. Phys.  

• IF we can, then in a real sense we would be linking 

   nuclear structure to QCD itself, because scalar  

   polarizability is sufficient in simplest, relativistic  

   mean field theory to produce saturation 

 

 

• Initial ideas on this published :  

  the trick is to apply a chiral invariant scalar field 

  − do indeed find polarizability opposing applied  σ field 
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Most recent nuclear structure results 

• Results obtained using SKYAX code of P. G. 

Reinhard 

 

• 2 BCS pairing parameters (density dependent,  

contact pairing force) fitted from pairing gaps  

in Sn isotopes 
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