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Introduction

Yang-Mills theory, gauge-fixed in the Landau gauge with the
Faddeev-Popov procedure, is described by a set of massless fields:
Gluons (Aa

µ), ghosts (c
a and c̄a) and a Lagrange multiplyer (ha)

L =
1

4
(F a

µν)
2 + ∂µc̄

a(Dµc)
a + ha∂µA

a
µ

However, lattice simulations see unambiguously a gluon propagator
that saturates at low momentum.
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However...

Gluon propagator is massive! (Sternbeck et al ’07)!
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The origin of the mass could:

result from solving Dyson-Schwinger equations;

be a consequence of a gluon condensate;

be related to Gribov ambiguity;

none of those...
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Phenomenological model

The mass generation is a difficult issue. Once we are convinced it
exists, how much physics can we understand?
Introduce a mass for the gluon by hand in the (gauge-fixed)
Lagrangian:

L =
1

4
(F a

µν)
2 + ∂µc̄

a(Dµc)
a + ha∂µA

a
µ +

1

2
m2

(

Aa
µ

)2

(Here, we make the assumption that no extra field is needed)
This is one particular representative of the Curci-Ferrari lagrangian.
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Overview

Motivate the interest of this phenomenological model.

General arguments;
Systematic comparison with Lattice correlation functions.

Applications to finite temperature physics

in the quenched approximation;
with dynamic quarks, with and without chemical potential.
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Nice properties of the model I

UV (p ≫ m) properties are unaffected by the gluon mass.

In particular, the theory is renormalizable to all orders (De
Boer et al). (gluon mass softly breaks the BRST symmetry)

the (running) gluon mass tends to zero in the ultraviolet
(m(µ) ∝ gα(µ) with α > 0).

Feynman rules are identical to usual ones, except for the
massive gluon propagator:

〈AµAν〉0(p) =
(

δµν −
pµpν

p2

)

1

p2 +m2

perturbation calculations are easy to perform.

Low momentum physics regularized by the gluon mass.
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Infrared behavior

At very low momenta, gluons are frozen. Ghost loop dominates.

ΓAa
µA

b
ν
∼ δab(δµν)p

d−2

ΓAa
µA

b
νA

c
ρ
∼ −f abc(ipµδνρ + · · · )pd−4

in d = 4, leads to log divergences, hard to see...
in d = 3, gluon propag cte + |p|, 3-gluon vertex changes sign,
consistent with lattice data.
Interaction between ghosts is mediated by heavy gluons (see
also Weber). Effective interaction is suppressed by some
positive power of p at low momentum.
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Ghost and gluon propagators

Need to compute 4 Feynman diagrams

Define 〈AµAν〉(p) =
(

δµν − pµpν
p2

)

G (p) 〈cc̄〉(p) = 1
p2
F (p).

Introduce 4 renormalization parameters and you get (s = p2/m2.):

G−1(p)/m2 = s + 1 +
g2N

384π2
s
{

111s−1 − 2s−2 + (2− s2) log s

+ (4s−1 + 1)3/2
(

s2 − 20s + 12
)

log

(
√
4 + s −√

s√
4 + s +

√
s

)

+ 2(s−1 + 1)3
(

s2 − 10s + 1
)

log(1 + s)− (s → µ2/m2)
}

,

F−1(p) = 1 +
g2N

64π2

{

− s log s + (s + 1)3s−2 log(s + 1)− s−1 − (s → µ2/m2)
}

,
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Comparison with lattice data

For SU(2) (Cucchieri, Mendes ’08)
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Renormalization-group flow

From renormalization factors, deduce a set of coupled β functions
for g and m:

In the UV (µ≫ m) βg ≃ − g3N
16π2

11
3

In the IR (µ≪ m) βg ≃ + g3N
16π2

1
6

For SU(3) (Bogolubsky ’09, Dudal ’10)
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Other correlation functions

By the same technique, we have computed (all tensorial
components) and compared with lattice data, when available:

3 gluon vertex and ghost-gluon vertex;
quark propagator;
quark-gluon vertex;

Agreement (Maximal error of 15-20%) in the quenched
approximation.

In unquenched calculations (Skullerud et al), still ok, but less
precise, because the quark-gluon vertex is larger (typically the
double of the ghost-gluon vertex).

1-loop compares badly to lattice for the quark renormalization
factor and for one of the structure tensors of the quark-gluon
vertex (λ2).
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Quark mass

The quark mass is enhanced in the infrared. But no chiral
symmetry breaking.
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Quark-gluon vertex
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The phase diagram of QCD I

In heavy ion collisions, and core of neutron stars, matter
reaches extreme conditions, with temperatures of the order of
∼ 1012 K, densities of ∼ 1018 kg/m3.

Typical values for strong interactions. In strong interactions
units: T ∼ 1 GeV, ρ ≃ 1 GeV/fm3.

In the quenched approximation (no dynamic quarks), lattice
simulations clearly show a phase transition at a temperature
∼ 250 MeV, which is in the nonperturbative regime.

Extension to finite chemical potential is intricate because the
action is not real anymore.
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Phase diagram of Yang-Mills II

To study the theory at finite temperature, compactify the
time direction, with periodicity β = 1/T .

There exist gauge transformations A → AU such that AU is
periodic, although U itself is not: U(β, x) = z U(0, x) with z

an element of the centre (for SU(N), z = e imπ/N
I with

m ∈ {0, · · · ,N − 1}).
Some quantities are invariant under the centre (such as F 2

µν).
Other vary, such as the Polyakov loop

ℓ ∝ Tr Pe ig
∫ β

0 A0(τ)dτ

〈ℓ〉 = exp(−βFq) where Fq is the free energy of a quark.

If the centre symmetry is realized, 〈ℓ〉 = 0, Fq = ∞, confined
phase.
If the centre is spontaneously broken, 〈ℓ〉 6= 0, Fq finite,
deconfined phase.
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Phase diagram of Yang-Mills III

To encode the centre symmetry, convenient to

decompose the gluon field in a background Ā and a
fluctuating a field: A = Ā+ a (we choose Ā constant,
temporal, in the Cartan subalgebra);

introduce the Landau-de Witt gauge ∂µaµ + gf abc Āb
µa

c
µ = 0;

choose Ā such that 〈a〉 = 0.

This last condition is fulfilled by minimizing some potential V (Ā).
Center transformations act on Ā!
At leading order in g , the SU(2) potential reads (r3 = βgĀ3)

V = T 4

(

3

2
Fmβ(r3) +

1

2
F0(r3)− 1F0(r3)

)

+O(g2)

Fm̃(r) =

∫

q

log(1 + e−2
√

m̃2+q2 − 2e−
√

m̃2+q2 cos(r))

The Polyakov loop:

〈ℓ〉 = cos(r3/2) +O(g2)
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Phase diagram of Yang-Mills IV

At high temperatures (red), V → +1F0(r3). (Weiss potential)
At low temperatures (blue), V → −1

2F0(βgĀ).
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r = π is invariant under center transformations and corresponds to
〈ℓ〉 = 0.
The leading order approximation captures the good physics!
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Pressure I
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Pressure II
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Phase diagram for SU(3) I

Two fields in the Cartan subalgebra: r3 and r8.
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Calculation of the potential and Polyakov loop generalizes easily.
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Phase diagram for SU(3) II

Leads to first order transition
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Finite chemical potential

Add the quarks lagrangien density, with chemical potential:

∑

f

ψ̄f ( /D +Mf + µγ0)ψf

Explicitely break centre symmetry.

Contributes to the potential as:

Vf (µ) = − T

π2

∫

∞

0
dq q2

{[

log[1 + e−β(
√

q2+M2
f
+µ)

]

+ (µ→ −µ)
}

+O(g2)

Deconfinement transition ...



Vanishing chemical potential, SU(3)

Consider 2 +1 quarks (only for large mass because we don’t
control chiral limit). Columbia plot:
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Imaginary chemical potential, SU(3)

The action and potential V are real, so lattice simulations can
be performed.

It is symmetric under a simultaneous transformation of the
background field and of the chemical potential (Roberge,
Weiss). µ/T = iπ/3 plays a particular role:

We retrieve the properties obtained in Lattice approaches (de
Forcrand, Philipsen), in particular at the tricritical point.
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small quark mass
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intermediate quark mass
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large quark mass
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Real chemical potential

For real background fields, the potential is complex!

To be consistent, need to choose r3 real and r8 imaginary (See
also Nishimura 2014). Then the potential is then real.
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Conclusions

Curci-Ferrari seems to capture many “nonperturbative”
properties of QCD within “perturbation theory”.

This would mean that the major nonperturbative ingredient is
the gluon mass.

We have a nice model to study low-energy properties of QCD.
Tested in several situations.

Propagators in the Landau-de Witt gauge.
Chiral symmetry breaking?
Polyakov loop in other representations?
Analytic structure of the correlation functions?
Wilson loop?
Two-loop calculations for the propagators?
Transport coefficients?
...

Can we generate the mass from first principles (relation with
problems with disorder in stat. phys.)?

Can we build a physical subspace?
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