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Yang-Mills theory, gauge-fixed in the Landau gauge with the
Faddeev-Popov procedure, is described by a set of massless fields:
Gluons (A7), ghosts (c? and ¢?) and a Lagrange multiplyer (h?)
1
L= Z(F,j,,)2 + 8,€°(Dyc)? + h*9, A%

However, lattice simulations see unambiguously a gluon propagator
that saturates at low momentum.



Howe

Gluon propagator is massive! (Sternbeck et al '07)!

Gluon propagator
L=64,72,80, SA
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The origin of the mass could:
@ result from solving Dyson-Schwinger equations;
@ be a consequence of a gluon condensate;
@ be related to Gribov ambiguity;
@ none of those...



The mass generation is a difficult issue. Once we are convinced it
exists, how much physics can we understand?

Introduce a mass for the gluon by hand in the (gauge-fixed)
Lagrangian:

1 a —a a a a 1 a\2
L= (FL) +0,8°(Duc)’ + W0, AT + Sm? (AT

(Here, we make the assumption that no extra field is needed)
This is one particular representative of the Curci-Ferrari lagrangian.



@ Motivate the interest of this phenomenological model.

o General arguments;
o Systematic comparison with Lattice correlation functions.

@ Applications to finite temperature physics

@ in the quenched approximation;
@ with dynamic quarks, with and without chemical potential.



@ UV (p > m) properties are unaffected by the gluon mass.

@ In particular, the theory is renormalizable to all orders (De
Boer et al). (gluon mass softly breaks the BRST symmetry)

@ the (running) gluon mass tends to zero in the ultraviolet
(m(p) < g*(p) with a > 0).

@ Feynman rules are identical to usual ones, except for the
massive gluon propagator:

1
p2+m2

(AuAv)o(p) = (% _ pupy)

p2
perturbation calculations are easy to perform.

@ Low momentum physics regularized by the gluon mass.



Infrare

At very low momenta, gluons are frozen. Ghost loop dominates.
rAﬂAB ~ 5ab(5uy)pd—2
b .
Caaapac ~ —F22(ipudup + -+ )p
in d = 4, leads to log divergences, hard to see...
in d = 3, gluon propag cte + |p|, 3-gluon vertex changes sign,
consistent with lattice data.
@ Interaction between ghosts is mediated by heavy gluons (see
also Weber). Effective interaction is suppressed by some
positive power of p at low momentum.

d—4

Parameter expansion

1 (GeV)



Define (A,A,)(p) = (8 — 222%) G(p) (c2)(p) = L F(p).
Introduce 4 renormalization parameters and you get (s = p?/m?.):
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Comp

For SU(2) (Cucchieri, Mendes '08)

4 T T T 45
z
gl s 4
35F q
350 g
3l |
= 3 7
25F 1T
— T, i
o
Z Ll |
0] 2F b
150 1 sk ]
1+ E s |
osr M 1% )
.

L L L 0 L L L L L L L L L



Renor

From renormalization factors, deduce a set of coupled 5 functions

for g and m:
g3N 11
167r2 3

In the UV (> m) g ~ —
gNl

In the IR (1 << m) Bg ~ +£-5%
For SU(3) (Bogolubsky '09, Dudal '10)
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@ By the same technique, we have computed (all tensorial
components) and compared with lattice data, when available:

@ 3 gluon vertex and ghost-gluon vertex;
e quark propagator;
o quark-gluon vertex;

@ Agreement (Maximal error of 15-20%) in the quenched
approximation.

@ In unquenched calculations (Skullerud et al), still ok, but less
precise, because the quark-gluon vertex is larger (typically the
double of the ghost-gluon vertex).

@ 1-loop compares badly to lattice for the quark renormalization
factor and for one of the structure tensors of the quark-gluon
vertex (A2).



The quark mass is enhanced in the infrared. But no chiral
symmetry breaking.

0.30/
0.25/
0.20!

0.15/

M(p) (GeV)

0.10!

0.05!

p (GeV)



A1(p)

0.6f

Deconfinement transition ...




@ In heavy ion collisions, and core of neutron stars, matter
reaches extreme conditions, with temperatures of the order of
~ 1012 K, densities of ~ 108 kg/m3.

@ Typical values for strong interactions. In strong interactions
units: T ~1GeV, p~1 GeV/fm3.

@ In the quenched approximation (no dynamic quarks), lattice
simulations clearly show a phase transition at a temperature
~ 250 MeV, which is in the nonperturbative regime.

@ Extension to finite chemical potential is intricate because the
action is not real anymore.



@ To study the theory at finite temperature, compactify the
time direction, with periodicity 8 =1/T.

@ There exist gauge transformations A — AY such that AY is
periodic, although U itself is not: U(f, x) = z U(0, x) with z
an element of the centre (for SU(N), z = e™™/NT with
me {0,--- ,N—1}).

@ Some quantities are invariant under the centre (such as Fﬁ,,).
Other vary, such as the Polyakov loop

0 o Tr Pel€ g Aor)dr

o () = exp(—fFq4) where F, is the free energy of a quark.
@ If the centre symmetry is realized, (¢) =0, Fq = oo, confined
phase.
o If the centre is spontaneously broken, (¢) # 0, F, finite,
deconfined phase.



To encode the centre symmetry, convenient to
o decompose the gluon field in a background A and a
fluctuating a field: A= A+ a (we choose A constant,
temporal, in the Cartan subalgebra);
@ introduce the Landau-de Witt gauge 9,a, + gfabCAbaC =0;
@ choose A such that (a) = 0.
This last condition is fulfilled by minimizing some potential V/(A).
Center transformations act on Al
At leading order in g, the SU(2) potential reads (r3 = SgAs3)

V= T (Fmalr) + L alr) - 1)) +0(&)
Fan(r) :/log(lJre‘ZVﬁ’Z*"2 — 26~V cog(r))

The Polyakov loop:
(€) = cos(r3/2) + O(g?)



At high temperatures (red), V — +1Fo(r3). (Weiss potential)

At low temperatures (blue), V — —1Fy(BgA).
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r = is invariant under center transformations and corresponds to
(¢) =0.
The leading order approximation captures the good physics!
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Two fields in the Cartan subalgebra: r3 and rs.

3

Calculation of the potential and Polyakov loop generalizes easily.



Leads to first order transition
T T




@ Add the quarks lagrangien density, with chemical potential:

> (B + My + pyo) v
F

@ Explicitely break centre symmetry.

@ Contributes to the potential as:
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Consider 2 +1 quarks (only for large mass because we don't
control chiral limit). Columbia plot:
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Imagin

@ The action and potential V are real, so lattice simulations can
be performed.

@ It is symmetric under a simultaneous transformation of the
background field and of the chemical potential (Roberge,
Weiss). u/ T = im/3 plays a particular role:

We retrieve the properties obtained in Lattice approaches (de
Forcrand, Philipsen), in particular at the tricritical point.
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Real ¢

@ For real background fields, the potential is complex!

@ To be consistent, need to choose r3 real and rg imaginary (See
also Nishimura 2014). Then the potential is then real.
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Conclus

@ Curci-Ferrari seems to capture many “nonperturbative”
properties of QCD within “perturbation theory”.

@ This would mean that the major nonperturbative ingredient is
the gluon mass.

@ We have a nice model to study low-energy properties of QCD.
Tested in several situations.

@ Propagators in the Landau-de Witt gauge.

Chiral symmetry breaking?

Polyakov loop in other representations?

Analytic structure of the correlation functions?

Wilson loop?

Two-loop calculations for the propagators?

Transport coefficients?
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@ Can we generate the mass from first principles (relation with
problems with disorder in stat. phys.)?
@ Can we build a physical subspace?



