Introduction to Quantum Walks - part 3

Paweł Kurzyński
4-18 June 2024

QW applications

QW search algorithms

- QW spread faster than RW - ballistic $O(t)$ vs diffusive $O(\sqrt{t})$
- In some graphs spread is even faster
- This can be used to speed up search

Neil Shenvi, Julia Kempe, and K. Birgitta Whaley Phys. Rev. A 67, 052307 (2003)

- Structured database - graph

Miklos Santha, TAMC, Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg (2008)

- Idea: Start QW in a uniform state

$$
|\psi(0)\rangle=\frac{1}{\sqrt{N}} \sum_{x=1}^{N}|x\rangle \otimes|a n c\rangle
$$

Find evolution to localise walk in the marked vertex $x=m$

$$
|\psi(t)\rangle \approx|m\rangle \otimes\left|a n c^{\prime}\right\rangle
$$

QW search algorithms

Grover algorithm as QW
Lov K. Grover, Am. J. Phys. 69, 769-777 (2001)

$$
\begin{aligned}
& U=U_{1} U_{0}, \quad U_{0}|x\rangle=e^{i \pi \delta_{x, m}}|x\rangle, \quad U_{1}=2|\psi\rangle\langle\psi|-I, \\
& |\psi\rangle=\frac{1}{\sqrt{n}} \sum_{x=1}^{N}|x\rangle, \quad U_{0}\left|x^{\prime}\right\rangle=\frac{2}{N} \sum_{x=1}^{N}|x\rangle-\left|x^{\prime}\right\rangle
\end{aligned}
$$

QW search algorithms

- In a connected graph the search time is $O(\sqrt{N})$
- In a structured database (not a connected graph) the walker cannot get straight to the marked vertex
- Structured graph search time is typically $\sqrt{N} \leq t \leq O(N)$
- Example: search in 1D (chain) does not exhibit quadratic speedup $t=O(N)$

QW as Universal Quantum Computers

CTQW as Universal Quantum Computer

$$
\mathrm{H} \rightarrow \mathrm{CNOT}
$$

QW as Universal Quantum Computers

DTQW as Universal Quantum Computer

QW as simulators of physical dynamics

QW simulation of solid state systems

- Graph - tight binding and crystal structure
- How to introduce electric potentials $\phi(x)$?
- Dirac analogy

$$
\begin{gathered}
U=S(I \otimes C)=e^{i p \sigma_{z}} e^{i \theta \sigma_{y}} \rightarrow e^{-i\left(c p \sigma_{z}+m c^{2} \sigma_{y}\right) t} \\
e^{-i\left(c p \sigma_{z}+m c^{2} \sigma_{y}+\phi(x)\right) t} \rightarrow e^{i p \sigma_{z}} e^{i \theta \sigma_{y}} e^{i \phi(x)}=S(I \otimes C) P=U^{\prime} \\
P=\left(\sum_{x=-\infty}^{\infty} e^{i \phi(x)}|x\rangle\langle x|\right) \otimes I
\end{gathered}
$$

- Constant force: $\phi(x)=\varphi x$

QW as simulators of physical dynamics

D. Bouwmeester, et. al., Phys. Rev. A 61, 013410 (1999)
A. Wojcik, et. al., Phys. Rev. Lett. 93, 180601 (2004)

QW as simulators of physical dynamics

Bloch oscillations

- Constant force $e^{i \eta x}|k\rangle=|k+\eta\rangle$
- Oscillations due to momentum in the first Brillouin zone $k \in[-\pi, \pi]$
- Period of Bloch oscillations (unit mass) $T_{B O}=\frac{2 \pi}{\eta}$
- Period of Bloch oscillations ($N \times$ unit mass) $T_{B O}=\frac{2 \pi}{N \eta}$

QW as simulators of physical dynamics

Bloch oscillations of two quantum walkers (center of mass)

Z. Lasmar, et. al., Phys. Rev. A 98, 062105 (2018)

QW as simulators of physical dynamics

Magnetic quantum walks (2D)
I. Yalcınkaya and Z. Gedik, Phys. Rev. A 92, 042324 (2015)

- How to introduce vector potentials $\vec{A}(x, z)$?
- $\vec{p} \rightarrow \vec{p}-q \vec{A}$
- Dirac analogy

$$
\begin{gathered}
U=S_{x}(I \otimes C) S_{z}(I \otimes C)=e^{i p_{x} \sigma_{x}} e^{i \theta \sigma_{y}} e^{i p_{z} \sigma_{z}} e^{i \theta \sigma_{y}} \rightarrow \\
e^{-i\left(c p_{x} \sigma_{x}+c p_{z} \sigma_{z}+m c^{2} \sigma_{y}\right) t} \\
e^{-i\left(c\left(p_{x}-q A_{x}\right) \sigma_{x}+c\left(p_{z}-q A_{z}\right) \sigma_{z}+m c^{2} \sigma_{y}\right) t} \rightarrow \\
e^{i p_{x} \sigma_{x}} e^{i A_{x} \sigma_{x}} e^{i \theta \sigma_{y}} e^{i p_{z} \sigma_{z}} e^{i A_{x} \sigma_{x}} e^{i \theta \sigma_{y}}=S_{x} M_{x}(I \otimes C) S_{z} M_{z}(I \otimes C)=U^{\prime}
\end{gathered}
$$

QW as simulators of physical dynamics

- Position dependent coin $\left(A_{x}=A_{x}(x, z), \quad A_{z}=A_{z}(x, z)\right)$:

$$
\begin{gathered}
M_{x}=I \otimes C_{x}(x, z), \quad M_{z}=I \otimes C_{z}(x, z) \\
C_{x}(x, z)=e^{i A_{x} \sigma_{x}}=\left(\begin{array}{cc}
\cos A_{x}(x, z) & i \sin A_{x}(x, z) \\
i \sin A_{x}(x, z) & \cos A_{x}(x, z)
\end{array}\right) \\
C_{z}(x, z)=e^{i A_{z} \sigma_{z}}=\left(\begin{array}{cc}
e^{i A_{z}(x, z)} & 0 \\
0 & e^{-i A_{z}(x, z)}
\end{array}\right)
\end{gathered}
$$

- Constant magnetic field perpendicular to the plane (y-direction):

$$
A_{x}=-\varphi z, \quad A_{z}=\varphi x
$$

QW as simulators of physical dynamics

Cyclotron orbit (see video) and Hofstadter butterfly

magnetic field

QW as simulators of physical dynamics

Topological effects

T. Kitagawa, Quant. Inf. Proc. 11, 1107-1148 (2012)

$$
\theta=\frac{\pi}{10}
$$

$\theta=\frac{\pi}{10}$
$\leftarrow 21 \rightarrow$

QW as simulators of physical dynamics

Sorted energies

$\theta=\frac{\pi}{2} \quad \theta=\frac{\pi}{10} \quad \theta=\frac{\pi}{2}$

Gap states

Symmetry protection of topological states

$$
\begin{aligned}
& \theta=-\frac{\pi}{2} \quad \theta=\text { random } \quad \theta=-\frac{\pi}{2}
\end{aligned}
$$

QW as simulators of physical dynamics

Topological phases and edge states

QW as simulators of physical dynamics

Multipartite quantum walks

- State: $\left|x_{1}, c_{1}\right\rangle \otimes\left|x_{2}, c_{2}\right\rangle$
- Evolution: $S_{1}\left(I \otimes C_{1}\right) S_{2}\left(I \otimes C_{2}\right) I\left(x_{1}, x_{2}\right)$
- Example (hard core interaction)

$$
I\left(x_{1}, x_{2}\right)=\left(\sum_{x_{1}, x_{2}} e^{i \varphi \delta_{x_{1}, x_{2}}}\left|x_{1}, x_{2}\right\rangle\left\langle x_{1}, x_{2}\right|\right) \otimes I
$$

- Creation of bound states

A. Ahlbrecht et al. New J. Phys. 14, 073050 (2012)

QW as simulators of physical dynamics

Borromean states

(a)

(c)

(b)

(d)

- State: $\left|x_{1}, c_{1}\right\rangle \otimes\left|x_{2}, c_{2}\right\rangle \otimes\left|x_{3}, c_{3}\right\rangle$
- Evolution: $S_{1} S_{2} S_{3}\left(I \otimes C\left(x_{1}, x_{2}, x_{3}\right)\right)$
- Bound state: $\sum_{x}|x, x, x\rangle \otimes|G H Z\rangle$

Marcin Markiewicz, Marcin Karczewski, Pawel Kurzynski, Quantum 5, 523 (2021)

QW as simulators of physical dynamics

- One-particle quantum walks: can be simulated classically (computers, coherent light)
- Classical: multipartite walks \rightarrow cellular automata (Lattice Boltzmann Automata, Conway's Life, etc.)
- Quantum: multipartite walks \rightarrow quantum cellular automata Pablo Arrighi, arXiv:1904.12956 (2019)
- Cellular automata require powerful classical computers
- Quantum cellular automata require powerful quantum computers!

QW - experimental implementations

Photon

position

$$
\begin{gathered}
\text { polarization } \\
H, V
\end{gathered}
$$

Nature Communications 3, 882, 2012

QW - experimental implementations

Atom in optical lattice
position
Cesium ground states hyperfine sublevels

$$
F=3,4
$$

QW - experimental implementations

photon

PRL 120 (2018) 260501; Science \& Applications (2020) 9:7

QW - experimental implementations

BEC

momentum

$$
k \pm \Delta k
$$

Rubidium ground
states hyperfine sublevels
$F=1,2$

PRL 121 (2018) 070402

QW - experimental implementations

Ion

QW - experimental implementations

Cavity QED + Superconducting Qubit

QW - experimental implementations

NMR

Two spins
One spin

QW - experimental implementations

Light pulse

Orbital momentum

Polarization

