

QCD vacuum effects for Effective quark interactions

Fábio L. Braghin -

Instituto de Física -Universidade Federal de Goiás, Goiânia

With Ednaldo Barros Jr - MSc dissert. Ademar Paulo Jr - Msc dissert.

First results: - Barros Jr- F.L.B. , Phys. Rev. D 88, 034011 (2013) - Paulo Jr - F.L.B. , In preparation - Mod. Phys. Lett A (2013) = Fierz transformation

ReTINHA - XXV,

UNICAMP, Fev. 2014

Derivation of higher order effective interactions for quarks (NJL and similar : limitations)

* stability of QCD effective theories / vacuum / expansions on currents

* hadron structure Multi-quark interaction

* Role of gluon condensate <AA>, (including IR effects) to quark interactions,

* eventually incorporating confinement / chiral symmetry breaking [one well known example: 't Hooft interaction – instanton mediation] From QCD to effective quark interactions

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\mathcal{D}^{\mu} - M)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{\lambda}(\partial_{\mu}A^{\mu})^{2} + \mathcal{L}_{FP}$$

Covariant gauge, Landau gauge

However: first analysis will neglect Gribov horizon problem

(Results capture some of the leading order terms

of a more complete calculation: to continue on this point ...)

$$Z = N \int \mathcal{D}[\psi, \overline{\psi}] \mathcal{D}[A_{\mu}] \mathcal{D}[\chi, \chi^*] e^{\langle \overline{\psi}(i\gamma_{\mu}\mathcal{D}^{\mu} - m_i)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \mathcal{L}_{FP} + \mathcal{L}_{gf} \rangle}$$

 $\mathcal{L}_{FP}, \mathcal{L}_{gf}$ stand for the Faddeev Popov ghost term gauge fixing.

3

Seemingly Impossible task:

to integrate out gluons exactly to obtain effective model for quarks

One of the needs for improvement: Gluon propagator

"MASSIVE" TRANSVERSE GLUON

- * It may reduce to One-gluon exchange
- * Transverse mass : endowed by auxiliary field $\phi(x)$
- * Eventually k-dependent mass

$$(R_{bc}^{\mu\nu})^{-1}(k,-k) = \delta_{bc} \left[(k^2 + c_1 \phi(k)) \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) + \lambda k_\mu k_\nu \right]^{-1}$$

Integrating out gluons approximatedly 4

The gap equation for ϕ_0 is found in the stationary point:

$$\frac{\partial S_{eff}}{\partial \phi} \bigg|_{\phi(x) \to \phi_0} = 0$$

For usual homogeneous condensate: (Euclidean k-space)

$$\alpha_s = 8.92/N_c^{\text{(Lerche et al Cucchieri et al Cucchieri et al Cucchieri et al A} \\ \Lambda \simeq 435 \text{ MeV.} > \Lambda_{\text{QCD}} \\ M_G = 600 \text{ MeV}$$

$$\phi_0 = \frac{3}{2} (N_c^2 - 1) \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + M_G^2}.$$

It allows for defining a momentum dependent (non-homogeneous) gluon mass or ground state....

under work

At very low energies,

an expansion can be performed around ϕ_0

By considering scalar gluon condensate <0|AA|0>

$$\phi(x) \to \phi_0 + \xi(x)$$

$$J = j^a_\mu z^{\mu\nu} j^a_\nu,$$

$$z^{\mu\nu} = (g^{\mu\nu} - \frac{\partial^\mu \partial^\nu}{\partial^2})(\partial^2 + \phi_0)^{-1}$$

$$z^{\mu\nu} \to g^{\mu\nu}$$

IT FOLLOWS - AFTER INTEGRATING OUT FLUCTUATIONS OF SCALAR FIELD ξ Non derivative couplings (below) and derivative couplings (under work)

$$S_{\text{eff}} = \int_{x} \left[\frac{1}{2} G j_{a}^{\mu}(x) j_{\mu}^{a}(x) + \bar{\psi} (i \gamma_{\mu} \partial^{\mu} - M) \psi \right] - \frac{1}{2} \frac{1}{2} \frac{\Gamma \ln[(t_{1}[\phi_{0}] + c) \delta^{4}(x - y) + t_{2}(x, y) j_{\mu}^{a}(x) j_{a}^{\mu}(x)] + C_{\phi_{0}}.$$

8th order effective quark interaction : current - current type

 $\overline{\psi}\gamma_{\mu}\lambda_{1}\psi\overline{\psi}\gamma^{\mu}\lambda_{2}\psi\overline{\psi}\gamma_{\nu}\lambda_{3}\psi\overline{\psi}\gamma^{\nu}\lambda_{4}\psi$

Performing a Fierz transformation it yields usual

(eighth order chiral) scalar /pseudo scalar quark-quark interaction

Scalar /pseudo scalar interactions (eg. Alkofer / Zahed, Osipov / Hiller, et al) = stability of ground state $\bar{\psi}_a \Gamma_{ad} \psi_d \cdot \bar{\psi}_c \Gamma_{cf} \psi_f \bar{\psi}_e \Gamma_{eh} \psi_h \cdot \bar{\psi}_g \Gamma_{gb} \psi_b$ $\rightarrow \sum (\bar{\psi}_a \Gamma_{ab} \psi_b \cdot \bar{\psi}_c \Gamma_{cd} \psi_d \bar{\psi}_e \Gamma_{ef} \psi_f \cdot \bar{\psi}_g \Gamma_{gh} \psi_h),$ SU(2), SU(3) F.L. Braghin, Mod. Phys. Lett. A 28, (2013) 1350023 : Fierz transformation

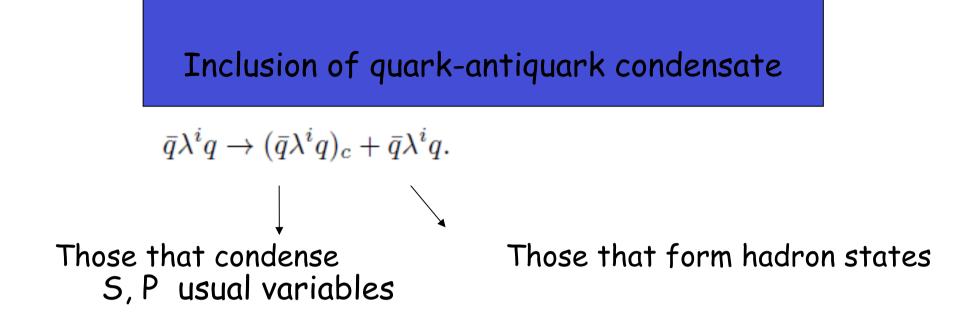
$$F_{I}^{(3)} = \frac{1}{27} + \frac{1}{12}\lambda_{1} \cdot \lambda_{2}\lambda_{3} \cdot \lambda_{4} + \frac{1}{18}(\lambda_{1} \cdot \lambda_{2} + \lambda_{2} \cdot \lambda_{3} + \lambda_{3} \cdot \lambda_{4} + \lambda_{2} \cdot \lambda_{4} + \lambda_{1} \cdot \lambda_{3} + \lambda_{1} \cdot \lambda_{4}) + \frac{1}{8}h_{mnk}h_{ijk}\lambda_{1}^{m}\lambda_{2}^{n}\lambda_{3}^{i}\lambda_{4}^{j} + \frac{1}{12}h_{ijk}(\lambda_{1}^{i}\lambda_{2}^{j}\lambda_{3}^{k} + \lambda_{2}^{i}\lambda_{3}^{j}\lambda_{4}^{k} + \lambda_{1}^{i}\lambda_{2}^{j}\lambda_{4}^{k} + \lambda_{1}^{i}\lambda_{3}^{j}\lambda_{4}^{k}).$$

SU(3)

$$\begin{split} F_8^{(3)} &= \frac{8.32}{3.81} \bigoplus_{i=1}^{16} (\lambda_1 \cdot \lambda_2 + \lambda_3 \cdot \lambda_4 + \lambda_2 \cdot \lambda_3 + \lambda_2 \cdot \lambda_4 + \lambda_1 \cdot \lambda_3 + \lambda_1 \cdot \lambda_4) \\ &+ \frac{1}{27} d_{ijk} (\lambda_1^i \lambda_2^j \lambda_3^k + \lambda_2^i \lambda_3^j \lambda_4^k + \lambda_1^i \lambda_2^j \lambda_4^k + \lambda_1^i \lambda_3^j \lambda_4^k) \\ &+ \frac{1}{18} (d_{ijm} d_{klm} + f_{ijn} f_{kln}) \lambda_1^i \lambda_2^j \lambda_3^k \lambda_4^l \\ &+ i \frac{1}{6} (d_{ijm} f_{klm} + f_{ijm} d_{klm}) \lambda_1^i \lambda_2^j \lambda_3^k \lambda_4^l \,. \end{split}$$

Final shape of the quark interaction (quark field expansion), SU(3) invariant

$$\mathcal{L}_8 = g_8(\bar{\psi}P_R\psi\bar{\psi}P_L\psi\bar{\psi}P_R\psi\bar{\psi}P_L\psi),$$



As the entire quark field will not be integrated out, it is enough to apply Auxiliary variable method (scalar and pseudo scalar) for $(\Psi\Psi)_c$, not for $(\Psi\Psi)_q$

$$\begin{split} S^{\phi}_{eff}[\bar{\psi},\psi,\phi] &= tr \int_{x,y} \left[\bar{\psi} \left(i\gamma_{\mu} \partial^{\mu} - M \right) \psi \delta(x-y) - j^{b}_{\mu} (R^{\mu\nu}_{bc})^{-1} j^{c}_{\nu} \right] \\ &- tr_{C} \int_{x} \left[c_{2} \phi^{2} - \frac{1}{2} \int_{p} \ln((R^{0}_{\nu\mu,cb})^{-1} R^{\mu\nu}_{bc}) \right] \end{split}$$

Usual auxiliary variables for scalar/pseudoscalar quark currents S P

$$S_{eff} = -\frac{i}{2} Trln \left(D^{\mu\nu}(x-y) \right) - \frac{c}{2} \phi^2 + i Trln \left(S^{-1}(x-y) \right) - \frac{1}{g_4} \left(S_i^2 + P_i^2 \right) - g_4 \int_x \left[(\overline{\psi} \lambda_a \psi)^2 + (\overline{\psi} i \gamma_5 \lambda_a \psi)^2 \right]$$

Where

$$S^{-1}(x-y) = (i/\partial - M_i^* - 2(\overline{\psi}\lambda_a\psi + \overline{\psi}i\gamma_5\lambda_a\psi))\delta(x-y)$$
$$M^* = M + S_i\lambda_i,$$
$$\partial \mathcal{V} = 0$$

SU(3) GROUND STATE WITH gluon and qq condensates

$$\frac{\partial \mathcal{V}_{eff}}{\partial \phi} \bigg|_{\phi = \phi_0, S^i = S_0^i} = 0,$$
$$\frac{\partial \mathcal{V}_{eff}}{\partial S_i} \bigg|_{S^i = S_0^i, \phi = \phi_0} = 0,$$
$$\frac{\partial \mathcal{V}_{eff}}{\partial P_i} \bigg|_{S^i = S_0^i, \phi = \phi_0} = 0,$$

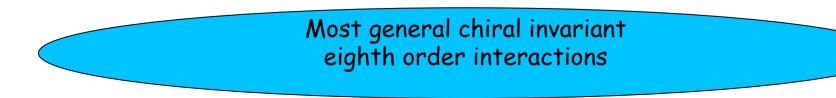
Most general expansion of the determinants, mixing scalar, pseudo-scalar and vector interactions (Fierz)yield chiral invariant structures of the types

$$S_{eff} \to Tr \sum_{n} \left[c_n (\overline{\psi}\psi)^n + d_n (j_\mu j^\mu)^n + g_n \sum_{m} b_m (\overline{\psi}\psi)^m (j_\mu j^\mu)^{n-m} \right]$$

coefficients being calculated

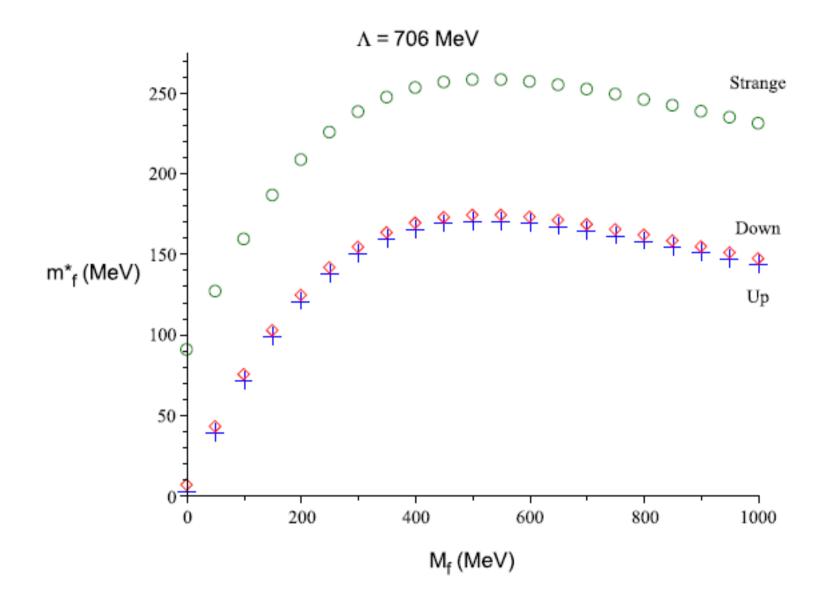
Final shape of the quark interaction (quark field expansion)

$$\mathcal{L}_{8,2} = g_{8,2} \left(\bar{\psi} P_R \psi \ \bar{\psi} P_L \psi \ \bar{\psi} P_R \psi \ \bar{\psi} P_L \psi \right),$$



m_g	100	200	300	400	500	600	650	700	800
Λ	109	217	325	435	542	651	706	760	870
M_u	50	94	139	183	229	274	297	319	365
s_u	47	91	136	180	226	271	294	316	362
M_d	56	100	145	189	235	281	303	326	372
s_d	49	93	138	182	228	274	296	319	365
M_s	137	192	245	295	345	395	419	443	492
s_s	46	101	154	204	254	304	328	352	401

Resultados obtidos por Ademar Paulo Jr.



Corrections to 4th and 6th order couplings

$M \ ({\rm MeV})$	$\Delta g_4 \; ({\rm GeV}^{-2})$	$\frac{\Delta g_4}{g_4}$	
100	2,2	0,23	
200	1,9	0,20	
300	1,6	0,16	
400	1,3	0,14	
500	1,1	0,11	
600	0,9	0,09	
700	0,8	0,08	
800	0,6	0,06	

$M \; ({\rm MeV})$	$\Delta g_6 \; (\text{GeV}^{-5})$	$\frac{\Delta g_6}{g_6}$
100	273	1,14
200	288	1,21
300	246	1,03
400	194	0,81
500	147	$0,\!61$
600	110	$0,\!46$
700	82	0,34
800	47	0,26

Summary

* We obtained fourth, sixth, eighth (and higher) order quark interaction by considering the contribution of scalar (auxiliary) fields

* Expansion of determinant (integration of gluons) compared to Det (constant field) Same structure from auxiliary field ϕ

Some of the calculations on the way ...

. To improve integration of gluons

* Computation of contribution of scalar quark-antiquark condensate and fluctuations for the eighth order interactions

- * Improve calculation of the determinants
- * Enlarge gluon configurations considered: more complete account of gluon interactions
- * Momentum dependent gluon mass
- * More general solutions for the GAP equations
- * diquark interactions