Tomography of Elastic pp Scattering

(A. K. Kohara, E. Ferreira, T. Kodama) IF/UFRJ

RETINHA XXV - 2014

5 -7 January 2014

Outline

- Elastic differential cross sections
- t space amplitudes
- Regular behaviour with the energy
- b space analytical forms and eikonals
- Unitarity conditions
- High energy extrapolations
- Conclusions

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$
$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$
$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$

$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$F^C(s,t)e^{i\alpha \Phi(s,t)} = (-/+) \frac{2\alpha}{|t|}e^{i\alpha \Phi(s,t)} F_{\text{proton}}^2(t)$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$

$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$F^C(s,t)e^{i\alpha} \Phi(s,t) = (-/+) \frac{2\alpha}{|t|}e^{i\alpha} \Phi(s,t) F_{\text{proton}}^2(t)$$
Coulomb Phase
$$F_{\text{proton}}(t) = [0.71/(0.71+|t|)]^2$$

$$(\hbar c)^2 = 0.3894 \text{ mb GeV}^2.$$

 $T_K^N(s,t) = \alpha_K(s) e^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t) \quad \text{Nuclear amplitudes}$

$$T_{K}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t) \quad \text{Nuclear amplitudes}$$

$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right] \quad \text{Shape functions}$$

where K = R, K = I for real and imaginary amplitudes

$$T_{K}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t) \quad \text{Nuclear amplitudes}$$

$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right] \quad \text{Shape functions}$$

where K = R, K = I for real and imaginary amplitudes

For |t|=0 we have the forward quantities...

Quantities in forward scattering

 $\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right)$

Total cross section

Quantities in forward scattering

$$\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right)$$

Total cross section

$$\rho(s) = \frac{T_R^N(s, t=0)}{T_I^N(s, t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)}$$

Real/Imaginary

Quantities in forward scattering

$$\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right) \qquad \text{Tot}$$

Total cross section

$$\rho(s) = \frac{T_R^N(s, t=0)}{T_I^N(s, t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)} \quad \text{Real/Imaginary}$$

$$B_{K}(s) = \frac{2}{T_{K}^{N}(s,t)} \frac{dT_{K}^{N}(s,t)}{dt} \Big|_{t=0}$$
Real and Imaginary slopes
$$= \frac{1}{\alpha_{K}(s) + \lambda_{K}(s)} \Big[\alpha_{K}(s)\beta_{K}(s) + \frac{1}{8}\lambda_{K}(s)a_{0}\Big(6\gamma_{K}(s) + 7\Big) \Big]$$

Differential cross sections

A. K. Kohara, E. Ferreira, T. Kodama *Eur. Phys. J. C* 73, 2326 (2013)
Totem Experiment *et al.*, *Europhys. Lett.* 95, 41001 (2011)

Universality at large |t|?

W. Fassler et al., Phys. Rev. D 23, 33 (1981)

Energy dependence of the parameters

Energy dependence of the parameters

Evolution of the slopes

Structure behind the data

Structure behind the data

Zeros dips and bumps

Real and imaginary amplitudes

Real and imaginary amplitudes

Dominance of the real part at large t

Dominance of the real part at large t

Predictions to pp at 8 TeV

Coulomb inteference at 8 TeV

LHC 14 TeV and cosmic ray 57 TeV extrapolations

Cosmic ray at 57 TeV

b space amplitudes

Fourier Transform

$$\begin{split} \tilde{T}_{K}(s,b) &= \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2}) \end{split}$$
Analytical forms
$$T_{K}(s,b) &= \frac{\alpha_{K}}{2\beta_{K}} e^{-\frac{b^{2}}{4\beta_{K}}} + \lambda_{K}\tilde{\psi}(\gamma_{k}(s),b) \end{split}$$

b space amplitudes

Fourier Transform

$$\tilde{T}_{K}(s,b) = \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2})$$

Analytical forms

$$T_K(s,b) = \frac{\alpha_K}{2\beta_K} e^{-\frac{b^2}{4\beta_K}} + \lambda_K \tilde{\psi}(\gamma_k(s),b)$$

with the shape functions

$$\tilde{\psi}(\gamma_K(s), b) = \frac{2e^{\gamma_K}}{a_0} \frac{e^{\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}}}{\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}} \Big[1 - e^{\gamma_K} e^{-\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}} \Big]$$

b space amplitudes

Fourier Transform

$$\tilde{T}_{K}(s,b) = \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2})$$

Analytical forms

$$T_K(s,b) = \frac{\alpha_K}{2\beta_K} e^{-\frac{b^2}{4\beta_K}} + \lambda_K \tilde{\psi}(\gamma_k(s),b)$$

with the shape functions

$$\tilde{\psi}(\gamma_K(s), b) = \frac{2e^{\gamma_K}}{a_0} \frac{e^{\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}}}{\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}} \Big[1 - e^{\gamma_K} e^{-\sqrt{\gamma_K^2 + \frac{b^2}{a_0}}} \Big]$$

Large b
$$e^{-\gamma b}/b$$

Yukawa like

Real amplitudes in b space

Imaginary amplitudes in b space

Introducing eikonal formalism

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal function $\chi = \chi_R + i \chi_I$

Introducing eikonal formalism

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal function $\chi = \chi_R + i \chi_I$

The real and imaginary parts are

$$\chi_R = \tan^{-1}\left(\frac{\tilde{T}_R}{\sqrt{\pi} - \tilde{T}_I}\right)$$

$$\chi_I = -\ln\sqrt{\left(\frac{1}{\sqrt{\pi}}\tilde{T}_R\right)^2 + \left(1 - \frac{1}{\sqrt{\pi}}\tilde{T}_I\right)^2}$$

Introducing eikonal formalism

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal function $\chi = \chi_R + i \chi_I$

The real and imaginary parts are

$$\chi_{R} = \tan^{-1} \left(\frac{\tilde{T}_{R}}{\sqrt{\pi} - \tilde{T}_{I}} \right)$$

$$\chi_{I} = -\ln \sqrt{\left(\frac{1}{\sqrt{\pi}} \tilde{T}_{R} \right)^{2} + \left(1 - \frac{1}{\sqrt{\pi}} \tilde{T}_{I} \right)^{2}}$$
A pole is avoided if
$$\tilde{T}_{I}(s, b) < \sqrt{\pi}$$

We write elastic, total and inelastic differential cross sections in b space

$$\sigma_{el} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{el}}{d^2 \vec{b}}$$
, $\sigma_{Tot} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{Tot}}{d^2 \vec{b}}$, $\sigma_{inel} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{inel}}{d^2 \vec{b}}$

and identify adimensional differential cross sections

$$\frac{d\bar{\sigma}_{el}}{d^2\bar{b}} = 1 - 2\cos(\chi_R) e^{-\chi_I} + e^{-2\chi_I} = \frac{1}{\pi} |\tilde{T}(s,b)|^2$$

$$\frac{d\bar{\sigma}_{Tot}}{d^2\vec{b}} = 2\left\{1 - \cos\left(\chi_R\right)e^{-\chi_I}\right\} = \frac{2}{\sqrt{\pi}}\tilde{T}_I(s,b) \qquad \text{Inelasticity} \\ \frac{d\bar{\sigma}_{inel}}{d^2\vec{b}} = 1 - e^{-2\chi_I} = \frac{2}{\sqrt{\pi}}\tilde{T}_I(s,\vec{b}) - \frac{1}{\pi}|\tilde{T}(\vec{b},s)|^2 \equiv G(s,\vec{b})$$

Differential cross sections in b space

Inelastic cross sections

Unitarity

Unitarity condition

$$\left|e^{i\chi(s,b)}\right| \leq 1$$

is equivalente to

$$\chi_{I}(s,b)\geq 0$$

In terms of imaginary amplitude

$$\frac{1}{\sqrt{\pi}}T_I(s,b) = 1 - \cos(\chi_R)e^{-\chi_I} \le 1$$

for all s and b.

These condition are satisfied in our representation.

Slopes and total cross section

We define the average radius of interaction

$$\langle b^2 \rangle_{\rm tot} = \left(\int b^2 \frac{1}{(\hbar c)^2} \frac{d\sigma_{tot}}{d^2 \vec{b}} d^2 \vec{b} \right) \middle/ \left(\int \frac{1}{(\hbar c)^2} \frac{d\sigma_{tot}}{d^2 \vec{b}} d^2 \vec{b} \right)$$

From the definition of the imaginary slope

$$B_I(s) = \frac{1}{2} \langle b^2 \rangle_{\rm tot}$$

As
$$\sigma_{\rm tot}(\sqrt{s}) \sim \langle b^2 \rangle_{\rm tot}$$

It follows that
$$B_I(s) \sim \log^2 \sqrt{s}$$

Relations between cross sections and slope

D. A. Fagundes, M. J. Menon and P. V. R. G. Silva J. Phys. G: Nucl. Part. Phys.40, 065005 (2013)

Thanks

Interaction Range

Average radius of interaction for the inelastic channels

$$\langle b \rangle = \frac{1}{N} \int b \frac{1}{(\hbar c)^2} \frac{d\sigma_{inel}}{d^2 \vec{b}} d^2 \vec{b} = \frac{1}{N} \int b \ G(s, b) d^2 \vec{b}$$

comparison of pp 7 TeV with 0.0528 TeV amplitudes

Prediction for the large |t| region

The amplitudes for the data up to $|t| = 2.5 \text{ GeV}^2$ are

 $T_K^N(s,t) = \alpha_K(s) \mathrm{e}^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t) \quad \text{Nuclear amplitudes}$

$$\Psi_K(\gamma_K(s), t) = 2 e^{\gamma_K} \left[\frac{e^{-\gamma_K \sqrt{1 + a_0|t|}}}{\sqrt{1 + a_0|t|}} - e^{\gamma_K} \frac{e^{-\gamma_K \sqrt{4 + a_0|t|}}}{\sqrt{4 + a_0|t|}} \right]$$

Shape functions

Prediction for the large |t| region

The amplitudes for the data up to $|t| = 2.5 \text{ GeV}^2$ are

 $T_{\kappa}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t)$ Nuclear amplitudes

$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right]$$
Shape functions

For large |t| we add a perturbative tri-gluon exchange Rggg A. Donnachie, P. V. Landshoff, Zeit. Phys. C 2, 55 (1979)

 $T_{R(\text{tail})}(s,t) = T_K^N(s,t) + R_{qqq}(t)$ $R_{aaa}(t) \equiv \pm 0.45 \ t^{-4} (1 - e^{-0.005|t|^4}) (1 - e^{-0.1|t|^2})$ For large |t|

 $d\sigma/dt \approx (\hbar c)^2 \ [T_{R(\text{tail})}(t)]^2 \approx 0.08 \ t^{-8} \ (\text{mb}/\text{GeV}^2)$ energy independent !!!!

Large t region (compare with 52.8 GeV)

Amplitudes

