Strangeness Production in pp, p-Pb and Pb-Pb collisions measured by ALICE at the LHC

D.D. Chinellato for the ALICE Collaboration

XXV Reunião de Trabalho Sobre Interações Hadrônicas

Outline

• 1. Introduction

- Physics Motivation: the QGP and what to measure
- The ALICE Experiment
- The K^0_{s} , Λ, Ξ, Ω measurements
- 2. Results in proton-proton collisions
- 3. Results in Pb-Pb collisions
- 4. Results in p-Pb collisions
- 5. Conclusions and Prospects

1. Introduction The Quark-Gluon Plasma

UNICAMP

1. Introduction The Quark-Gluon Plasma

1. Introduction The Quark-Gluon Plasma

The role of Strangeness

Here: Circles have areas proportional to quark masses

Strange particles will decay weakly into non-strange products

- Decays in a 'strangely long' lifetime of a few cm/c. Decay vertices are thus visibly separated and particle identification will be possible over large momentum ranges, enabling a study of baryon to meson abundance over large momenta.
- Baryons may be enhanced with respect to mesons in a QGP scenario

The role of Strangeness

Here: Circles have *areas* proportional to quark masses

Strange particles will decay weakly into non-strange products

- Decays in a 'strangely long' lifetime of a few cm/c. Decay vertices are thus visibly separated and particle identification will be possible over large momentum ranges, enabling a study of baryon to meson abundance over large momenta.
- Baryons may be enhanced with respect to mesons in a QGP scenario

Strange particle production is enhanced in a QGP

- It is believed that gluon fusion occurs in the QGP as an ss creation mechanism
- *Pauli Blocking* may lead to more ss pairs, as *u* and *d* quarks fill up all available states
- Thus, more strangeness may be produced in a QGP if compared to the non-QGP scenario.

What to measure?

The proton-proton (pp) colliding system

- Elementary hadronic system, few prod. particles
- No collectivity or deconfinement expected
- Suitable as benchmark, 'hadron gas' scenario
- pQCD-inspired models such as PYTHIA: tested!

What to measure?

The proton-proton (pp) colliding system

- Elementary hadronic system, few prod. particles
- No collectivity or deconfinement expected
- Suitable as benchmark, 'hadron gas' scenario
- pQCD-inspired models such as PYTHIA: tested!

The lead-lead (Pb-Pb) colliding system

- Large system (nuclear volume)
- Deconfinement/QGP scenario, hot nuclear matter
- Collectivity: Signatures such as: Particle flow, etc...

What to measure?

The proton-proton (pp) colliding system

- Elementary hadronic system, few prod. particles
- No collectivity or deconfinement expected
- Suitable as benchmark, 'hadron gas' scenario
- pQCD-inspired models such as PYTHIA: tested!

The lead-lead (Pb-Pb) colliding system

- Large system (nuclear volume)
- Deconfinement/QGP scenario, hot nuclear matter
- Collectivity: Signatures such as: Particle flow, etc...

The proton-lead (p-Pb) colliding system

- Intermediate system: what about collectivity?
- May potentially be well suited to understand the effects in the transition from a hadron gas (pp) to a QGP regime (Pb-Pb) and interactions with cold nuclear matter

Specialty: Nuclear Collisions Specificity: Particle Identification

- **TPC**: <u>Tracking</u>, Vertexing, PID (dE/dx)
- ITS: Tracking, Vertexing
- VZERO: Trigger, Beam-gas event rejection, Multiplicity classes

Collaboration: 1275 members 135 institutes 37 countries

Specialty: Nuclear Collisions Specificity: Particle Identification

- TPC: <u>Tracking</u>, Vertexing, PID (dE/dx)
- ITS: Tracking, Vertexing
- VZERO: Trigger, Beam-gas event rejection, Multiplicity classes

Collaboration: 1275 members 135 institutes 37 countries

Specialty: Nuclear Collisions Specificity: Particle Identification

- TPC: <u>Tracking</u>, Vertexing, PID (dE/dx)
- ITS: Tracking, Vertexing
- VZERO: Trigger, Beam-gas event rejection, Multiplicity classes

Collaboration: 1275 members 135 institutes 37 countries

Specialty: Nuclear Collisions Specificity: Particle Identification

- **TPC**: <u>Tracking</u>, Vertexing, PID (dE/dx)
- ITS: Tracking, Vertexing
- VZERO: Trigger, Beam-gas event rejection, Multiplicity classes

Strange Hadrons in ALICE

•Pb-Pb 5.5TeV Hijing MC Event, not all tracks shown; Figure from Alice Physics Performance Report, Volume II (Figure IV)

Strange Hadrons in ALICE

Multi-Strange

•Pb-Pb 5.5TeV Hijing MC Event, not all tracks shown; Figure from Alice Physics Performance Report, Volume II (Figure IV)

Strange Hadrons in ALICE

•Pb-Pb 5.5TeV Hijing MC Event, not all tracks shown; Figure from Alice Physics Performance Report, Volume II (Figure IV)

Invariant Mass Peaks: Signal Extraction Example: Multi-strange

UNICAMP D.D. Chinellato – XXV Retinha – 05 / 02 / 2014

Invariant Mass Peaks: Signal Extraction Example: Multi-strange

Signal Extraction:

- Fit Gaussian peak and background for acquisition of peak region
- Sample Background close to peak:
 - Fit background with a smooth function
 - Perform bin counting
- Subtract background from peak region

2. Results from Proton-Proton (pp) Collisions

p_T Ranges: K⁰_s: 0.0-15.0 GeV/c Λ: 0.4-10.0 GeV/c

Proton-Proton at 7 TeV Results: Single-Strange

p_T Ranges: K⁰_s: 0.0-15.0 GeV/c Λ: 0.4-10.0 GeV/c

Antiparticle to particle ratio: compatible with unity

11 ALICE

Proton-Proton at 7 TeV Results: Multi-Strange

12 ALICE

3. Results from Lead-Lead (Pb-Pb) Collisions

Collision Centrality

14 ALICE

Collision Centrality

Pb-Pb at 2.76 TeV Transverse momentum spectra

QGP Signature 1: **Baryon to Meson Ratio**

Phys. Rev. Lett. 111 (2013) 222301

ALI-PUB-55083

Increased relative production of baryons at intermediate transv. Momentum (2-4 GeV/c): "Baryon Anomaly"

Particle Production by

-> Parton Coalescence

- Produces both baryons and mesons
- baryons will have larger mean momenta

QGP Signature 2: Strangeness Enhancement

ALI-DER-57382

Enhancement larger for hadrons with higher strangeness content

QGP Signature 2:

Strangeness Enhancement

17 ALICE

QGP Signature 2:

Strangeness Enhancement

17 ALICE

Strangeness Enhancement vs Non-Strange?

Not Really: The number of produced Charged particles isn't proportional to the number of participant nucleons...

Strangeness Enhancement vs Non-Strange?

UNICAMP D.D. Chinellato – XXV Retinha – 05 / 02 / 2014

18 ALICE

4. Results from Proton-Lead (p-Pb) Collisions

p-Pb at 5.02 TeV Single-Strange Spectra

arXiv:1307.6796

- Spectra binned in *multiplicity* (quantiles of VZERO cross-section)
- A, KOs spectra are *harder* for large multiplicities

p-Pb at 5.02 TeV Baryon Anomaly in p-Pb?

p-Pb at 5.02 TeV Baryon Anomaly in p-Pb?

 hints of collective, QGP-like phenomena present

p-Pb at 5.02 TeV Baryon Anomaly in p-Pb?

UNICAMP D.D. Chinellato – XXV Retinha – 05 / 02 / 2014

21 ALICE

- Systematic Measurements of strange and multi-strange particles have been performed in pp, p-Pb and Pb-Pb collisions
- Proton-proton (pp):

Serves as a reference for Pb-Pb (a "hadron gas") PYTHIA, a pQCD-inspired model, predicts K⁰_s yields reasonably but fails for baryons, and more so for higher strangeness content.

- Systematic Measurements of strange and multi-strange particles have been performed in pp, p-Pb and Pb-Pb collisions
- Proton-proton (pp):

Serves as a reference for Pb-Pb (a "hadron gas") PYTHIA, a pQCD-inspired model, predicts K⁰_s yields reasonably but fails for baryons, and more so for higher strangeness content.

• Lead-Lead (Pb-Pb):

Indications of a Quark-Gluon plasma phase shown here:

- Λ/K_{s}^{0} : Baryon anomaly usually attributed to parton coalescence
- Ξ, Ω: Strangeness enhancement due to gluon fusion mechanism in QGP
- --- Many more not mentioned...

- Systematic Measurements of strange and multi-strange particles have been performed in pp, p-Pb and Pb-Pb collisions
- Proton-proton (pp):

Serves as a reference for Pb-Pb (a "hadron gas") PYTHIA, a pQCD-inspired model, predicts K⁰_s yields reasonably but fails for baryons, and more so for higher strangeness content.

• Lead-Lead (Pb-Pb):

Indications of a Quark-Gluon plasma phase shown here:

- Λ/K_{s}^{0} : Baryon anomaly usually attributed to parton coalescence
- Ξ, Ω: Strangeness enhancement *due to gluon fusion mechanism in QGP*
- --- Many more not mentioned...

• Proton-Lead (p-Pb):

At high multiplicities, some QGP signatures seem present In strangeness: Ξ and Ω are under analysis

Other signatures will help in the construction of better understanding

• Systematic Measurements of strange and multi-strange particles have been performed in pp, p-Pb and Pb-Pb collisions

• Proton-proton (pp):

Serves as a reference for Pb-Pb (a "hadron gas") PYTHIA, a pQCD-inspired model, predicts K⁰_s yields reasonably but fails for baryons, and more so for higher strangeness content.

• Lead-Lead (Pb-Pb):

Indications of a Quark-Gluon plasma phase shown here:

 Λ/K_{s}^{0} : Baryon anomaly – usually attributed to parton coalescence

Ξ, Ω: Strangeness enhancement – due to gluon fusion mechanism in QGP

--- Many more not mentioned...

• Proton-Lead (p-Pb):

At high multiplicities, some QGP signatures seem In strangeness: Ξ and Ω are under analysis

Thank you!

Other signatures will help in the construction of better understanding

BACKUP

 α_{arm} : asymmetry in longitudinal momentum distribution p_{T}^{arm} : total transverse momentum of daughters (longitudinal and transverse directions with respect to V0)

In pp: Invariant mass rejection of competing VO species *In Pb-Pb:* Armenteros-Podolanski selection for K⁰_s

- Selection for K_s^0 : $p_T^{arm} > 0.2 |\alpha_{arm}|$ •
- **Restricts Phase space of daughters** •
- Checked: does not introduce false peaks ٠

competing VO species In Pb-Pb: Armenteros-Podolanski selection for K⁰,

Feeddown Subtraction for Λ

Feeddown Subtraction for Λ

Feeddown Subtraction for Λ

Feeddown Subtraction for Λ

Total Feeddown Subtraction Fraction Example (proton-proton @ 7 TeV)

Efficiency Corrections

Example: proton-proton collisions, Vs = 7 TeV

Efficiency Corrections Example: proton-proton collisions, Vs = 7 TeV

Proton-Proton at 7 TeV Multiplicity: The next step?

Selection in: Reconstructed Charged Particles at midpseudorapidity, $(N_{ch})^{reco}$; desired: true $(N_{ch})^{simulated}$

Interesting Physics: Look at strangeness production according to charged particle multiplicity, Compare to Pb-Pb

May reveal more about hadrochemistry, production mechanisms...

Significant overlap between multiplicity bins

- Unfolding needed
- Work in progress

Multiplicity Scaling: Λ/K^{0}_{s} at a given p_{T} as function of N_{ch}

Let's look at the ratio at a single pT value and see how it behaves with $dN_{ch}/d\eta$

Example: 2.6 – 2.8 GeV/c

 At this p_T, Λ/KOs increases with charged particle multiplicity

Multiplicity Scaling: Λ/K^{0}_{s} at a given p_{T} as function of N_{ch}

Let's look at the ratio at a single pT value and see how it behaves with $dN_{ch}/d\eta$

Example: 2.6 – 2.8 GeV/c

 At this p_T, Λ/KOs increases with charged particle multiplicity

As we look at different momenta, similar behaviour with dN_{ch}/dη is observed in p-Pb and Pb-Pb: <u>similar change in ratio for a</u> <u>given change in dN_{ch}/dη</u>

Multiplicity Scaling: Λ/K_{s}^{0} at a given p_{T} as function of N_{ch}

30 ALICE

Multiplicity Scaling: Λ/K_{s}^{0} at a given p_{T} as function of N_{ch}

UNICAMP D.D. Chinellato – XXV Retinha – 05 / 02 / 2014

30 ALICE

Multiplicity Scaling: ...also with proton-proton data!

- Proton-proton systems <u>exhibit the same power laws</u> for the ratio as a function of dN_{ch}/dη
- <u>Caveat</u>: Λ/K⁰_s ratio in pp collisions may be particularly sensitive to selection biases, since dN_{ch}/dη measured at mid-rapidity

Published:

Progression of the average transverse momentum with multiplicity in different systems

http://arxiv.org/abs/1307.1094

UNICAMP D.D. Chinellato – XXV Retinha – 05 / 02 / 2014