O comportamento de seções de choque hadrônicas com a energia no regime de saturação de gluons

F. O. Durães Grupo de Estudos em Física de Hadrons – GREFH CAGe – EE/UPM motivação: como crescem as seções de choque hadrônicas com a energia <u>qdo</u>um sistema de alta densidade de partons é formado ? → os dados do LHC e do P. Auger ditam esse comportamento ! **(?)**

the Froissart bound states that total hadronic cross sections cannot grow faster than $\ln^2(s)$ as $s \rightarrow \infty$!

o que se discute hoje ? elas crescem com a energia segundo um "Froissart-type behavior" ?

$\sigma_{\rm PDG}^{\mp}(s) = a_0 + a_1 A_1^{b_1} \mp a_2 A_1^{b_2} + \underline{a_3} \ln^{b_3}(A_1^{b_3})$				
$\sigma_{\rm BH}^{\pm}(\nu) = c_0 +$	$-c_1 C^{d_1} \pm c_2$	$C^{d_2} +$	$c_3 \ln(C) + c_4$	ln '
PDG	PRD 86,010001 (201	2) BH P	RD 86,014006 (2012)	
$a_0(mb)$ $a_1(mb)$	35.35 ± 0.48 42.53 ± 1.35	$c_0(mb)$ $c_1(mb)$	37.32 37.10	
$a_2(mb)$ $a_2(mb)$	33.34 ± 1.04 0.308 ± 0.010	$c_2(mb)$ $c_2(mb)$	-28.56 -1.440 ± 0.070	
b_1 b_2	-0.458 ± 0.017 -0.545 ± 0.007	$c_4(mb)$ d_1	0.2817 ± 0.0064 -0.5	
b_3 $s_2(\text{GeV}^2)$	2 1.0	d_2 d_3	-0.585	
$s_h(\text{GeV}^2)$	28.9 ± 5.4	,		

the upper (lower) sign is for pp ($\bar{p}p$) scattering, $A_1 \equiv s/s_l, A_2 \equiv s/s_h, C \equiv \nu/m$ [$\approx s/2m^2, \nu$ and m represent, respectively, the laboratory energy of the incoming proton (antiproton) and the proton mass

Eikonalized Minijet Model

L. Durand and H. Pi, Phys. Rev. Lett. 58, 303 (1987) X.-N. Wang, Phys. Rev. D 43, 104 (1991)

$$Q^{2} \frac{\partial^{2} x g(x,Q^{2})}{\partial ln(1/x) \partial Q^{2}} = \frac{\alpha_{s}(Q^{2})N_{c}}{\pi} x g(x,Q^{2}) - \frac{4\alpha_{s}^{2}N_{c}}{3C_{F}R^{2}Q^{2}} [x g(x,Q^{2})]^{2}$$

$$\Rightarrow x g(x,Q^{2}) \sim \pi R^{2}Q^{2}/\alpha_{s}(Q^{2})$$
essa evolução atenua o
crescimento da densidade
de gluons com baixos momentos !
$$Q_{s}^{2}(x) = Q_{0}^{2}(x_{0}/x)^{\lambda} \Rightarrow define o regime !$$

$$SATURAÇÃO !$$

60 50 com a energia ! 40 30

20

A.V. Giannini and F.O.D.

PRD 33, 114004 (2013)

10²

10¹

 10^{3}

 \sqrt{s} (GeV)

10⁴

a saturação atenua + fortemente esse comportamento !

EHKQS

10⁶

10⁵

 $\sigma_{\text{tot}}^{pp(\bar{p})}(s) = 2 \int d^2 \vec{b} \{1 - e^{-\text{Im}\chi(b,s)} \cos[\text{Re}\chi(b,s)]\},\ = 0 \ (!)$

fim

