Boost Invariance and Stability for Relativistic Dissipative Hydrodynamical Theories with Relaxation

Hugo Marrochio, David Fogaça, Jorge Noronha

February 2014 - Retinha XXV
\qquad

Introduction

Introduction

* Heavy-ion collisions at LHC

Introduction

* Heavy-ion collisions at LHC
* Fluid Dynamics Treatment

Introduction

* Heavy-ion collisions at LHC
* Fluid Dynamics Treatment
* High Energy - Relativistic Theory

Introduction

* Heavy-ion collisions at LHC
* Fluid Dynamics Treatment
* High Energy - Relativistic Theory
* AdS/CFT and Experiments suggest small viscosity

Introduction

* Heavy-ion collisions at LHC
* Fluid Dynamics Treatment
* High Energy - Relativistic Theory
* AdS/CFT and Experiments suggest small viscosity
* Problems with Navier-Stokes

M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005) [nucl-th/0405013].
U. W. Heinz and R. Snellings, arXiv:1301.2826 [nucl-th].
C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013) [arXiv:1301.5893].

Introduction

Introduction

* Interesting choice: Conformal symmetry!
* Equation of State is fixed
* Strongly coupled theory
* Connection to AdS/CFT

Introduction

* Interesting choice: Conformal symmetry!
* Equation of State is fixed
* Strongly coupled theory
* Connection to AdS/CFT
* Thermodynamics of conformal field theory - good approximation

Overview

Overview

Navier-Stokes (NS)

Overview

Navier-Stokes (NS) BRSSS

Overview

Navier-Stokes (NS)
BRSSS
Israel-Stewart (IS)

Overview

Navier-Stokes (NS)
BRSSS

* Known problems with causality and stability
* Shear Viscosity η
* Dissipative Tensor - First order in gradients of velocity

Overview

Navier-Stokes (NS)

* Known problems with causality and stability
* Shear Viscosity η
* Dissipative Tensor - First order in gradients of velocity
* We show that there are problems with causality and stability
* Shear Viscosity η and relaxation-like term τ
* Dissipative Tensor second order in gradients of velocity
* Recovers NS for $\tau=0$
* τ calculated with holography and gradient expansion

Overview

Navier-Stokes (NS)

* Known problems with causality and stability
* Shear Viscosity η
* Dissipative Tensor - First order in gradients of velocity

BRSSS

* We show that there are problems with causality and stability
*Shear Viscosity η and relaxation-like term τ
* Dissipative Tensor second order in gradients of velocity
* Recovers NS for $\tau=0$
* τ calculated with holography and gradient expansion
* Recovers NS for $\tau=0$

Israel-Stewart (IS)

* For some values of τ no known problems with causality and stability
* Shear Viscosity η and relaxation term τ
* Dissipative Tensor Dynamical degree of freedom - Part of a Differential Equation
* Theory is consistent with Boltzmann Eq.
* Used in numerical simulations

Overview

Overview

Relativistic Dissipative Fluid Dynamics

Overview

Relativistic Dissipative Fluid Dynamics

Energy

$$
D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0
$$

Overview

Relativistic Dissipative Fluid Dynamics

Energy

$$
D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0
$$

Momentum

$$
\Delta_{\alpha}^{\mu} \nabla^{\alpha} T+T D u^{\mu}+\frac{\Delta_{\nu}^{\mu} \nabla_{\alpha} \pi^{\alpha \nu}}{s}=0
$$

Overview

Relativistic Dissipative Fluid Dynamics

Energy

$$
D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0
$$

Momentum

$$
\Delta_{\alpha}^{\mu} \nabla^{\alpha} T+T D u^{\mu}+\frac{\Delta_{\nu}^{\mu} \nabla_{\alpha} \pi^{\alpha \nu}}{s}=0
$$

Navier-Stokes

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Overview

Relativistic Dissipative Fluid Dynamics

Energy

$$
D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0
$$

Momentum

$$
\Delta_{\alpha}^{\mu} \nabla^{\alpha} T+T D u^{\mu}+\frac{\Delta_{\nu}^{\mu} \nabla_{\alpha} \pi^{\alpha \nu}}{s}=0
$$

Navier-Stokes

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

BRSSS $\quad \pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)$

Overview

Relativistic Dissipative Fluid Dynamics

Energy

$$
D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0
$$

Momentum

$$
\Delta_{\alpha}^{\mu} \nabla^{\alpha} T+T D u^{\mu}+\frac{\Delta_{\nu}^{\mu} \nabla_{\alpha} \pi^{\alpha \nu}}{s}=0
$$

Navier-Stokes

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

$\mathrm{BRSSS} \quad \pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)$
Israel-Stewart $\quad \tau_{\pi}\left(D \pi^{<\mu \nu>}+\frac{4}{3} \pi^{\mu \nu} \theta\right)+\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}$

Overview

Relativistic Dissipative Fluid Dynamics

$$
\begin{aligned}
& g_{\mu \nu}=\operatorname{diag}(-,+,+,+) \\
& \text { Energy } \\
& D T+\frac{\theta T}{3}+\frac{\pi_{\mu \nu} \sigma^{\mu \nu}}{3 s}=0 \\
& D=u^{\mu} \partial_{\mu} \\
& \theta=\partial_{\mu} u^{\mu} \\
& \Delta^{\mu \nu}=g^{\mu \nu}+u^{\mu} u^{\nu}
\end{aligned}
$$

$$
\begin{aligned}
& A^{<\mu \nu>}=\Delta_{\alpha \beta}^{\mu \nu} A^{\alpha \beta} \\
& \sigma^{\mu \nu}=\Delta^{\mu \nu \alpha \beta} \partial_{\alpha} u_{\beta} \quad \text { Israel-Stewart } \\
& \text { Momentum } \\
& \Delta_{\alpha}^{\mu} \nabla^{\alpha} T+T D u^{\mu}+\frac{\Delta_{\nu}^{\mu} \nabla_{\alpha} \pi^{\alpha \nu}}{s}=0 \\
& \text { Navier-Stokes } \\
& \text { BRSSS } \\
& \pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right) \\
& \text { Israel-Stewart } \quad \tau_{\pi}\left(D \pi^{<\mu \nu>}+\frac{4}{3} \pi^{\mu \nu} \theta\right)+\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
\end{aligned}
$$

Motivation

Motivation

Navier-Stokes (NS) - Causality issues

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Motivation

Navier-Stokes (NS) - Causality issues

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

* Linear perturbation in the x direction

$$
\begin{aligned}
u^{\mu} & =(1,0,0,0)+\left(0, \delta u^{x}(t, x), 0,0\right) \\
T & =T_{0}+\delta T(t, x)
\end{aligned}
$$

Motivation

Motivation

Navier-Stokes - Causality issues

Motivation

Navier-Stokes - Causality issues

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Motivation

Navier-Stokes - Causality issues

$$
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \quad c_{s}^{2}=\frac{1}{3}
$$

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Motivation

Navier-Stokes - Causality issues

$$
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \quad c_{s}^{2}=\frac{1}{3}
$$

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

$$
V_{g}=\frac{\partial R e[\omega]}{\partial k}
$$

$$
\tilde{k} \equiv \frac{k}{T_{0}}
$$

$$
k^{\mu}=(\omega, \vec{k})
$$

Motivation

Navier-Stokes - Causality issues

$$
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \quad c_{s}^{2}=\frac{1}{3}
$$

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

$$
V_{g}=\frac{\partial R e[\omega]}{\partial k} \quad \tilde{k} \equiv \frac{k}{T_{0}}
$$

Motivation

Motivation

Navier-Stokes - Causality issues

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Motivation

Navier-Stokes - Causality issues

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

Intermission

Intermission

Intermission

* NS Lawyer - Causality is only a problem in the UV

Intermission

* NS Lawyer - Causality is only a problem in the UV
* We will show it can arbitrarily become an IR issue

Intermission

* NS Lawyer - Causality is only a problem in the UV
* We will show it can arbitrarily become an IR issue
* Usual solution for causality consider relativistic relaxation type theories

Intermission

* NS Lawyer - Causality is only a problem in the UV
* We will show it can arbitrarily become an IR issue
* Usual solution for causality consider relativistic relaxation type theories

BRSSS

BRSSS

* Baier, Romatschke, Son, Starinets, Stephanov 0712.2451

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)+\ldots
$$

BRSSS

* Baier, Romatschke, Son, Starinets, Stephanov 0712.2451

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)+\ldots
$$

The dissipative tensor is not a dynamical variable

> Gradient Expansion

Calculate coefficients through holography
Simplest Theory of BRSSS:

BRSSS

* Baier, Romatschke, Son, Starinets, Stephanov 0712.2451

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)+\ldots
$$

The dissipative tensor is not a dynamical variable

Gradient Expansion

Calculate coefficients through holography
Simplest Theory of BRSSS:

$$
\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+2 \eta \tau_{\pi}\left(D^{<} \sigma^{\mu \nu>}+\frac{\sigma^{\mu \nu} \theta}{3}\right)
$$

Israel-Stewart (IS) Hydrodynamics

Israel-Stewart (IS) Hydrodynamics

* Relaxation type equation

Israel-Stewart (IS) Hydrodynamics

*Relaxation type equation

$$
\begin{gathered}
\tau_{\pi}\left(\dot{\pi}^{<\mu \nu>}+\frac{4}{3} \pi^{\mu \nu} \theta\right)+\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+\ldots \\
\text { Where: } \dot{\pi}^{<\mu \nu>}=\Delta_{\alpha \beta}^{\mu \nu} D \pi^{\alpha \beta}
\end{gathered}
$$

Israel-Stewart (IS) Hydrodynamics

* Relaxation type equation

$$
\begin{gathered}
\tau_{\pi}\left(\dot{\pi}^{<\mu \nu>}+\frac{4}{3} \pi^{\mu \nu} \theta\right)+\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}+\ldots \\
\text { Where: } \dot{\pi}^{<\mu \nu>}=\Delta_{\alpha \beta}^{\mu \nu} D \pi^{\alpha \beta}
\end{gathered}
$$

* Simplest Israel-Stewart Equation: First order in gradients of 4-velocity:

$$
\tau_{\pi}\left(\dot{\pi}^{<\mu \nu>}+\frac{4}{3} \pi^{\mu \nu} \theta\right)+\pi^{\mu \nu}=-2 \eta \sigma^{\mu \nu}
$$

BRSSS and IS

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* Our goal: Study these two theories through linear perturbation

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* Our goal: Study these two theories through linear perturbation
* This approximation seems to be reasonable in the IR limit

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* Our goal: Study these two theories through linear perturbation
* This approximation seems to be reasonable in the IR limit
* However, the BRSSS theory is not ok in the UV

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* Our goal: Study these two theories through linear perturbation
* This approximation seems to be reasonable in the IR limit

$$
\begin{gathered}
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \\
c_{s}^{2}=\frac{1}{3} \\
\tau_{\pi} T_{0}=\frac{2-\ln 2}{2 \pi}
\end{gathered}
$$

* However, the BRSSS theory is not ok in the UV

BRSSS and IS

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* IS has similar behavior in the IR (other than a non-propagating mode)

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

* IS has similar behavior in the IR (other than a non-propagating mode)
* Unlike BRSSS, it is always causal!

BRSSS and IS

BRSSS authors claim their theory is the same as Israel-Stewart

$$
\begin{gathered}
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \\
c_{s}^{2}=\frac{1}{3} \\
\tau_{\pi} T_{0}=\frac{2-\ln 2}{2 \pi}
\end{gathered}
$$

* Unlike BRSSS, it is always causal!

Causality and Stability

Causality and Stability

Another interesting test of reasonable theory - Stability

Causality and Stability

Another interesting test of reasonable theory - Stability

* For solutions of the type:

$$
\mathrm{e}^{\mathrm{i}(k x-\omega t)} \quad \omega=\operatorname{Re}[\omega]+\mathrm{i} \operatorname{Im}[\omega]
$$

Causality and Stability

Another interesting test of reasonable theory - Stability

* For solutions of the type:

$$
\mathrm{e}^{\mathrm{i}(k x-\omega t)} \quad \omega=\operatorname{Re}[\omega]+\mathrm{i} \operatorname{Im}[\omega]
$$

* The solution is unstable if ω has a positive imaginary value

$$
\mathrm{e}^{\operatorname{Im}[\omega] t} \mathrm{e}^{\mathrm{i}(k x-\operatorname{Re}[\omega] t)}
$$

Causality and Stability

Causality and Stability

Not a problem in the rest frame (for IR values of k)

Causality and Stability

Not a problem in the rest frame (for IR values of k)

Causality and Stability

Not a problem in the rest frame (for IR values of k)

$$
\begin{gathered}
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \\
c_{s}^{2}=\frac{1}{3} \\
\tau_{\pi} T_{0}=\frac{2-\ln 2}{2 \pi}
\end{gathered}
$$

Causality and Stability

Causality and Stability

Not a problem in the rest frame (for IR values of k)

Causality and Stability

Not a problem in the rest frame (for IR values of k)

	0 Imaginary Part Dependence - BRSSS Rest Frame						
	$\begin{array}{r} -10 \\ -20 \\ -30 \\ \underline{\underline{3}}-30 \\ -40 \\ -50 \\ -60 \end{array}$						

Causality and Stability

Not a problem in the rest frame (for IR values of k)

$$
\begin{gathered}
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \\
c_{s}^{2}=\frac{1}{3} \\
\tau_{\pi} T_{0}=\frac{2-\ln 2}{2 \pi}
\end{gathered}
$$

BRSSS - Rest frame - small k

Causality and Stability

Not a problem in the rest frame (for IR values of k)

$$
\begin{gathered}
\frac{\eta}{s_{0}}=\frac{1}{4 \pi} \\
c_{s}^{2}=\frac{1}{3} \\
\tau_{\pi} T_{0}=\frac{2-\ln 2}{2 \pi}
\end{gathered}
$$

Intermission II

Intermission II

Intermission II

Intermission II

* So far we have shown that BRSSS and Israel-Stewart are different theories

Intermission II

* So far we have shown that BRSSS and Israel-Stewart are different theories
* BRSSS lawyer - they are similar theories in the IR

Intermission II

* So far we have shown that BRSSS and Israel-Stewart are different theories
* BRSSS lawyer - they are similar theories in the IR
* We will show that BRSSS is unstable even under infinitesimal boosts

Intermission II

* So far we have shown that BRSSS and Israel-Stewart are different theories
* BRSSS lawyer - they are similar theories in the IR
* We will show that BRSSS is unstable even under infinitesimal boosts
* IS fine under Lorentz Transformations

Lorentz Transformation

Lorentz Transformation

* Since our theories are relativistic, we want to study them under Boosts.

Lorentz Transformation

* Since our theories are relativistic, we want to study them under Boosts.
* High energy modes can be a problem for different reference frames

Lorentz Transformation

* Since our theories are relativistic, we want to study them under Boosts.
* High energy modes can be a problem for different reference frames
* Idea: Study perturbations in a frame moving with constant velocity v

Lorentz Transformation

* Since our theories are relativistic, we want to study them under Boosts.
* High energy modes can be a problem for different reference frames
* Idea: Study perturbations in a frame moving with constant velocity v

$$
\begin{gathered}
u^{\mu}=(\gamma, \gamma v, 0,0)+\left(v \delta u^{x}(t, x), \delta u^{x}(t, x), 0,0\right) \\
T=T_{0}+\delta T(t, x) \\
\pi^{\mu \nu}=0+\delta \pi^{\mu \nu}(t, x)
\end{gathered}
$$

Lorentz Transformation

* Since our theories are relativistic, we want to study them under Boosts.
* High energy modes can be a problem for different reference frames
* Idea: Study perturbations in a frame moving with constant velocity v

$$
\begin{gathered}
u^{\mu}=(\gamma, \gamma v, 0,0)+\left(v \delta u^{x}(t, x), \delta u^{x}(t, x), 0,0\right) \\
T=T_{0}+\delta T(t, x) \\
\pi^{\mu \nu}=0+\delta \pi^{\mu \nu}(t, x) \quad \text { Necessary for Israel-Stewart }
\end{gathered}
$$

Lorentz Transformation

Lorentz Transformation

* ω and k are components of a 4-vector. They are not Lorentz invariant!

Lorentz Transformation

* ω and k are components of a 4-vector. They are not Lorentz invariant!
* Let's define the following Lorentz invariant quantities:

Lorentz Transformation

* ω and k are components of a 4-vector. They are not Lorentz invariant!
* Let's define the following Lorentz invariant quantities:

$$
\begin{gathered}
\Omega=u_{\mu} k^{\mu}=\gamma(k v-\omega) \\
\kappa=\sqrt{\Delta_{\mu \nu} k^{\mu} k^{\nu}}=\gamma(k-\omega v)
\end{gathered}
$$

Lorentz Transformation

* ω and k are components of a 4-vector. They are not Lorentz invariant!
* Let's define the following Lorentz invariant quantities:

$$
\begin{gathered}
\Omega=u_{\mu} k^{\mu}=\gamma(k v-\omega) \\
\kappa=\sqrt{\Delta_{\mu \nu} k^{\mu} k^{\nu}}=\gamma(k-\omega v)
\end{gathered}
$$

* We can write the dispersion relation in any frame by this definition!

Dispersion Relations

Dispersion Relations

BRSSS

Dispersion Relations

BRSSS

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \tilde{\Omega}^{2} \tilde{\kappa}^{2}=0
$$

Dispersion Relations

BRSSS

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \tilde{\Omega}^{2} \tilde{\kappa}^{2}=0
$$

Israel-Stewart

Dispersion Relations

BRSSS

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \tilde{\Omega}^{2} \tilde{\kappa}^{2}=0
$$

Israel-Stewart

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}+\mathrm{i} \tilde{\tau}_{\pi} \tilde{\Omega}^{3}+\frac{\mathrm{i} \tilde{\tau}_{\pi}}{3} \tilde{\Omega} \tilde{\kappa}^{2}=0
$$

Dispersion Relations

$$
\begin{aligned}
& \Omega=\gamma(k v-\omega) \\
& \kappa=\gamma(k-\omega v)
\end{aligned}
$$

BRSSS

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \tilde{\Omega}^{2} \tilde{\kappa}^{2}=0
$$

Israel-Stewart

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}+\mathrm{i} \tilde{\tau}_{\pi} \tilde{\Omega}^{3}+\frac{\mathrm{i} \tilde{\tau}_{\pi}}{3} \tilde{\Omega} \tilde{\kappa}^{2}=0
$$

Dispersion Relations

$$
\begin{aligned}
& \Omega=\gamma(k v-\omega) \\
& \kappa=\gamma(k-\omega v)
\end{aligned}
$$

BRSSS
It can go from $\mathrm{d}=2$ to $\mathrm{d}=4$

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \tilde{\Omega}^{2} \tilde{\kappa}^{2}=0
$$

Israel-Stewart
Always $\mathrm{d}=3$

$$
\tilde{\Omega}^{2}-\frac{\tilde{\kappa}^{2}}{3}-\frac{4 \mathrm{i}}{3} \frac{\eta}{s} \tilde{\Omega} \tilde{\kappa}^{2}+\mathrm{i} \tilde{\tau}_{\pi} \tilde{\Omega}^{3}+\frac{\mathrm{i} \tilde{\tau}_{\pi}}{3} \tilde{\Omega} \tilde{\kappa}^{2}=0
$$

Causality and Stability (BRSSS)

Causality and Stability (BRSSS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

Causality and Stability (BRSSS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

BRSSS - 4 Roots

Causality and Stability (BRSSS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

BRSSS - 4 Roots

Causality and Stability (BRSSS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

BRSSS - 4 Roots
Not Stable even for small v! There are always unstable modes!

Causality and Stability (IS)

Causality and Stability (IS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

Causality and Stability (IS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

Israel-Stewart - 3 Roots

Causality and Stability (IS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

Israel-Stewart - 3 Roots

Causality and Stability (IS)

$$
\tilde{\omega}=\omega_{0}+\omega_{1} k+\omega_{2} k^{2}+O\left(k^{3}\right)
$$

Israel-Stewart - 3 Roots

No Problem with Stability!

Conclusion

Conclusion

*Relaxation is needed to cure causality and stability issues

Conclusion

*Relaxation is needed to cure causality and stability issues

* Israel-Stewart can only be approximated as BRSSS in the rest frame for small k in the linear perturbation regime

Conclusion

*Relaxation is needed to cure causality and stability issues

* Israel-Stewart can only be approximated as BRSSS in the rest frame for small k in the linear perturbation regime
* We proved that BRSSS is not stable even for infinitesimal boost in the IR

Conclusion

*Relaxation is needed to cure causality and stability issues

* Israel-Stewart can only be approximated as BRSSS in the rest frame for small k in the linear perturbation regime
* We proved that BRSSS is not stable even for infinitesimal boost in the IR
* BRSSS does not improve Navier-Stokes, it is even less stable!

Conclusion

*Relaxation is needed to cure causality and stability issues

* Israel-Stewart can only be approximated as BRSSS in the rest frame for small k in the linear perturbation regime
* We proved that BRSSS is not stable even for infinitesimal boost in the IR
* BRSSS does not improve Navier-Stokes, it is even less stable!
* BRSSS is not equivalent to Israel-Stewart!!!

Conclusion

*Relaxation is needed to cure causality and stability issues

* Israel-Stewart can only be approximated as BRSSS in the rest frame for small k in the linear perturbation regime
* We proved that BRSSS is not stable even for infinitesimal boost in the IR
* BRSSS does not improve Navier-Stokes, it is even less stable!
* BRSSS is not equivalent to Israel-Stewart!!!
* Therefore, τ of BRSSS and τ of Israel-Stewart are different coefficients

Future Work

Future Work

* Finish this paper:)

Future Work

* Finish this paper :)
* Calculate the Israel-Stewart coefficient τ using holography

Future Work

* Finish this paper :)
* Calculate the Israel-Stewart coefficient τ using holography
* Study general transformation properties of Green functions under Lorentz Transformation

Appendix 1 - Overview

Appendix 1 - Overview

First, Simplest Relativistic Viscous theory:

Appendix 1 - Overview

First, Simplest Relativistic Viscous theory:

Energy Tensor :

Appendix 1 - Overview

First, Simplest Relativistic Viscous theory:

Dissipative contribution Stress
Energy Tensor :

$$
\pi^{\mu \nu}=T^{\mu \nu}-T_{i d e a l}^{\mu \nu}=T^{\mu \nu}-\epsilon u^{\mu} u^{\nu}+p \Delta^{\mu \nu}
$$

Appendix 1 - Overview

First, Simplest Relativistic Viscous theory:

Dissipative contribution Stress
Energy Tensor :

$$
\pi^{\mu \nu}=T^{\mu \nu}-T_{\text {ideal }}^{\mu \nu}=T^{\mu \nu}-\epsilon u^{\mu} u^{\nu}+p \Delta^{\mu \nu}
$$

Equations of motion

$$
\begin{gathered}
D \epsilon+(\epsilon+p) \theta-\pi^{\mu \nu} \nabla_{\perp(\mu} u_{\nu)}=0 \\
(\epsilon+p) D u^{\alpha}-\nabla_{\perp}^{\alpha} p+\Delta_{\nu}^{\alpha} \nabla_{\perp \mu} \pi^{\mu \nu}=0
\end{gathered}
$$

Appendix 2 - BRSSS and IS

Appendix 2 - BRSSS and IS

BRSSS claim their theory is the same as Israel-Stewart

Appendix 2 - BRSSS and IS

BRSSS claim their theory is the same as Israel-Stewart

* We can explicitly see their propagating modes are the same in the IR

Appendix 2 - BRSSS and IS

BRSSS claim their theory is the same as Israel-Stewart
*We can explicitly see their propagating modes are the same in the IR

$$
\begin{aligned}
& \tilde{\omega}_{B R S S S \text { rest }, 1}=\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}-\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right) \\
& \tilde{\omega}_{B R S S S \text { rest }, 2}=-\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}+\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right)
\end{aligned}
$$

Appendix 2 - BRSSS and IS

BRSSS claim their theory is the same as Israel-Stewart
*We can explicitly see their propagating modes are the same in the IR

$$
\begin{aligned}
\tilde{\omega}_{B R S S S \text { rest }, 1} & =\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}-\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right) \\
\tilde{\omega}_{B R S S S \text { rest }, 2} & =-\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}+\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right) \\
\tilde{\omega}_{I S \text { rest }, 1} & =\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}-\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right) \\
\tilde{\omega}_{I S \text { rest }, 2} & =-\frac{\tilde{k}}{\sqrt{3}}-\frac{2}{3} \mathrm{i} \frac{\eta}{s} \tilde{k}^{2}+\frac{2}{3 \sqrt{3}} \frac{\eta}{s}\left(\frac{\eta}{s}-\tilde{\tau}_{\pi}\right) \tilde{k}^{3}+O\left(\tilde{k}^{4}\right)
\end{aligned}
$$

Appendix 3 - Dispersion Relations

Appendix 3 - Dispersion Relations

In a reference frame
parametrized by v:

Appendix 3 - Dispersion Relations

In a reference frame parametrized by v:

BRSSS

Appendix 3 - Dispersion Relations

In a reference frame parametrized by v:

BRSSS

$$
\begin{aligned}
& \tilde{\omega}^{4}\left\{\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} v^{2}\right\}+\tilde{\omega}^{3}\left\{-\frac{4}{3} i \frac{\eta}{s} \gamma v^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} 2 v\left(1+v^{2}\right) \tilde{k}\right\}+ \\
& \tilde{\omega}^{2}\left\{-\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} i \frac{\eta}{s} \gamma v\left(v^{2}+2\right) \tilde{k}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}\left(v^{4}+4 v^{2}+1\right) \tilde{k}^{2}\right\}+\tilde{\omega}\left\{\frac{4}{3} v \tilde{k}-\frac{4}{3} i \gamma \frac{\eta}{s}\left(1+2 v^{2}\right) \tilde{k}^{2}-\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}(2 v)\left(1+v^{2}\right) \tilde{k}^{3}\right\}+ \\
& \left\{-\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}+\frac{4}{3} i \frac{\eta}{s} \gamma v \tilde{k}^{3}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2} v^{2} \tilde{k}^{4}\right\}=0
\end{aligned}
$$

Appendix 3 - Dispersion Relations

In a reference frame parametrized by v:

BRSSS

$$
\begin{aligned}
& \tilde{\omega}^{4}\left\{\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} v^{2}\right\}+\tilde{\omega}^{3}\left\{-\frac{4}{3} i \frac{\eta}{s} \gamma v^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} 2 v\left(1+v^{2}\right) \tilde{k}\right\}+ \\
& \tilde{\omega}^{2}\left\{-\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} i \frac{\eta}{s} \gamma v\left(v^{2}+2\right) \tilde{k}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}\left(v^{4}+4 v^{2}+1\right) \tilde{k}^{2}\right\}+\tilde{\omega}\left\{\frac{4}{3} v \tilde{k}-\frac{4}{3} i \gamma \frac{\eta}{s}\left(1+2 v^{2}\right) \tilde{k}^{2}-\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}(2 v)\left(1+v^{2}\right) \tilde{k}^{3}\right\}+ \\
& \left\{-\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}+\frac{4}{3} i \frac{\eta}{s} \gamma v \tilde{k}^{3}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2} v^{2} \tilde{k}^{4}\right\}=0
\end{aligned}
$$

Israel-Stewart

Appendix 3-Dispersion Relations

In a reference frame parametrized by v:

BRSSS

$$
\begin{aligned}
& \tilde{\omega}^{4}\left\{\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} v^{2}\right\}+\tilde{\omega}^{3}\left\{-\frac{4}{3} i \frac{\eta}{s} \gamma v^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} 2 v\left(1+v^{2}\right) \tilde{k}\right\}+ \\
& \tilde{\omega}^{2}\left\{-\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} i \frac{\eta}{s} \gamma v\left(v^{2}+2\right) \tilde{k}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}\left(v^{4}+4 v^{2}+1\right) \tilde{k}^{2}\right\}+\tilde{\omega}\left\{\frac{4}{3} v \tilde{k}-\frac{4}{3} i \gamma \frac{\eta}{s}\left(1+2 v^{2}\right) \tilde{k}^{2}-\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}(2 v)\left(1+v^{2}\right) \tilde{k}^{3}\right\}+ \\
& \left\{-\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}+\frac{4}{3} i \frac{\eta}{s} \gamma v \tilde{k}^{3}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2} v^{2} \tilde{k}^{4}\right\}=0
\end{aligned}
$$

Israel-Stewart

$$
\begin{gathered}
\tilde{\omega}^{3}\left\{-\mathrm{i} \gamma \tilde{\tau}_{\pi}\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma v^{2}\right\}+\tilde{\omega}^{2}\left\{\left(1-\frac{v^{2}}{3}\right)+\mathrm{i} \gamma \tilde{\tau}_{\pi} v \frac{\left(7-v^{2}\right)}{3} \tilde{k}-\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma v\left(2+v^{2}\right) \tilde{k}\right\}+ \\
\tilde{\omega}\left\{-\frac{4}{3} v \tilde{k}+\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma\left(1+2 v^{2}\right) \tilde{k}^{2}+\mathrm{i} \gamma \tilde{\tau}_{\pi} \frac{\left(1-7 v^{2}\right)}{3} \tilde{k}^{2}\right\}+\left\{\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}-\frac{4}{3} \frac{\eta}{s} \gamma v \tilde{k}^{3}+\mathrm{i} \gamma \tilde{\tau}_{\pi} v\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{3}\right\}=0
\end{gathered}
$$

Appendix 3-Dispersion Relations

In a reference frame parametrized by v:

BRSSS
Degree 4!
$\tilde{\omega}^{4}\left\{\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} v^{2}\right\}+\tilde{\omega}^{3}\left\{-\frac{4}{3} i \frac{\eta}{s} \gamma v^{2}-\frac{4}{3} \frac{\eta}{s} \tilde{\tau}_{\pi} \gamma^{2} 2 v\left(1+v^{2}\right) \tilde{k}\right\}+$
$\tilde{\omega}^{2}\left\{-\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} i \frac{\eta}{s} \gamma v\left(v^{2}+2\right) \tilde{k}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}\left(v^{4}+4 v^{2}+1\right) \tilde{k}^{2}\right\}+\tilde{\omega}\left\{\frac{4}{3} v \tilde{k}-\frac{4}{3} i \gamma \frac{\eta}{s}\left(1+2 v^{2}\right) \tilde{k}^{2}-\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2}(2 v)\left(1+v^{2}\right) \tilde{k}^{3}\right\}+$
$\left\{-\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}+\frac{4}{3} i \frac{\eta}{s} \gamma v \tilde{k}^{3}+\frac{4}{3} \tilde{\tau}_{\pi} \frac{\eta}{s} \gamma^{2} v^{2} \tilde{k}^{4}\right\}=0$

Israel-Stewart
Still degree 3
$\tilde{\omega}^{3}\left\{-\mathrm{i} \gamma \tilde{\tau}_{\pi}\left(1-\frac{v^{2}}{3}\right)+\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma v^{2}\right\}+\tilde{\omega}^{2}\left\{\left(1-\frac{v^{2}}{3}\right)+\mathrm{i} \gamma \tilde{\tau}_{\pi} v \frac{\left(7-v^{2}\right)}{3} \tilde{k}-\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma v\left(2+v^{2}\right) \tilde{k}\right\}+$
$\tilde{\omega}\left\{-\frac{4}{3} v \tilde{k}+\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma\left(1+2 v^{2}\right) \tilde{k}^{2}+\mathrm{i} \gamma \tilde{\tau}_{\pi} \frac{\left(1-7 v^{2}\right)}{3} \tilde{k}^{2}\right\}+\left\{\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{2}-\frac{4}{3} \mathrm{i} \frac{\eta}{s} \gamma v \tilde{k}^{3}+\mathrm{i} \gamma \tilde{\tau}_{\pi} v\left(v^{2}-\frac{1}{3}\right) \tilde{k}^{3}\right\}=0$

Appendix 4 -Causality and Stability (BRSSS)

Appendix 4 -Causality and Stability (BRSSS)

The four roots are:

Appendix 4 -Causality and Stability (BRSSS)

The four roots are:

$\tilde{\omega}_{2, B R S S S}(\tilde{k}, v)=\left\{-\frac{\sqrt{3}}{2} \frac{1}{\sqrt{\frac{1}{s} \tilde{\tau}_{\pi}}} \frac{1}{v}+\frac{\mathrm{i}}{2 \tilde{\tau}_{\pi}}+\frac{\sqrt{\frac{\pi}{s} \tilde{\tau}_{\pi}}}{4\left(\sqrt{3} \frac{\eta}{s} \frac{\eta}{\tilde{T}} \tilde{\tau}_{\pi}\right.}\left(\frac{\eta}{s}+4 \tilde{\tau}_{\pi}\right) v+O\left(v^{2}\right)\right\}+\tilde{k}\left\{\frac{1}{v}+\frac{\mathrm{i} \frac{\eta}{s}}{\sqrt{3} \sqrt{\frac{\eta}{s} \tilde{\tau}_{\pi}}}+\frac{v}{3}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{2}\right)$

Appendix 4 -Causality and Stability (BRSSS)

The four roots are:

$\tilde{\omega}_{1, B R S S S}(\tilde{k}, v)=\left\{\frac{\sqrt{3}}{2} \frac{1}{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}} \frac{1}{v}+\frac{\mathrm{i}}{2 \tilde{\tau}_{\pi}}-\frac{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}}{4\left(\sqrt{3} \frac{\eta}{s} \tilde{\tau}_{\pi}^{2}\right.}\left(\frac{\eta}{s}+4 \tilde{\tau}_{\pi}\right) v+O\left(v^{2}\right)\right\}+\tilde{k}\left\{\frac{1}{v}-\frac{\mathrm{i} \frac{\eta}{s}}{\sqrt{3} \sqrt{\frac{\eta}{s}} \tilde{\tau}_{p i}}+\frac{v}{3}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{2}\right)$
$\tilde{\omega}_{2, B R S S S}(\tilde{k}, v)=\left\{-\frac{\sqrt{3}}{2} \frac{1}{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}} \frac{1}{v}+\frac{\mathrm{i}}{2 \tilde{\tau}_{\pi}}+\frac{\sqrt{\frac{\eta}{s} \tilde{\tau}_{\pi}}}{4\left(\sqrt{3} \frac{\eta}{s} \tau_{\pi}^{2}\right)}\left(\frac{\eta}{s}+4 \tilde{\tau}_{\pi}\right) v+O\left(v^{2}\right)\right\}+\tilde{k}\left\{\frac{1}{v}+\frac{\mathrm{i} \frac{\eta}{s}}{\sqrt{3} \sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}}+\frac{v}{3}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{2}\right)$
$\tilde{\omega}_{3, B R S S S}(\tilde{k}, v)=\tilde{k}\left\{-\frac{1}{\sqrt{3}}+\frac{2}{3} v+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{\mathrm{i}}{\sqrt{3}} \frac{1}{v}+\left(-\mathrm{i} \frac{\eta}{s}-\frac{2}{3} \mathrm{i}\left(\frac{\eta}{s}\right)^{2} \tilde{\tau}_{\pi}\right)-\frac{\mathrm{i}}{6 \sqrt{3}}\left(-3+4 \frac{\eta}{s} \tilde{\tau}_{\pi}+8\left(\frac{\eta}{s} \tilde{\tau}_{\pi}\right)^{2}\right) v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)$
$\tilde{\omega}_{4, B R S S S}(\tilde{k}, v)=\tilde{k}\left\{\frac{1}{\sqrt{3}}+\frac{2}{3} v+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{\frac{\mathrm{i}}{\sqrt{3}} \frac{1}{v}+\left(-\mathrm{i} \frac{\eta}{s}-\frac{2}{3} \mathrm{i}\left(\frac{\eta}{s}\right)^{2} \tilde{\tau}_{\pi}\right)+\frac{\mathrm{i}}{6 \sqrt{3}}\left(-3+4 \frac{\eta}{s} \tilde{\tau}_{\pi}+8\left(\frac{\eta}{s} \tilde{\tau}_{\pi}\right)^{2}\right) v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)$

Appendix 4 -Causality and Stability (BRSSS)

The four roots are:
$\tilde{\omega}_{1, B R S S S}(\tilde{k}, v)=\left\{\frac{\sqrt{3}}{2} \frac{1}{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}} \frac{1}{v}+\frac{\mathrm{i}}{2 \tilde{\tau}_{\pi}}-\frac{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}}{4\left(\sqrt{3} \frac{\eta}{s} \tilde{\tau}_{\pi}^{2}\right)}\left(\frac{\eta}{s}+4 \tilde{\tau}_{\pi}\right) v+O\left(v^{2}\right)\right\}+\tilde{k}\left\{\frac{1}{v}-\frac{\mathrm{i} \frac{\eta}{s}}{\sqrt{3} \sqrt{\frac{\eta}{s}} \tilde{\tau}_{p i}}+\frac{v}{3}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{2}\right)$
$\tilde{\omega}_{2, B R S S S}(\tilde{k}, v)=\left\{-\frac{\sqrt{3}}{2} \frac{1}{\sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}} \frac{1}{v}+\frac{\mathrm{i}}{2 \tilde{\tau}_{\pi}}+\frac{\sqrt{\frac{\eta}{s} \tilde{\tau}_{\pi}}}{4\left(\sqrt{3} \frac{\eta}{s} \frac{\tilde{\tau}_{\pi}^{2}}{2}\right)}\left(\frac{\eta}{s}+4 \tilde{\tau}_{\pi}\right) v+O\left(v^{2}\right)\right\}+\tilde{k}\left\{\frac{1}{v}+\frac{\mathrm{i} \frac{\eta}{s}}{\sqrt{3} \sqrt{\frac{\eta}{s}} \tilde{\tau}_{\pi}}+\frac{v}{3}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{2}\right)$
$\tilde{\omega}_{3, B R S S S}(\tilde{k}, v)=\tilde{k}\left\{-\frac{1}{\sqrt{3}}+\frac{2}{3} v+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{\mathrm{i}}{\sqrt{3}} \frac{1}{v}+\left(-\mathrm{i} \frac{\eta}{s}-\frac{2}{3} \mathrm{i}\left(\frac{\eta}{s}\right)^{2} \tilde{\tau}_{\pi}\right)-\frac{\mathrm{i}}{6 \sqrt{3}}\left(-3+4 \frac{\eta}{s} \tilde{\tau}_{\pi}+8\left(\frac{\eta}{s} \tilde{\tau}_{\pi}\right)^{2}\right) v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)$
$\tilde{\omega}_{4, B R S S S}(\tilde{k}, v)=\tilde{k}\left\{\frac{1}{\sqrt{3}}+\frac{2}{3} v+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{\frac{\mathrm{i}}{\sqrt{3}} \frac{1}{v}+\left(-\mathrm{i} \frac{\eta}{s}-\frac{2}{3} \mathrm{i}\left(\frac{\eta}{s}\right)^{2} \tilde{\tau}_{\pi}\right)+\frac{\mathrm{i}}{6 \sqrt{3}}\left(-3+4 \frac{\eta}{s} \tilde{\tau}_{\pi}+8\left(\frac{\eta}{s} \tilde{\tau}_{\pi}\right)^{2}\right) v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)$

Clearly all modes have singularities for arbitrarily small

Appendix 5-Causality and Stability (IS)

Appendix 5-Causality and Stability (IS)

The three roots are for IS:

Appendix 5-Causality and Stability (IS)

The three roots are for IS:

$$
\begin{aligned}
& \tilde{\omega}_{1, I S}=\tilde{k}\left\{\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}+\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right) \\
& \tilde{\omega}_{2, I S}=\tilde{k}\left\{-\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}-\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)
\end{aligned}
$$

Appendix 5-Causality and Stability (IS)

The three roots are for IS:

$$
\begin{aligned}
& \tilde{\omega}_{1, I S}=\tilde{k}\left\{\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}+\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right) \\
& \tilde{\omega}_{2, I S}=\tilde{k}\left\{-\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}-\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right) \\
& \tilde{\omega}_{3, I S}=\left\{-\frac{\mathrm{i}}{\tilde{\tau}_{\pi}}-\mathrm{i} \frac{\left(8 \frac{\eta}{s}-3 \tilde{\tau}_{\pi}\right)}{6 \tilde{\tau}_{\pi}^{2}} v^{2}+O\left(v^{4}\right)\right\}+\tilde{k}\left\{\left(1-\frac{8 \eta}{3 s \tilde{\tau}_{\pi}}\right) v+O\left(v^{3}\right)\right\}+\tilde{k}^{2}\left\{\frac{4 i \eta}{3 s}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)
\end{aligned}
$$

Appendix 5-Causality and Stability (IS)

The three roots are for IS:

$$
\begin{aligned}
& \tilde{\omega}_{1, I S}=\tilde{k}\left\{\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}+\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right) \\
& \tilde{\omega}_{2, I S}=\tilde{k}\left\{-\frac{1}{\sqrt{3}}+\frac{2 v}{3}+O\left(v^{2}\right)\right\}+\tilde{k}^{2}\left\{-\frac{2 i}{3} \frac{\eta}{s}-\frac{2 i}{\sqrt{3}} \frac{\eta}{s} v+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right) \\
& \tilde{\omega}_{3, I S}=\left\{-\frac{\mathrm{i}}{\tilde{\tau}_{\pi}}-\mathrm{i} \frac{\left(8 \frac{\eta}{s}-3 \tilde{\tau}_{\pi}\right)}{6 \tilde{\tau}_{\pi}^{2}} v^{2}+O\left(v^{4}\right)\right\}+\tilde{k}\left\{\left(1-\frac{8 \eta}{3 s \tilde{\tau}_{\pi}}\right) v+O\left(v^{3}\right)\right\}+\tilde{k}^{2}\left\{\frac{4 \eta}{3 s}+O\left(v^{2}\right)\right\}+O\left(\tilde{k}^{3}\right)
\end{aligned}
$$

All modes are safe for arbitrarily small v!

