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profiles of T , ux, πξξ, πyy, and πxy. The solid lines correspond to the analytical solutions while the points correspond
to the numerical solutions of Eq. (19) obtained with music.
Note that the level of agreement is the same as before. The solutions in hyperbolic coordinate even appear to be

qualitatively the same, containing the same general structures as the full solutions. However, from a practical point
of view, the above solutions are very convenient to test a code since they are already cast in the form of functions
and can be written directly into the code.

V. CONCLUSIONS

We have presented the first analytical and semi-analytical solutions of a radially expanding viscous conformal fluid
that follows relaxation-type equations such as the Israel-Stewart equations. The SO(3)⊗ SU(1, 1)⊗ Z2 invariant
solutions for the temperature, shear stress tensor, and flow discussed here can be used to test the existing numerical
algorithms used to solve the equations of motion of viscous relativistic fluid dynamics in ultrarelativistic heavy ion
collision applications.
We further demonstrated how the solutions derived in this paper can be used to optimize the numerical algorithm of

a well known hydrodynamical code, fixing numerical parameters that can only be determined by trial and error. The
music simulation code was shown to produce results that are in good agreement with the analytic and semi-analytic
solutions of Israel-Stewart theory undergoing Gubser flow.
Also, once the temperature and shear-stress tensor profiles are known, one can use this information for instance to

study the energy loss of hard probes in a radially expanding and viscous QGP scenario [27, 28]. Another interesting
aspect that could be studied would be the propagation of small disturbances [12, 29] on the expanding IS fluid
background found here in which the temperature is positive definite throughout the whole dynamical evolution (which
is not the case in the Navier-Stokes solution). Moreover, it would be interesting to see if the solutions found here for
the conformal Israel-Stewart equations correspond to a black hole configuration in an asymptotically AdS5 geometry,
as it is the case for the NS equations at zero chemical potential [30].
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u

µ = (�, �v, 0, 0) + (v�ux(t, x), �ux(t, x), 0, 0)

T = T0 + �T (t, x)

⇡

µ⌫ = 0 + �⇡

µ⌫(t, x) Necessary for Israel-Stewart
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✤ # and k are components of a 4-vector. They are not Lorentz invariant!

✤ Let’s define the following Lorentz invariant quantities:

⌦ = uµk
µ = �(kv � !)

 =
p
�µ⌫kµk⌫ = �(k � !v)

✤ We can write the dispersion relation in any frame by this definition!
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Conclusion

✤ Relaxation is needed to cure causality and stability issues

✤ Israel-Stewart can only be approximated as BRSSS in the rest frame 
for small k in the linear perturbation regime 

✤ We proved that BRSSS is not stable even for infinitesimal boost in the 
IR

✤ BRSSS does not improve Navier-Stokes, it is even less stable!

✤ BRSSS is not equivalent to Israel-Stewart!!!

✤ Therefore, " of BRSSS and " of Israel-Stewart are different coefficients
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Future Work

✤ Finish this paper :)

✤ Calculate the Israel-Stewart coefficient " using holography

✤ Study general transformation properties of Green functions under Lorentz 
Transformation
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Appendix 1 - Overview

First, Simplest Relativistic Viscous theory:

⇡µ⌫ = Tµ⌫ � Tµ⌫
ideal = Tµ⌫ � ✏uµu⌫ + p�µ⌫

Dissipative contribution Stress 
Energy Tensor :

Equations of motion

D✏+ (✏+ p)✓ � ⇡µ⌫r?(µu⌫) = 0

(✏+ p)Du↵ �r↵
?p+�↵

⌫r?µ⇡
µ⌫ = 0
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Clearly all modes have singularities for arbitrarily small 
v!
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