A FISICA FRONTAL NO CMS

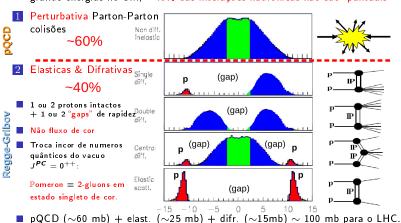
& a participação do DRCC

Doutorado: Miguel Medina

Orientador: Prof. Dr. José A. Chinellato

UNICAMP-IFGW-DRCC

Retinha XXV, Unicamp, Feb 5-7, 2014

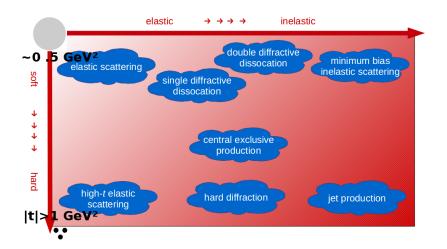

Sumar<u>io</u>

- Motivação
- O detector CMS
- Participação do DRCC.

MOTIVAÇÃO

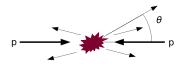
PORQUE FÍSICA FRONTAL?

■ Hádrons são objetos compostos extensos: Mesmo assintoticamente para grande energias no CM, ~40% das interações hadrônicas não são "puntuais"



PROCESSOS DIFRATIVOS!

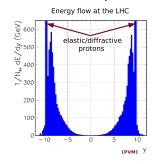
- Classicamente, a teoria que descreve o fenômeno do espalhamento de um feixe de luz que passa por uma fenda de pequenas dimensões é conhecida como difração.
- Good e Walker definiram pela primeira vez o que é a difração em partículas.
 - Eles demonstraram que a conservação de números quânticos, entre as partículas incidentes e espalhadas na interação, é a característica mais evidente desse processo.
- Os processos difrativos, como parte dos processos das interações fortes também contém duas categorias: processos macios e duros.



PROCESSOS DIFRATIVOS!

Que é Física Frontal?

Definição experimental

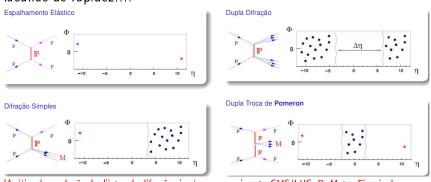

Todos os processos em que as partículas são produzidas em pequenos ângulos polares (i.e., grande rapidez).

No LHC em colisões p-p para $\sqrt{s} = 14$ TeV é

$$y_{max} = \ln\left(\frac{\sqrt{s}}{m}\right) \approx 11, 5$$

Para $m \ll |p^T|$, $y \to \eta$;

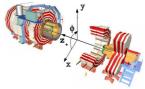
[P. Vam Mechelen, Forw. Phy. at the LHC, 2007]



$$\begin{array}{l} \text{Mais energia \'e depositada entre:} \\ 8 < \left| y = \frac{1}{2} \ln \left(\frac{\rho^+}{\rho^-} \right) = \frac{1}{2} \ln \left(\frac{E + \rho_{\textbf{z}}}{E - \rho_{\textbf{z}}} \right) \right| < 10 \end{array}$$

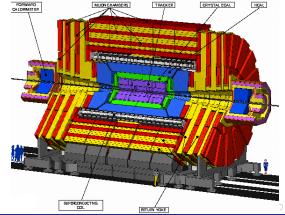
 \blacksquare CMS & ATLAS $|\eta| < 5$

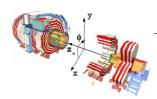
TOPOLOGIAS DIFRATIVAS


Experimentalmente eventos difrativos podem ser caracterizados por lacunas de rapidez!!!!

[Análise da produção de dijatos de difração simples no experimento CMS/LHC. D. Matos Figueiredo. 2011.]

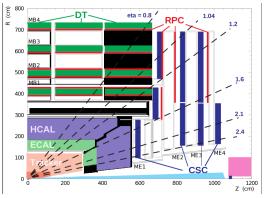
O detector CMS

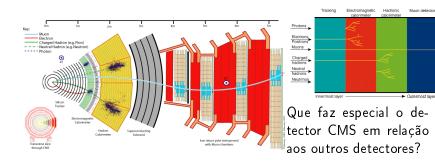

O DETECTOR CMS


1		$(\theta \setminus]$
$\eta = -\ln$	tan	$(\bar{2})$

Comprimento 21.5 m Diâmetro 15 m Peso Total 12500 t Campo Magnético 4 teslas

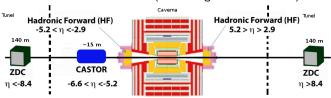
Sistema	Materiais Ativos	Aceptância
Traços	Pixel e microtiras de Si	$ \eta < 2, 5(9, 4^{\circ})$
ECAL	cristais de <i>pbWO</i> 4 e microtiras de Si	$ \eta < 3,0(5,7^{\circ})$
HCAL	cintiladores plásticos e fibras de quartzo	$ \eta < 5,0(0,8^{\circ})$
Mú on s	CSC, RPC e DT	$ \eta < 2, 4(10, 4^{\circ})$


O DETECTOR CMS


$\eta = - \ln$	tan	$\left(\frac{\theta}{2}\right)$
----------------	-----	---------------------------------

Comprimento 21,5 m
Diâmetro 15 m
Peso Total 12500 t
Campo Magnético 4 teslas

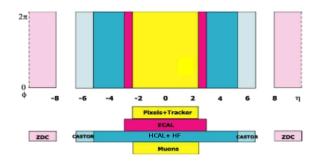
Sist ema	Materiais Ativos	Aceptância
Traços	Pixel e microtiras de Si	$ \eta < 2, 5(9, 4^{\circ})$
ECAL	cristais de pbWO4 e microtiras de Si	$ \eta < 3,0(5,7°)$
HCAL	cintiladores plásticos e fibras de quartzo	$ \eta < 5,0(0,8^{\circ})$
Mú on s	CSC, RPC e DT	$ \eta < 2, 4(10, 4^{\circ})$



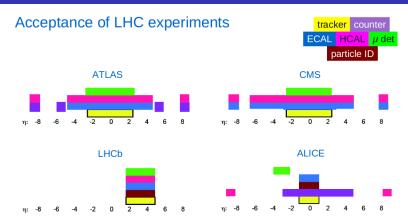
CORTE TRANVERSAL: DETECTOR DE TIPO **ESPECTÔMETRO**

SUB-DETECTORES FRONTAIS

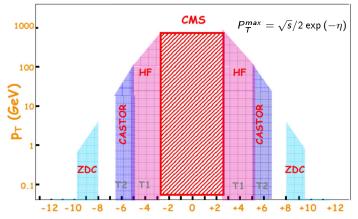
O experimento CMS oferece oportunidades excelentes para o estudo de física frontal. Pois além da cobertura do detector central ($|\eta| < 5.0$), possui detectores específicos para estudos dessa região física como os calorímetros HF, CASTOR e ZDC (Zero Degree Calorimeter)



Mas não é o unico!..


- lacksquare Um experimento TOTEM separado amplia ainda mais o alcançe frontal $(3,1<|\eta|<6,5)...$
- Proposta de detectores FP420!.
- \blacksquare ATLAS também tem detetores frontais!! O ZDC $|\eta|>$ 8.3, a 140 m, LUCID 5, 6 $<|\eta|<$ 5, 9 e ALFA (RP) 240 IP. 10.6 $<|\eta|<$ 13.5.


ACEPTÂNCIA NO CMS


ACEPTÂNCIA NO LHC

[Roubado de P. Van Mechelen INT Workshop on Perturbative and Non-Perturbative Aspects of QCD at Collider Energies Seattle, September 13-18, 2010]

Cobertura em Pseudorapidez e P_T !

[Roubado de Valdim Oreshkin, Highlights in Forward Physics from CMS, Hadron structure 2011.]

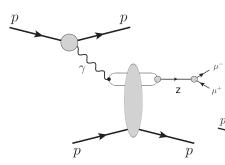
FISICA FRONTAL NO CMS!

- Small-x: PDFs, BFKL, Saturation.
- Diffration dPDFs.
- MPI/UE.

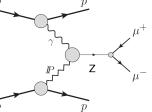
Nossa participação!

Nossa participação (DRCC)!

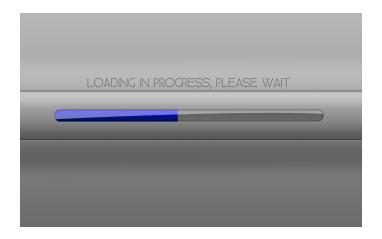
Forward and Small-x QCD Physics


- Anexos à UERJ (A. Santoro)
 - Professor Jose A Chinellato
 - Professor Edmilson Tonelli Manganote
 - Thiago Victor Moreno*→ Estudo de flutuacoes de numero de muons em chuveiros extensos, a partir de modelos de interações hadronicas ajustados com dados recentes do CMS/LHC(Teses de mestrado)!
 - Miguel Medina Exclusive Z production in CMS (andamento)!
 - Contribuição no upgrade, na implementação da eletronica do HCAL, junto com o grupo do Rio!

Nossa Motivação


- Estudar os processos $pp \to pZp \to p\ell^+\ell^-p$ na procura de uma nova física.
- Calcular a seção de choque para a produção exclusiva de bósons Z no LHC.
- Compreensão de processos difractivos e da dinâmica de troca de Pomeron.

TEORIA?



- Os dois prótons emergem intactos da interação.
- Processos físicos envolvendo fussão $\gamma \mathbb{P}$.

 Eventos exclusivos: Somente dois léptons no estado final, não temos outras partículas produzidas e uma lacuna de rapidez.

RESULTADOS!

THE END.

GRACIAS POR SU PACIENCIA! obrigado pela sua paciência! thanks for your patience!