Potential for Heavy-Quark Interaction from a Gluon Propagator from Lattice Simulations

Willian M. Serenone Universidade de São Paulo Instituto de Física de São Carlos

Orientadora: Tereza Mendes

Willian M. Serenone Potential for Heavy-Quark Interaction from a Gluon Propaga

Table of contents

1 Modelo de Potenciais

Propagador gluônico obtido via QCD na rede

3 Resultados

Aproximação Não-Relativística

- Massa do quark bottom: $m_b = 4.66(3)$ GeV
- Melhor caso Massa do $\Upsilon(1S)$: $m_{\Upsilon(1S)} = 9.46030(26)$ GeV

$$\frac{T}{E_{\rm repouso}} = \frac{m_{\Upsilon(1S)} - 2m_b}{2m_b} = \frac{0.1403}{9.320} = 0.0151$$

• Pior caso — Massa do $\Upsilon(11020)$: $m_{\Upsilon(11020)} = 11.019(8)$ GeV

$$\frac{T}{E_{\rm repouso}} = \frac{m_{\Upsilon(11020)} - 2m_b}{2m_b} = \frac{1.699}{9.320} = 0.1823$$

Níveis de energia podem ser determinados com boa apoximação via Eq. de Schrödinger

Motivação para o Potencial

• Cálculo da Amplitude de Espalhamento na 1ª Aprox. de Born

$$S_{fi} \equiv \langle f | i \rangle = \delta_{fi} + i(2\pi)^4 \, \delta^{(4)}(Q-P) \, T_{fi}$$

• Contribuição de dois diagramas de Feynman

Usando regras de Feynman

$$\begin{split} T_{fi} &= \frac{1}{(2\pi)^6} \frac{m^2}{\sqrt{E_{p_1} E_{p_2} E_{q_1} E_{q_2}}} \\ & \left[g_0^2 \,\overline{u}(q_1, \tau_1) c_{1,f}^{\dagger} \, \gamma^{\mu} \frac{\lambda^a}{2} \, c_{1,i} u(p_1, \sigma_1) \, \delta^{ab} P_{\mu\nu}(k) \, \overline{v}(p_2, \sigma_2) c_{2,i}^{\dagger} \, \gamma^{\nu} \frac{\lambda^b}{2} \, c_{2,f} v(q_2, \tau_2) \right. \\ & \left. + g_0^2 \, \overline{v}(p_2, \sigma_2) c_{2,i}^{\dagger} \, \gamma^{\mu} \frac{\lambda^a}{2} \, c_{1,i} u(p_1, \sigma_1) \, \delta^{ab} P_{\mu\nu}(k) \, \overline{u}(q_1, \tau_1) c_{1,f}^{\dagger} \, \gamma^{\nu} \frac{\lambda^b}{2} \, c_{2,f} v(q_2, \tau_2) \right] \end{split}$$

Aproximação para os spinores

$$u = \sqrt{\frac{E_{p} + m}{2m}} \begin{pmatrix} 1\\ \sigma \cdot \mathbf{p}\\ \overline{E_{p} + m} \end{pmatrix} \chi_{\sigma}$$
$$\approx \begin{pmatrix} \chi_{\sigma}\\ 0 \end{pmatrix}$$
$$v = \sqrt{\frac{E_{p} + m}{2m}} \begin{pmatrix} \sigma \cdot \mathbf{p}\\ \overline{E_{p} + m}\\ 1 \end{pmatrix} \chi_{\sigma}^{c}$$
$$\approx \begin{pmatrix} 0\\ \chi_{\sigma}^{c} \end{pmatrix}$$
$$\chi_{\sigma} = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix}$$
$$\chi_{\sigma}^{c} = -i\sigma_{2}\chi_{\sigma}$$

Gluon 4-momento no primeiro diagrama¹

$$k = p_1 - q_1 = (0, \mathbf{k})$$

 $k^2 = \mathbf{k}^2$

Cálculo no CM

Gluon 4-momento no segundo diagrama²

$$k = p_1 + p_2 = (2E, 0)$$

$$\approx (2m, 0)$$

$$k^2 = -4m^2$$
Cálculo no CM

Cálculo do Potencial

Fator de cor

$$c_{1,f}^{\dagger} \frac{\lambda^{a}}{2} c_{1,i} c_{2,i}^{\dagger} \frac{\lambda^{a}}{2} c_{2,f} = \frac{4}{3}$$
$$c_{2,i}^{\dagger} \frac{\lambda^{a}}{2} c_{1,i} c_{1,f}^{\dagger} \frac{\lambda^{a}}{2} c_{2,f} = 0$$

Cálculo do potencial
$$V(\mathbf{r}) = -(2\pi)^3 \int \exp(-i\mathbf{k}\cdot\mathbf{r}) T_{fi}(k) d^3k$$

$$T_{fi} = -\frac{1}{(2\pi)^6} \frac{4}{3} g_0^2 \, \delta^{\mu 0} \delta_{\sigma_1 \tau_1} \, P_{\mu \nu}(k) \, \delta^{\nu 0} \delta_{\sigma_2 \tau_2} = -\frac{4}{3} \frac{g_0^2}{(2\pi)^6} \, P_{00}(k) \, \delta_{\sigma_1 \tau_1} \delta_{\sigma_2 \tau_2}$$

Se o gluon se comportar como o foton: $P_{\mu
u}(k)=rac{g_{\mu
u}}{k^2}$, $g_{\mu
u}={
m diag}(-1,1,1,1)$

$$V(r) = -\frac{4}{3} \frac{1}{(2\pi)^3} \int \exp(-i\mathbf{k} \cdot \mathbf{r}) \frac{g_0^2}{\mathbf{k}^2} d^3 k = -\frac{4}{3} \frac{\alpha_s}{r}$$

Propagador gluônico obtido via QCD na rede

A. Cucchieri, D. Dudal, T. Mendes and N. Vandersickel, Phys. Rev. D **85**, 094513 (2012) [arXiv:1111.2327 [hep-lat]].

$$P_{\mu\nu}(k) = \frac{C(s^2 + k^2)}{t^2 + u^2 k^2 + k^4} \left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right) \rightarrow \frac{C(s^2 + k^2)}{t^2 + u^2 k^2 + k^4} \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right)$$

C = 0.784, s = 2.508u = 0.768, t = 0.720

Aprox. Não-Relativistica

$$P_{00}(\mathbf{k}) = -\frac{C(s^2 + \mathbf{k}^2)}{t^2 + u^2 \mathbf{k}^2 + \mathbf{k}^4}$$

$$T_{fi} = -\frac{4}{3} g_0^2 P_{00}(k)$$

Cálculo do potencial $V(r) = -\frac{4}{3} \frac{g_0^2}{(2\pi)^3} \int e^{-ikr\cos\theta} P_{00}(\mathbf{k}) \mathbf{k}^2 \sin\theta \, d\varphi d\theta dk$ $= -\frac{4}{3} \frac{\alpha_s}{i\pi r} \int_0^\infty (e^{ikr} - e^{-ikr}) P_{00}(\mathbf{k}) k dk$ $k_{0,0} = i\sqrt{p}e^{\frac{\beta}{2}} \cdot \frac{\theta^{2}}{k_{0,1}} = i\sqrt{1}e^{-i\frac{\beta}{2}} e^{\left[(-1)^{n}i\frac{\theta}{2}\right]}$

Willian M. Serenone

Potential for Heavy-Quark Interaction from a Gluon Propaga

Integração por resíduos

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} \frac{C}{2} \left[\frac{(s+k_{0,0}^2) e^{ik_{0,0}r}}{u^2 + 2k_{0,0}^2} + \frac{(s+k_{0,1}^2) e^{ik_{0,1}r}}{u^2 + 2k_{0,1}^2} + \frac{(s+k_{1,0}^2) e^{-ik_{1,0}r}}{u^2 + 2k_{1,0}^2} \right]$$
$$= -\frac{4}{3} \frac{\alpha_s}{r} 2C \Re \left[\frac{(s+k_{0,0}^2) e^{ik_{0,0}r}}{u^2 + 2k_{0,0}^2} \right]$$
$$= -\frac{4}{3} \frac{\alpha_s}{r} \frac{C}{\sqrt{\Delta}} e^{-r\sqrt{t}\cos\frac{\theta}{2}} \left[\sqrt{\Delta}\cos\left(r\sqrt{t}\sin\frac{\theta}{2}\right) - (u^2 - 2s)\sin\left(r\sqrt{t}\sin\frac{\theta}{2}\right) \right]$$
$$\Delta \equiv 4t^2 - u^4$$

Potencial baseado em propagador gluônico obtido via QCD na rede

Termo linear do potencial

- Potencial acima de origem essencialmente perturbativa
- Não reproduz confinamento
- Introdução de um termo linear motivado pela expansão de acoplamento forte do loop de Wilson

Discretização da ação na rede

$$S = \frac{1}{4} \int F^{a}_{\mu\nu} F^{\mu\nu, a} d^{4}x \to \sum_{x} \sum_{C(\mu, \nu)} \frac{2n}{g_{0}^{2}} \left\{ 1 - \frac{1}{n} \Re \operatorname{Tr} \left[U_{\mu\nu}(x) \right] \right\}$$
$$U_{\mu\nu} = U_{\mu}(x) U_{\nu}(x + a\hat{\mu}) U^{\dagger}_{\mu}(x + a\hat{\nu}) U^{\dagger}_{\nu}(x)$$

Links e Plaquetas

Associação de um elemento de grupo com um link da rede Represesentação gráfica de uma plaqueta

Integração de Grupo

Integrar sob um link em comum de dois loops leva a fusão dos mesmos e um fator multiplicativo 1/n.

Termo linear do potencial

Expandindo a exponencial no valor esperado do loop de Wilson

$$\langle W(I,J) \rangle = Z^{-1} \int \mathcal{D}U \exp(-S) \operatorname{Tr}\left[\prod_{x} U_{\mu}(x)\right]$$

 $\approx \langle W(I,J) \rangle = \left(\frac{\beta}{2}\right)^{3IJ-1}$

$$V(aJ) = \frac{1}{aI} \ln \left[\frac{\langle W(aJ, aI) \rangle e^{E_0 t}}{\left| \langle 0 | \psi(x) \overline{\psi}(y) | 1 \rangle \right|^2} \right]$$
$$V(r) = F_0 r$$

Willian M. Serenone Potential for Heavy-Quark Interaction from a Gluon Propaga

Resultados para o Botomônio

Parâmetros livres: $F_0 \in m_b$

$m_b(\overline{MS}) = 4.18(3) \text{ GeV}$		Potencial do	$F_0 = 0.2118(1) \text{ GeV}^2$	Coulomb mais	$F_0 = 0.2136(1) \text{ GeV}^2$
$m_b(1S) = 4.66(3)$ GeV		propagador calculado	$m_b = 4.5977(1) \text{ GeV}$	Potencial Linear	$m_b = 4.6090(1) \text{ GeV}$
Ver PDG		n a rede	R = 0.0436		R = 0.0475
Estado	Massa	Massa Calculada	Desvio do	Massa Calculada	Desvio do
da Partícula	Experimental(GeV)	$(\pm 3 imes 10^{-4}~{ m GeV})$	Experimento (GeV)	$(\pm 3 \times 10^{-4} \text{ GeV})$	Experimento (GeV)
1S*	9.42565(153)	9.5763	0.1507	9.5793	0.1528
25	10.02326(31)	10.0071	0.0162	10.0029	0.0204
35	10.3552(5)	10.3317	0.0235	10.3293	0.0259
4S	10.5794(12)	10.6107	0.0313	10.6119	0.0325
5 S	10.876(11)	10.8633	0.0127	10.8675	0.0085
6S	11.019(8)	11.0973	0.0783	11.1045	0.0855
1P*	9.89076(82)	9.8595	0.0313	9.8565	0.0343
2P*	10.25410(94)	10.2033	0.0508	10.2009	0.0532
3P	10.530(14)	10.4943	0.0357	10.4949	0.0351
1D	10.1637(14)	10.0743	0.0894	10.0683	0.0954

Estados marcados com "*" são médias de estados com mesmo momento angular, mas diferente spins.

Resultados para o Botomônio

- Potencial do propagador gluônico obtido via QCD na rede parece concordar um pouco melhor com dados experimentais.
- Como foi obtido de forma não-perturbativa e através de redes grandes ($N = 128^4$), este porpagador possuí mais informação na região infravemelha;
 - Não é esperado que essa informação extra sobreviva a expansão perturbativa.
 - Melhora nos resultados poderia indicar que parte dessa melhora "escapa" para o termo pertubativo.
- Limitações:
 - Não leva em conta interações spin-spin e spin-órbita
 - Como consequência é incapaz de descrever quebras de degenerescência, como ocorre no 1*S*, 1*P* e 2*P*.
 - Presença de erros vindo da aproximação não relativística.