# Asymptotic Scenarios in Proton-Proton Scattering

Paulo V. R. G. Silva

(precchia@ifi.unicamp.br)

D.A. Fagundes, M.J. Menon

Grupo de Física Hadrônica

Instituto de Física *Gleb Wataghin* Universidade Estadual de Campinas (UNICAMP)

XXV Reunião de Trabalho sobre Interações Hadrônicas IFGW - UNICAMP, Campinas/SP 5-7 February, 2014

- Motivation
- Asymptotic Scenarios
- Goals and Dataset
- Results
- Conclusions and Perspectives

• Cosmic ray experiments  $\rightarrow$  extensive air shower studies:

extrapolation from accelerator experiments  $\Rightarrow \frac{\sigma_{\text{tot}}}{B}(s)$ 

• Problems with  $B \longrightarrow$  different intervals in momentum transfeer large uncertainties

<sup>&</sup>lt;sup>1</sup>D.A. Fagundes, M.J. Menon, Nucl. Phys. A **880**, 1 (2012)

• Cosmic ray experiments  $\rightarrow$  extensive air shower studies:

extrapolation from accelerator experiments  $\Rightarrow \frac{\sigma_{\text{tot}}}{B}(s)$ 

- Problems with  $B \longrightarrow$  different intervals in momentum transfeer large uncertainties
- Aproximate relation:

$$\frac{\sigma_{\rm tot}}{B} = 16\pi \frac{\sigma_{\rm el}}{\sigma_{\rm tot}}$$

• Strategy [Fagundes and Menon<sup>1</sup> (FM)]

empirical fit 
$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}$$
 data  $\longrightarrow$  prediction  $\frac{\sigma_{\rm tot}}{B}(s)$ 

<sup>1</sup>D.A. Fagundes, M.J. Menon, Nucl. Phys. A **880**, 1 (2012)

 $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s)~{\rm data}\longrightarrow {\rm rise}$  with energy for  $\sqrt{s}\gtrsim 100~{\rm GeV}$ 



 $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s)~{\rm data}\longrightarrow {\rm rise}$  with energy for  $\sqrt{s}\gtrsim 100~{\rm GeV}$ 

Asymptotic limit  $\longrightarrow$  Expected (all contexts)

$$s 
ightarrow \Rightarrow rac{\sigma_{
m el}}{\sigma_{
m tot}} 
ightarrow {
m cte}$$

- 1/2 (black-disk)
- 1 (maximum/unitarity)



 $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s)~{\rm data} \longrightarrow {\rm rise}$  with energy for  $\sqrt{s}\gtrsim 100~{\rm GeV}$ 



Rise and saturation (cte value)  $\rightarrow$  change of curvature

#### Fagundes and Menon<sup>2</sup> (FM): empirical description with

$$rac{\sigma_{
m el}}{\sigma_{
m tot}}(s) = A anh \left[\gamma_0 + \gamma_1 \ln s + \gamma_2 \ln^2 s
ight]$$

<sup>2</sup>D.A. Fagundes, M.J. Menon, Nucl. Phys. A 880, 1 (2012)

#### Fagundes and Menon<sup>2</sup> (FM): empirical description with

• 
$$A = 1/2$$
 and  $A = 1$  (fixed parameters)

 $\circ pp$  accelerator data only

$$\begin{split} &\sqrt{s}_{\min} = 10 \text{ GeV} \\ &\sqrt{s}_{\max} = 7 \text{ TeV (1 TOTEM point)} \\ \bullet \text{ Extension to } \frac{\sigma_{\text{tot}}}{B}(s) = 16\pi \frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}}(s) \text{ (cosmic-rays; uncertainties)} \end{split}$$

<sup>2</sup>D.A. Fagundes, M.J. Menon, Nucl. Phys. A **880**, 1 (2012)

- Inclusion of all TOTEM data on  $\sigma_{\rm el}$  and  $\sigma_{\rm tot}$  (7 and 8 TeV)
- $\sqrt{s}_{\rm min}=5$  GeV, pp and  $\bar{p}p$  dataset
- Study on 3 scenarios: black-disk, below and above

Empirical results  $\rightarrow$  favour below black-disk

# Asymptotic Scenarios I: The Black-Disk Limit

• Naive model (Gray-Disk):

Profile function  $\Gamma(s,b) = \Gamma_0(s)$  for  $b \le R(s)$  (0 otherwise)

$$\sigma_{\rm el}(s) = \pi R^2 \Gamma_0^2$$
  
$$\sigma_{\rm tot}(s) = 2\pi R^2 \Gamma_0$$

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} = \frac{\Gamma_0}{2}$$

• Black-Disk Model:  $\Gamma_0 = 1$ 



# Asymptotic Scenarios I: The Black-Disk Limit

• Naive model (Gray-Disk):

Profile function  $\Gamma(s,b) = \Gamma_0(s)$  for  $b \le R(s)$  (0 otherwise)

| $\sigma_{\rm el}(s) = \pi R^2 \Gamma_0^2$ | $\sigma_{\rm el}$ | $\Gamma_0$ |
|-------------------------------------------|-------------------|------------|
| $\sigma_{\rm tot}(s) = 2\pi R^2 \Gamma_0$ | $\sigma_{ m tot}$ | 2          |

• Black-Disk Model:  $\Gamma_0 = 1$ 

$$rac{\sigma_{
m el}}{\sigma_{
m tot}} = rac{1}{2}$$

 Typical of eikonal models (unitarized by construction): Chou-Yang, Bourrely-Soffer-Wu, Block-Halzen, etc

### Asymptotic Scenarios II: Below the Black-Disk

(1)  $FMS^3$  and  $MS^4$ 

$$\sigma_{\text{tot}}(s) = a_1 \left(\frac{s}{s_l}\right)^{-b_1} + \tau a_2 \left(\frac{s}{s_l}\right)^{-b_2} + \alpha + \beta \ln^{\gamma}(s/s_h)$$

•  $\gamma = 2$  fixed and  $\gamma$  as a free fit parameter

$$ullet$$
 Extension to  $\sigma_{
m el}$  data  $(\gamma=2$  and  $\gamma>2)$ 

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \to 0.3$$

<sup>3</sup>D.A. Fagundes, M.J. Menon, P.V.R.G. Silva, J. Phys. G 40, 065005 (2013)
 <sup>4</sup>M.J. Menon, P.V.R.G. Silva, Int. J. Mod. Phys. A 28, 1350099 (2013)
 M.J. Menon, P.V.R.G. Silva, J. Phys. G 40, 125001 (2013).

### Asymptotic Scenarios II: Below the Black-Disk



### Asymptotic Scenarios II: Below the Black-Disk

(2) COMPETE and TOTEM results

COMPETE<sup>5</sup> highest-rank result:

 $\sigma_{\rm tot}(s) = \mathsf{Regge} + 35.5 + 0.307 \ln^2(s/29.1 \text{ GeV}^2)$ 



<sup>5</sup>J.R. Cudell *et al* (COMPETE Collab.), Phys. Rev. Lett. **89**, 201801 (2002) <sup>6</sup>G. Antchev *et al* (TOTEM Collab.), Phys. Rev. Lett. **111**, 012001 (2013)

### Asymptotic Scenarios III: Above the Black-Disk

(1) Obvious bound from Unitarity:  $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \leq 1$ 

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \to 1 \quad (s \to \infty)$$

(2) U-matrix unitarization<sup>7</sup>  $\rightarrow$  Predicts  $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}$  beyond black-disk limit

<sup>7</sup>S.M. Troshin, N.E. Tyurin, Phys. Lett. B **316**, 175 (1993)
 S.M. Troshin, N.E. Tyurin, Int. J. Mod. Phys. A **22**, 4437 (2007)

### Asymptotic Scenarios III: Above the Black-Disk

(3) Two formal results<sup>8,9</sup>  $(s \to \infty)$ :

$$\sigma_{\rm tot}(s) \leq \frac{\pi}{m_\pi^2} \ln^2 s \hspace{0.5cm} \text{and} \hspace{0.5cm} \overline{\sigma_{\rm in}(s)} \leq \frac{\pi}{4m_\pi^2} \ln^2 s$$

#### If **both** limits saturate:

$$rac{\sigma_{
m in}}{\sigma_{
m tot}} 
ightarrow rac{1}{4} \xrightarrow{
m Unitarity} rac{\sigma_{
m el}}{\sigma_{
m tot}} 
ightarrow rac{3}{4} = 0.75$$

<sup>8</sup>M. Froissart, Phys.Rev. **123**, 1053 (1961)
 A. Martin, Il Nuovo Cimento **42**, 930 (1966)
 L. Lukaszuk, A. Martin, Il Nuovo Cimento **52**, 122 (1967)
 <sup>9</sup>A. Martin, Phys. Rev. D **80**, 065013 (2009)

# Goals in this work

• Studies with 5 different asymptotic scenarios:

A = 0.3, 0.436, 0.5, 0.75, 1

- Include new data by TOTEM (7 and 8 TeV)
- Include of data from  $\bar{p}p$  scattering
- Empirical parametrization improved

# Goals in this work

• Studies with 5 different asymptotic scenarios:

A = 0.3, 0.436, 0.5, 0.75, 1

- Include new data by TOTEM (7 and 8 TeV)
- Include of data from  $\bar{p}p$  scattering
- Empirical parametrization improved

#### Dataset (accelerator data)

- $\sqrt{s}_{\rm min}=5~{\rm GeV}$
- $\sqrt{s}_{\rm max} = 8~{\rm TeV}$
- $pp + \bar{p}p$  data

# Parametrization

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s) = f(s) = A \tanh g(s)$$

Improved empirical parametrization (trial and error)

$$g(s) = \alpha + \beta \ln^{1/2}(s/s_0) + \gamma \ln(s/s_0)$$

-  $\alpha$ ,  $\beta$  and  $\gamma$  are free dimensionless parameters -  $s_0 = 25 \text{ GeV}^2$  fixed (energy cutoff)

### Parametrization

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s) = f(s) = A \tanh g(s)$$

Improved empirical parametrization (trial and error)

$$g(s) = \alpha + \beta \ln^{1/2}(s/s_0) + \gamma \ln(s/s_0)$$

- $\alpha$ ,  $\beta$  and  $\gamma$  are free dimensionless parameters
- $s_0 = 25 \text{ GeV}^2$  fixed (energy cutoff)
- Importance of  $f(s) \longrightarrow$  only 3 free dimensionless parameters (A and  $s_0$  fixed)

Example  $\rightarrow$  fit  $\sigma_{tot}$  and  $\sigma_{el}$  (FMS, MS, TOTEM/COMPETE):

12 - 14 free parameters!

# **TOTEM/COMPETE** and fit with f(s)



#### Results with A fixed



With the previous results as Initial Values, consider A as a free parameter

| A fixed | Results with $A$ free |
|---------|-----------------------|
| 0.3     |                       |
| 0.436   |                       |
| 0.5     |                       |
| 0.75    |                       |
| 1       |                       |

With the previous results as Initial Values, consider A as a free parameter



With the previous results as Initial Values, consider A as a free parameter



With the previous results as Initial Values, consider A as a free parameter



All cases:  $|A \simeq 0.36 \pm 0.08| \Rightarrow$  below black-disk limit.

 $A = 0.36 \pm 0.08$ 



From above results:

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \rightarrow 0.36 \pm 0.08$$

Agreement with Pumplin bound<sup>10</sup>

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} + \frac{\sigma_{\rm diff}}{\sigma_{\rm tot}} \le \frac{1}{2}$$

Estimations<sup>11</sup> at 7 TeV: 
$$\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} = 0.256 \pm 0.013, \quad \frac{\sigma_{\text{diff}}}{\sigma_{\text{tot}}} \simeq 0.24^{+0.05}_{-0.06}$$
$$\boxed{\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} + \frac{\sigma_{\text{diff}}}{\sigma_{\text{tot}}} = 0.496^{+0.05}_{-0.06}}$$

<sup>10</sup> J. Pumplin, Phys. Rev. D 8, 2899 (1973)
 <sup>11</sup> P. Lipari, M. Lusignoli, Eur. Phys. J. C 73, 2630 (2013)

#### Conclusions

• Asymptotic 
$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} < 1/2$$
 is a possibility

- Asymptotic scenario for  $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}$  —> Still an open problem

#### Conclusions

• Asymptotic 
$$rac{\sigma_{
m el}}{\sigma_{
m tot}} < 1/2$$
 is a possibility

- Asymptotic scenario for  $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \longrightarrow$  Still an open problem

#### Perspectives

- Uncertainty region studies (due different scenarios)  $\sigma_{
m el}/\sigma_{
m tot}$ 

• Extension to 
$$\frac{\sigma_{\rm tot}}{B}(s)$$

#### Sponsors





#### THANK YOU!!

# **Backup Slides**

# Relation between $\sigma_{\rm tot}/B$ and $\sigma_{\rm el}/\sigma_{\rm tot}$

• Differential cross section (forward peak):  $\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\Big|_{t=0} e^{Bt}$ 

• Optical point: 
$$\left. \frac{d\sigma}{dt} \right|_{t=0} = \frac{(1+\rho^2)}{16\pi} \sigma_{\text{tot}}^2$$

• Integrated elastic cross section: 
$$\sigma_{
m el} = \int_{t_0}^0 rac{d\sigma}{dt} dt$$

• With assumption  $1 + \rho^2 \approx 1$ , taking limit  $t_0 \rightarrow -\infty$  and using the optical point:

$$\sigma_{\rm el}(s) = \frac{1}{B(s)} \frac{\sigma_{\rm tot}^2(s)}{16\pi} \Rightarrow \left| \frac{\sigma_{\rm tot}(s)}{B(s)} = 16\pi \frac{\sigma_{\rm el}(s)}{\sigma_{\rm tot}(s)} \right|$$

# **Black-disk model**

• Impact parameter formalism (azimuthal symmetry)

$$F(s,q) = ik \int_0^\infty bdb J_0(qb) \Gamma(s,b)$$

Gray-disk (Profile function):

$$\Gamma(s,b) = \begin{cases} \Gamma_0(s), & b \le R(s) \\ 0, & b > R(s) \end{cases}$$

$$\begin{split} \sigma_{\rm tot} &= 2\pi R^2 |\Gamma_0|^2 \\ \sigma_{\rm el} &= \pi R^2 \operatorname{Re} \Gamma_0 \\ \frac{d\sigma}{dq^2} &= \frac{|\Gamma_0|^2 k^2 R^4}{16\pi s^2} \left| \frac{J_1(qR)}{qR} \right|^2 \end{split}$$

• Black-disk:  $\Gamma_0 \rightarrow 1$ 

$$rac{\sigma_{
m el}}{\sigma_{
m tot}} = rac{1}{2}$$

(black-disk limit)

# Estimation<sup>12</sup> of $\sigma_{\rm diff}/\sigma_{\rm tot}$ at 7 TeV

• TOTEM (indep. lum.):

$$\begin{split} \sigma_{\rm tot} &= 98.0\pm2.5 \text{ mb, } \sigma_{\rm el} = 25.1\pm1.1 \text{ mb, } \sigma_{\rm in} = 72.9\pm1.5 \text{ mb,} \\ \sigma_{\rm el}/\sigma_{\rm tot} &= 0.256\pm0.013 \end{split}$$

 ALICE: Fraction of single (SD) and double (DD) diffraction in inelastic collisions:

$$rac{\sigma_{
m SD}}{\sigma_{
m in}} = 0.20^{+0.04}_{-0.07} \quad {
m and} \quad rac{\sigma_{
m DD}}{\sigma_{
m in}} = 0.12^{+0.05}_{-0.04}$$

With  $\sigma_{\text{diff}} = \sigma_{\text{SD}} + \sigma_{\text{DD}}$ :

$$\frac{\sigma_{\rm diff}}{\sigma_{\rm in}} = 0.32^{+0.06}_{-0.08}$$

<sup>12</sup>P. Lipari, M. Lusignoli, Eur. Phys. J. C 73, 2630 (2013)

# Estimation<sup>12</sup> of $\sigma_{\rm diff}/\sigma_{\rm tot}$ at 7 TeV

• Combining TOTEM and ALICE results:

$$\sigma_{
m diff} = 23.3^{+4.4}_{-5.9} \; {
m mb} \quad {
m and} \quad rac{\sigma_{
m diff}}{\sigma_{
m tot}} \simeq 0.24^{+0.05}_{-0.06}$$

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} + \frac{\sigma_{\rm diff}}{\sigma_{\rm tot}} = 0.496^{+0.05}_{-0.06}$$

Indicates saturation of Pumplin bound at LHC energy

<sup>12</sup>P. Lipari, M. Lusignoli, Eur. Phys. J. C 73, 2630 (2013)

#### $\sigma_{ m SD}$



Figure: N. Cartiglia, arXiv:1305.6131v3 [hep-ex]

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}}(s) = A \tanh g(s)$$

• 
$$g_2(s)=\gamma_0+\gamma_1\ln(s/s_0)+\gamma_2\ln^2(s/s_0)$$
 [Fagundes and Menon]

• 
$$g_{\gamma}(s) = \gamma_0 + \gamma_1 \ln(s/s_0) + \gamma_2 \ln^{\gamma_3}(s/s_0)$$

- 
$$\gamma_i$$
  $(i = 0, 1, 2, 3)$  are free parameters  
-  $s_0 = 25 \text{ GeV}^2$  fixed (energy cutoff)

• Fits with  $pp + \bar{p}p$  dataset and for all A values  $[g_{\gamma}(s) \text{ variant}]$ :

 $\gamma_3 \in \begin{bmatrix} 0.31, 0.60 \end{bmatrix}$ 

• New variant:  $\gamma_3 = 0.5$  fixed

$$g_{1/2}(s) = \gamma_0 + \gamma_1 \ln(s/s_0) + \gamma_2 \ln^{1/2}(s/s_0)$$

| A             | $\alpha$ | $\beta$ | $\gamma$ | $P(\chi^2, \nu)$ |
|---------------|----------|---------|----------|------------------|
| 0.3 (fixed)   | 1.36     | -0.66   | 0.17     | 0.82             |
| 0.361         | 0.96     | -0.43   | 0.11     | 0.81             |
| 0.436 (fixed) | 0.73     | -0.31   | 0.078    | 0.84             |
| 0.361         | 0.96     | -0.43   | 0.11     | 0.81             |
| 0.5 (fixed)   | 0.62     | -0.25   | 0.063    | 0.83             |
| 0.361         | 0.96     | -0.43   | 0.11     | 0.81             |
| 0.75 (fixed)  | 0.39     | -0.15   | 0.038    | 0.82             |
| 0.361         | 0.96     | -0.43   | 0.11     | 0.81             |

# **Result:** A = 0.3 (fixed), $g_{1/2}(s)$



# **Result:** A = 0.5 (fixed), $g_{1/2}(s)$



#### Fit with A free $\rightarrow$ Initial Value: A = 0.3





# PDG





# PDG (5 GeV - 20 GeV)



# PDG (5 GeV - 20 GeV)



# PDG (5 GeV - 20 GeV)



Ref.: A. Martin, Phys. Rev. D 80, 065013 (2009)

Depois de obter o limite 
$$\sigma_{\rm in} < \frac{\pi}{4m_\pi^2} \ln^2 s$$
 (pag. 3):

This ends the rigorous part of this paper. Now comes the fact that most theoreticians believe that the worse that can happen at high energies is that the elastic cross section reaches half of the total cross section, which corresponds to an expanding black disk.

### Martin

No final do artigo (pag. 3), a respeito do limite  $\sigma_{\rm el}/\sigma_{\rm tot} > 1/2, \quad s \to \infty$ :

To say the least, this seems to me extremely unlikely and, therefore, **I tend to believe** that we have

$$\sigma_{
m tot} < rac{\pi}{2m_\pi^2} \ln^2 s.$$

Entretanto, alguns artigos passaram a utilizar este "resultado" como o Limite de Froissart-Martin, por exemplo

- M.M. Block, F. Halzen, Phys. Rev. Lett. 107, 212002 (2011)
- N. Cartiglia, Measurement of the proton-proton total, elastic, inelastic and diffractive cross sections at 2, 7, 8 and 57 TeV, arXiv:1305.6131v3 [hep-ex]
- I.M. Dremin, *Hadron structure and elastic scattering*, arXiv:1311.4159 [hep-ph]