XXV REunião de Trabalho sobre Interações Hadrônicas RETINHA XXV

Trabalho de doutorado em andamento no IFGW/UNICAMP

Sumário

- Raios Cósmicos
- Chuveiros atmosféricos (Perfis Longitudinal e Lateral)
- Observatório Auger (Métodos de detecção, Detector de Superfície)
- Observáveis sensíveis a composição dos raios cósmicos
 - Profundidade Xmax
 - Estrutural sinal temporal dos chuveiros
- Modelos de Interações hadrônicas e raios cósmicos altas energias
- Considerações finais

Raios Cósmicos

Composição de massa dos RCs

- •"Knee"
- •"Ankle"
- Distinção diversas teorias e modelos.

OrigemMecanismos de aceleraçãoPropagação

E<10¹⁴ eV – composição dos raios cósmicos medida direta – Balões e satélites na estratosfera .

E>10¹⁵ eV – medidas indiretas de energia e composição. Estudo dos chuveiros atmosféricos.

Massa do raio cósmico primário - comparações de observáveis experimentais com simulações de CAEs (envolvendo incertezas das interações hadrônicas para altas energias).

Dados do LHC/CERN – Modelos de interação para raios cósmicos de ~10¹⁷ eV com extrapolações para energias de CAEs de 10²⁰ eV.

Chuveiros Atmosféricos Extensos

Perfil Longitudinal

A profundidade X_{max} depende da energia e composição do raio cósmico primário

$$\langle X_{max} \rangle = \alpha (\ln E - \ln A) + \beta$$
,

Dependem dos modelos de interações hadrônicas (secção de choque, multiplicidade e elasticidade)

Perfil Lateral

LDF – Função NKG modificada

$$S(r) = S(r) \cdot \cdot \cdot \cdot \left(\frac{r}{r}\right)^{\beta} \left(\frac{r + r}{r}\right)^{\beta} \left(\frac{r + r}{r}\right)^{\beta}$$

S(1000) – Interpolação de dos sinais nos tanques obtido para cada evento-Correlacionado com a energia do chuveiro.

β – Inclinação da
 LDF – Dependência
 com a inclinação do
 chuveiro e energia.

Event: Library_Test:Run_201:Shower_1:Use_1
Time: 04:33:12 01 JAN 2004
GPS Time: 756966805 s, 500000000 ns
T4: 3TOT+4C1 T5: Prior+Posterior
Reconstruction stage: 4.5
Easting: 470390.26 \pm 11.3 (MC: 470377.42) [m]
Northing: 6118400.47 \pm 8.21 (MC: 6118392.7) [m]
Distance to MC core: 22.081 [m] θ : 30.27 \pm 0.14 (MC: 29.46) [1] θ : -92.903 \pm 0.25 (MC: -94.013) [1]
R_c: 10.62 \pm 0.24 [km]
S₁₀₀₀: 367.4 \pm 5.5 (\pm 18 sys) [VEM]
r_{opt}: 831.04 [m] β : -2.498 \pm 0 (\pm 0.15 sys)
Energy: 79.84 \pm 1.3 (MC: 100) [EeV]

Observatório Pierre Auger

• FD, SD, AMIGA, AMBER, MIDAS e AERA.

Detector de Superfície

- Rede com mais de 1660 tanques Cherenkov cobrindo 3000 km².
- Sistema de calibração e seleção de eventos (triggers de sinal e tempo).
- Unidade de sinal depositado VEM (*Vertical Equivalent Muon*).

Depósito de energia

Comp. muônica - ionização

Comp. Eletromagnética – criação de pares, ionização e Bremsstrahlung.

Observáveis

Profundidade do máximo desenvolvimento longitudinal do CAE

Kampert, Karl-Heinz for the Auger collaboration) arXiv:1207.4823 [astro-ph.HE] - ICRC 2013

Taxa de elongação e a flutuação do Xmax

- Dados coletados pelo FD- Parâmetro sensível a composição de massa

Comparação com chuveiros simulados segundo diferentes modelos de interações hadrônica (número de múons).

Assimetria azimutal de $t_{\frac{1}{2}}$ - fortemente correlacionado com a composição do primário.

Muon Jump

X.Garrido. Auger Technical Note, GAP Note 2007-060.

Estimando os sinal de múons Método de filtros baseado no múon Jump

$$\Delta V(i) = V(t_{i+1}) - V(t_i)$$

$$\begin{split} \boldsymbol{J}_{sinal} &= \sum \boldsymbol{V}(i) \Big[\boldsymbol{\Theta} \big(\Delta \boldsymbol{V}_i \! > \! \boldsymbol{V}_l^+ \big) \! + \! \boldsymbol{\Theta} \big(\Delta \boldsymbol{V} \! < \! \boldsymbol{V}_l^- \big) \Big] \\ &+ \sum \boldsymbol{V}(i) \boldsymbol{\Theta} \big(\boldsymbol{V}_l^- \! < \! \Delta \boldsymbol{V}_i \! < \! \boldsymbol{V}_l^+ \big) \boldsymbol{\Theta} \big(\boldsymbol{V}(t_i) \! > \! \boldsymbol{V}_s \big) \end{split}$$

Conjunto de filtros dependentes de E, r, θ e modelo de interação hadrônica

$$(\boldsymbol{V}_{l}^{+}, \boldsymbol{V}_{l}^{-}, \boldsymbol{V}_{s})$$

Modelos de Interações Hadrônicas

Estudo da composição dos raios cósmicos primário

X_{max} - Diferença de 20g/cm² (na faixa dos erros sistemáticos do OPA) entre as novas versões dos modelos contrasta com diferenças de até 50g/cm² das versões anteriores.

Tanguy Pierog. J. Phys.: Conf. Ser. 409, 012008 (2013).

Modelos convergindo para semelhantes taxa de elongação

maior precisão nas mudanças na composição da "ankle"

$$X_{max}(E_0) \propto \lambda_h + \lambda_e \cdot \ln \left(\frac{E_0}{n_{tot} E_c} \right)$$
 Tanguy Pierog. J. Phys.: Conf. Ser. 409, 012008 (2013).

Multiplicidade – fraca dependência (In) com o X_{max} e forte impacto na RMS(X_{max}).

Produção de bárions – número de múons ao nível do solo

$$N_{\mu} = \left(n_{carg}^{had}\right)^{n} = \left(\frac{E_{\cdot}}{E_{c}}\right)^{\alpha}$$

$$\alpha = 1 + lnR/\ln n_{tot},$$
onde $R = n_{carg}^{had}/n_{tot} < 1$

Tanguy Pierog. J. Phys.: Conf. Ser. 409, 012008 (2013).

$$\pi^+ p \rightarrow \rho^0 + X$$
 Maior produção de $\pi^+ p \rightarrow \omega^+ + X$ — múons em novos $\pi^+ p \rightarrow \pi^+ + X$ modelos

QGSJET II-04 e EPOS 1.99 prevêm um número de múons de ~20% maior que QGSJETII-03.

EPOS LHC – incertezas de 5% a 15%não há dados da produção frontal de bárions. Dados futuros do LHCf e NA61.

A energia média dos múons é maior no QGSJETII-04 do que no EPOS.

Considerações finais

- Dados dos aceleradores contribuem muito para reduzir as incertezas em simulações de CAEs proporcionando melhores ferramentas para analisar dados de raios cósmicos, com um dos objetivos principais a composição dos raios primários.
- Para o nosso estudo de composição de raios cósmicos primário usando uma metodologia baseada em estimar o sinal da componente muônica, os ajustes dos modelos de interações hadrônicas a dados experimentais de aceleradores são fundamentais.
- Mudanças nos modelos com respeito produção de bárions influem diretamente nos valores de filtros que temos selecionados. Alguns resultados já foram apresentados em eventos internacionais.