
Aulas de Arduino uno

Book: Beginning Arduino-
Copyright © 2010 by Michael McRoberts

Arduino is a single-board microcontroller to make using electronics
in multidisciplinary projects more accessible.

What is an Arduino?? (From Wikipedia, the free encyclopedia)

http://en.wikipedia.org/wiki/Single-board_microcontroller
http://en.wikipedia.org/wiki/Single-board_microcontroller
http://en.wikipedia.org/wiki/Single-board_microcontroller
http://en.wikipedia.org/wiki/Multidisciplinary

The hardware consists of a simple open-source hardware board
designed around an 8-bit Atmel AVR microcontroller.

The software consists of a standard programming language
compiler and a boot loader that executes on the microcontroller.

Arduino boards can be purchased pre-assembled or as do-it-
yourself kits. Hardware design information is available for those
who would like to assemble an Arduino by hand.

What is an Arduino?? (From Wikipedia, the free encyclopedia)

http://en.wikipedia.org/wiki/Open-source_hardware
http://en.wikipedia.org/wiki/Open-source_hardware
http://en.wikipedia.org/wiki/Open-source_hardware
http://en.wikipedia.org/wiki/Open-source_hardware
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/Boot_loader
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Do-it-yourself
http://en.wikipedia.org/wiki/Do-it-yourself
http://en.wikipedia.org/wiki/Do-it-yourself
http://en.wikipedia.org/wiki/Do-it-yourself
http://en.wikipedia.org/wiki/Do-it-yourself

Arduino and Arduino-compatible boards make use of shields—printed circuit expansion
boards that plug into the normally supplied Arduino pin-headers. Shields can provide
motor controls, GPS, ethernet, LCD display, or breadboarding (prototyping)

http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Breadboard

How to set up your Arduino and the IDE (Integrated Development Environment) for the
first time.

Getting Started

Arduino!!

• http://www.youtube.com/watch?v=KZUrO9aX
Gh0

http://www.youtube.com/watch?v=KZUrO9aXGh0
http://www.youtube.com/watch?v=KZUrO9aXGh0

Howto set up your Arduino and the IDE for the first time.
- Refer to the Getting Started instructions on the Arduino website at
www.arduino.cc.playground/Learning

We need a USB cable (A to B plug type) which is the same kind of cable used for most
modern USB printers.

http://www.arduino.cc.playground/Learning

Download the Arduino IDE. This is the software you will use to
write your programs (or sketches) and upload them to your board.

For the latest IDE go to the Arduino download page at
http://arduino.cc/en/Main/Software.

Use of the file-Menu to install your
Arduino.

"Go Down the Rabbit Hole"

Aula 1 LED Flasher

Hardware:

Code for “LED flasher”

• // Project 1 - LED Flasher
• int ledPin = 10;

– void setup() {
– pinMode(ledPin, OUTPUT);

• }
– void loop() {
– digitalWrite(ledPin, HIGH);
– delay(1000);
– digitalWrite(ledPin, LOW);
– delay(1000);

• }

• By varying the on and off times of the LED you
can create any effect you want.

• For example,If you would like the LED to stay off for 5
seconds and then flash briefly (250ms), like the LED
indicator on a car alarm, you could do this:

void loop() {
digitalWrite(ledPin, HIGH);
delay(250);
digitalWrite(ledPin, LOW);
delay(5000);
}

Aula 2 S.O.S. Morse Code Signaler
Hardware:

// LED connected to pin 10
int ledPin = 10;
// run once, when the sketch starts
void setup()
{
// sets the pin as output
pinMode(ledPin, OUTPUT);
}
// run over and over again
void loop()
{
// 3 dits
for (int x=0; x<3; x++) {
digitalWrite(ledPin, HIGH); // sets the LED on
delay(150); // waits for 150ms
digitalWrite(ledPin, LOW); // sets the LED off
delay(100); // waits for 100ms
}
// 100ms delay between letters
delay(100);
// 3 dahs

for (int x=0; x<3; x++) {
digitalWrite(ledPin, HIGH); // sets the LED on
delay(400); // waits for 400ms
digitalWrite(ledPin, LOW); // sets the LED off
delay(100); // waits for 100ms
}
// 100ms delay between letters
delay(100);
// 3 dits again
for (int x=0; x<3; x++) {
digitalWrite(ledPin, HIGH); // sets the LED on
delay(150); // waits for 150ms
digitalWrite(ledPin, LOW); // sets the LED off
delay(100); // waits for 100ms
}
// wait 5 seconds before repeating
delay(5000);
}

Code for “SOS”

Project 3 – Traffic Lights

Hardware

The project creates a set of traffic lights that will change from green to red, via

amber, and back again, after a set length of time using the four-state UK system.

This project could be used to make a set of working traffic lights for a model

railway

The four states of the UK
traffic light system

Code for “ Traffic Lights”
// Project 3 - Traffic Lights

int ledDelay = 5000; /* delay in

between changes*/

int redPin = 10;

int yellowPin = 9;

int greenPin = 8;

void setup() {

pinMode(redPin, OUTPUT);

pinMode(yellowPin, OUTPUT);

pinMode(greenPin, OUTPUT);

} void loop() {

digitalWrite(redPin, HIGH);

delay(ledDelay); // wait 5 seconds

digitalWrite(yellowPin, HIGH);

delay(2000); // wait 2 seconds

digitalWrite(greenPin, HIGH);

digitalWrite(redPin, LOW);

digitalWrite(yellowPin, LOW);

delay(ledDelay);

digitalWrite(yellowPin, HIGH);

digitalWrite(greenPin, LOW);

delay(2000); // wait 2 seconds

digitalWrite(yellowPin, LOW);

// now our loop repeats

}

Project 4 – “Interactive Traffic Lights”

In this project is included a set

of pedestrian lights to the “traffic

lights “ program and a

pedestrian push button to

request to cross the road.

The Arduino will react when the

button is pressed by changing

the state of the lights to make

the cars stop and allow the

pedestrian to cross safely. We

also interact with the Arduino

and cause it to do something

when we change the state of a

button that the Arduino is

watching. We learn how to

create our own functions in

code.

Interactive Traffic Lights

 When you run the program, it begins with the car traffic light on
green to allow cars to pass and the pedestrian light on red.
 When you press the button, the program checks that at least 5
seconds have gone by since the last time the lights changed (to allow traffic
to get moving), and if so, passes code execution to the function you have
created: changeLights().
 In this function, the car lights go from green to amber to red, and
then the pedestrian lights go green. After the period of time set in the
variable crossTime (time enough to allow the pedestrians to cross), the
green pedestrian light flash on and off as a warning to the pedestrians to
hurry because the lights are about to change to red. Then the pedestrian
light changes to red, the vehicle lights go from red to amber to green, and
the traffic flow resumes.

Hardware

// Project 4 - Interactive Traffic Lights
int carRed = 12; // assign the car lights
int carYellow = 11;
int carGreen = 10;
int pedRed = 9; // assign the pedestrian
//lights
int pedGreen = 8;
int button = 2; // button pin
int crossTime = 5000; // time to cross
unsigned long changeTime; // time since
//button pressed
 void setup() {
 pinMode(carRed, OUTPUT);
 pinMode(carYellow, OUTPUT);
 pinMode(carGreen, OUTPUT);
 pinMode(pedRed, OUTPUT);
 pinMode(pedGreen, OUTPUT);
 pinMode(button, INPUT);
// button pin 2
// turn on the green light
digitalWrite(carGreen, HIGH);
 digitalWrite(pedRed, HIGH);
}

 void loop() {
 int state = digitalRead(button);
/* check if button is pressed and it is over 5
seconds since last button press */
 if (state == HIGH && (millis() -
 changeTime) > 5000) {
// Call the function to change the lights
 changeLights();
 }
}
void changeLights() {
digitalWrite(carGreen, LOW); // green off
digitalWrite(carYellow, HIGH); // yellow on
delay(2000); // wait 2 seconds
digitalWrite(carYellow, LOW); // yellow off
digitalWrite(carRed, HIGH); // red on
delay(1000); // wait 1 second till its safe
digitalWrite(pedRed, LOW); // ped red off
digitalWrite(pedGreen, HIGH); // ped green
on
delay(crossTime); // wait for preset time
period

// flash the ped green
for (int x=0; x<10; x++) {
digitalWrite(pedGreen, HIGH);
delay(250);
digitalWrite(pedGreen, LOW);
delay(250);
}
// turn ped red on
digitalWrite(pedRed, HIGH);
delay(500);

digitalWrite(carYellow, HIGH); // yellow on
digitalWrite(carRed, LOW); // red off
delay(1000);
digitalWrite(carGreen, HIGH);
digitalWrite(carYellow, LOW); // yellow off
// record the time since last change of lights
changeTime = millis();
// then return to the main program loop
}

Variables take up space in memory; the larger the number, the more memory is used
up for storing variables.
On a small microcontroller like the Arduino’s Atmega32, it’s essential that you use the
smallest variable data type necessary for your purpose.

unsigned long changeTime;
Integer data types, can store a number between -32,768 and 32,767 (215). Data
type of long, can store a number from -2,147,483,648 to 2,147,483,647. An
unsigned long means the variable cannot store negative numbers, so the range is
from 0 to 4,294,967,295. Observe that:
4294967295 * 1ms = 4294967 seconds (232 = 4294967295)
4294967 seconds = 71582 minutes
71582 minutes - 1193 hours
1193 hours - 49 days

Pull-up resistor

Pull-down resistor

Pull-up and pull-down resistors

The Arduino’s Internal Pull-Up Resistors

Conveniently, the Arduino contains pull-up resistors that are connected to
the pins (the analog pins have pull-up resistors also). These have a value of
20K ohms and need to be activated within software to use them. To activate
an internal pull-up resistor on a pin, you first need to change the pinMode
of the pin to an INPUT and then write a HIGH to that pin using a digitalWrite
command:
 pinMode(pin, INPUT);
 digitalWrite(pin, HIGH);
If you change the pinMode from INPUT to OUTPUT after activating the
internal pull-up resistors, the pin will remain in a HIGH state. This also works
in reverse: an output pin that was in a HIGH state and is subsequently
switched to an INPUT mode will have its internal pull-up resistors enabled.

Project 5 – LED Chase Effect
You’re going to
use a string of
LEDs (10 in
total) to make
an LED chase
effect. This
project will
introduce
the concept of
arrays.

Code for Project 5
// Project 5 - LED Chase Effect
byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12,
13}; // Create array for LED pins
int ledDelay(65); // delay between
//changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;
 void setup() {
 for (int x=0; x<10; x++) {
 // set all pins to output
 pinMode(ledPin[x], OUTPUT);
 }
changeTime = millis();
}
 void loop() {
 if ((millis() - changeTime) >
 ledDelay) { // if it has been
 ledDelay ms since
 //last change

 changeLED();
 changeTime = millis();
 }
}
 void changeLED() {
 for (int x=0; x<10; x++) { // turn
off all LED's
 digitalWrite(ledPin[x], LOW);
 }
 digitalWrite(ledPin[currentLED],
 HIGH); // turn on the current LED
 currentLED += direction;
 //increment by the direction
 //value change direction if we
 //reach the end
 if (currentLED == 9) {direction = -
 1;}
 if (currentLED == 0) {direction =
 1;}
}

Syntax (new)

 x += y; // equivalent to the expression x = x + y;

 x -= y; // equivalent to the expression x = x - y;
 x *= y; // equivalent to the expression x = x * y;
 x /= y; // equivalent to the expression x = x / y;

Parameters
x: any variable type
y: any variable type or constant

Examples
 x = 2;
 x += 4; // x now contains 6
 x -= 3; // x now contains 3
 x *= 10; // x now contains 30
 x /= 2; // x now contains 15

Note that we have to stop the program, manually change the value of ledDelay, and
then upload the amended code to see any changes.
But, it is possible to adjust the speed while the program is running. We will interact
with the program and adjust the speed using a potentiometer. See project 6.

Project 6 – Interactive LED Chase
Effect

Project 6

The code for this Project is almost identical to the previous project. We simply added a
potentiometer to the hardware and the code additions enable it to read the values from
the potentiometer and use them to adjust the speed of the LED chase effect.
int potPin = 2;
potentiometer is connected to Analog Pin 2. The Arduino has six analog input/outputs
with a 10-bit analog to digital converter. This means the analog pin can read in voltages
between 0 to 5 volts in integer values between 0 (0 volts) and 1,023 (5 volts). This gives a
resolution of 5 volts / 1024 units or 0.0049 volts (4.9mV) per unit.
We can use the direct values read in from the potentiometer to adjust the delay between
0 and 1023 milliseconds (or just over 1 second).
ledDelay = analogRead(potPin);
This is done during the main loop and therefore it is constantly being read and adjusted.
By turning the knob, we can adjust the delay value between 0 and 1023 milliseconds (or
just over a second) and thus have full control over the speed of the effect.

Hardware

Project 6

byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Create array for LED pins
int ledDelay; // delay between changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;
int potPin = 2; // select the input pin for the potentiometer
void setup() {
 for (int x=0; x<10; x++) { // set all pins to output
 pinMode(ledPin[x], OUTPUT); }
 changeTime = millis();
}
void loop() {
 ledDelay = analogRead(potPin); // read the value from the pot
 if ((millis() - changeTime) > ledDelay) { // if it has been ledDelay ms since last change
 changeLED();
 changeTime = millis();
 }
}
void changeLED() {
 for (int x=0; x<10; x++) { // turn off all LED's
 digitalWrite(ledPin[x], LOW);
 }
 digitalWrite(ledPin[currentLED], HIGH); // turn on the current LED
 currentLED += direction; // increment by the direction value
 // change direction if we reach the end
 if (currentLED == 9) {direction = -1;}
 if (currentLED == 0) {direction = 1;}
}

Project 6 – Interactive LED Chase Effect

Project 7 – Pulsating Lamp

Hardware

// Project 7 - Pulsating lamp
int ledPin = 11;
float sinVal;
int ledVal;
void setup() {
pinMode(ledPin, OUTPUT);
}
void loop() {
for (int x=0; x<180; x++) {
// convert degrees to radians then obtain sin value
sinVal = (sin(x*(3.1412/180)));
ledVal = int(sinVal*255);
analogWrite(ledPin, ledVal);
delay(25);
}
}

Six of the Arduino pins (3, 5, 6, 9,
10 & 11) have PWM written next
to them. These pins differ from the
remaining digital pins in that they
are able to send out a PWM signal.
PWM stands for Pulse Width
Modulation, which is a technique
for getting analog results from
digital means. On these pins, the
Arduino sends out a square wave
by switching the pin on and off
very fast. The pattern of on/offs
can simulate a varying voltage
between 0 and 5v. It does this by
changing the amount of time that
the output remains high (on)
versus off (low). The duration of
the on time is known as the pulse
width.

Project 8 – RGB Mood Lamp

Hardware

Code for Project 8
// Project 8 - Mood Lamp
float RGB1[3];
float RGB2[3];
float INC[3];
int red, green, blue;
int RedPin = 11;
int GreenPin = 10;
int BluePin = 9;
void setup()
{
randomSeed(analogRead(0));
RGB1[0] = 0;
RGB1[1] = 0;
RGB1[2] = 0;
RGB2[0] = random(256);
RGB2[1] = random(256);
RGB2[2] = random(256);
}
void loop()
{

randomSeed(analogRead(0));
for (int x=0; x<3; x++) {
INC[x] = (RGB1[x] - RGB2[x]) / 256; }
for (int x=0; x<256; x++) {
red = int(RGB1[0]);
green = int(RGB1[1]);
blue = int(RGB1[2]);
analogWrite (RedPin, red);
analogWrite (GreenPin, green);
analogWrite (BluePin, blue);
delay(100);
RGB1[0] -= INC[0];
RGB1[1] -= INC[1];
RGB1[2] -= INC[2];
} for (int x=0; x<3; x++) {
RGB2[x] = random(556)-300;
RGB2[x] = constrain(RGB2[x], 0, 255);
delay(1000);
}
}

Project 9 – LED Fire Effect
Project 9 will use LEDs and a flickering random light effect, via PWM again, to mimic
the effect of a flickering flame. This simple example show how LEDs can be used to
create special effects for movies, stage plays, model dioramas, model railways, etc.

Hardware

// Project 9 - LED Fire Effect
int ledPin1 = 9;
int ledPin2 = 10;
int ledPin3 = 11;
void setup() {
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);
 pinMode(ledPin3, OUTPUT);
}
void loop() {
 analogWrite(ledPin1, random(120)+135);
 analogWrite(ledPin2, random(120)+135);
 analogWrite(ledPin3, random(120)+135);
 delay(random(100));
}

