High-order nonlinearities in disordered media

Cid B. de Araújo

Universidade Federal de Pernambuco, Recife, Brasil

Second lecture
Transverse high-order nonlinear phenomena in composites

Metal-dielectric nanocomposites

- Glasses (bulk and thin films) with metallic NPs
- Polymers with metallic nanostructures
- · Liquid colloids with metallic NPs

Optical response is controlled through the volume fraction of the NPs

Why metal-dielectric nanocomposites?

Metallic NPs as optical nanoantennas

$$E_{local} = \eta E_{light}$$

$$\eta = \frac{3\varepsilon_{NP}(\omega)}{\left[\varepsilon_{NP}(\omega) + 2\varepsilon_h(\omega)\right]}$$

Localized Surface Plasmons

$$\operatorname{Re}\left[\varepsilon(\omega_{sp}) + 2\varepsilon_{m}(\omega_{sp})\right] = 0$$

Optical response may be enhanced due to the NPs

Colloids with Ag spherical NPs

Stabilizing agents to prevent agregation

diameter: 4 nm
≈ 1500 atoms
≈ 30% in the surface

spheres

several shapes
and sizes 42

Metallic nanoshells

Plasmon frequency depends on the ratio between the shell thickness and the core radius

Langmuir 2013 29, 4366-4372

High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm

Falcão-Filho et al. Opt. Express 18 (2010) 21616

Improved synthesis of gold and silver nanoshells

Brito-Silva et al. Langmuir 29 (2013) 4366

Silver Nanoprisms

Synthesis of silver nanoprisms: A photochemical approach using light emission diodes

Saade, de Araújo Mater. Chem. Phys. 148 (2014) 1184

Large optical nonlinearity and fast response

Fast response is due to the

induced dipole relaxation

Surface plasmon optical dephasing, T_2

Measured using the "Persistent Hole-Burning Technique"

$$T_2 < 3fs$$

 T_2 is influenced by the environment

Nonlinear optics of a nanocomposite

$$P_L + P_{NL} = \epsilon_0 \sum_{N=0}^{\infty} \chi_{eff}^{(2N+1)} E^{(2N+1)}$$

Centro-symmetric media $\chi_{eff}^{(even)} = 0$

Effective 3rd. order susceptibility

 $\chi_{eff}^{(3)} = f L^2 |L|^2 \chi_{nn}^{(3)} + \chi_h^{(3)},$

Local field factor

$$L = 3\varepsilon_h^{(L)} / (\varepsilon_{np}^{(L)} + 2\varepsilon_h^{(L)})$$

Nonlinear response depends strongly on the laser frequency

$$n_2 \propto Re\chi_{eff}^{(3)}$$

 $\alpha_2 \propto Im \chi_{eff}^{(3)}$

Nonlinear refraction

Nonlinear absorption

When high-order nonlinearities are present:

Self - focusing medium

NL refraction
"Closed-aperture" Z scan

$$\Delta T \propto n_2 I + n_4 I^2 + n_6 I^3 + \cdots$$

NL absorption
"Open-aperture" Z scan

$$\Delta T \propto \alpha_2 I + \alpha_4 I^2 + \alpha_6 I^3 + \cdots$$

Silver NPs in CS2

$$\chi_{eff}^{(3)} \approx f(2.3 + i1.0)\chi_{NP}^{(3)} + \chi_{host}^{(3)}$$

$$n_2 \propto \left\{ f\left(2.3 \operatorname{Re} \chi_{NP}^{(3)} - 1.0 \operatorname{Im} \chi_{NP}^{(3)}\right) + \operatorname{Re} \chi_{host}^{(3)} \right\}$$

$$\alpha_2 \propto \left\{ f\left(2.3 \operatorname{Im} \chi_{NP}^{(3)} + 1.0 \operatorname{Re} \chi_{NP}^{(3)}\right) + \operatorname{Im} \chi_{host}^{(3)} \right\}$$

$\chi_{host}^{(3)} = 2.9 \times 10^{-20} + i3.5 \times 10^{-22} (m/V)^2$

This experiment

$$\chi_{NP}^{(3)} = -(6.3 - i1.9) \times 10^{-16} (m/V)^2$$

Observation of fifth-order refraction in a metal-colloid

Z-scan

532 nm

Single pulses

5 GW/cm²

Generalized Maxwell-Garnet model

Ag NPs in acetone

$$\chi_{host}^{(5)} - negligible$$

$$\chi_{eff}^{(3)} = f L^2 |L|^2 \chi_{np}^{(3)} + \chi_h^{(3)}, \qquad L = 3\varepsilon_h^{(L)} / (\varepsilon_{np}^{(L)} + 2\varepsilon_h^{(L)})$$

$$L = 3\varepsilon_h^{(L)} / (\varepsilon_{np}^{(L)} + 2\varepsilon_h^{(L)})$$

$$\chi_{eff}^{(5)} = f L^{2} |L|^{4} \chi_{np}^{(5)} - \frac{6}{10} f L^{3} |L|^{4} (\chi_{np}^{(3)})^{2} - \frac{3}{10} f L |L|^{6} |\chi_{np}^{(3)}|^{2},$$

$$\chi_{qff}^{(7)} = f L^{2} |L|^{6} \chi_{np}^{(7)} + \frac{12}{35} f L^{4} |L|^{6} (\chi_{np}^{(3)})^{3} + \frac{3}{35} f |L|^{8} \left[4L^{2} \chi_{np}^{(3)} + |L|^{2} (\chi_{np}^{(3)})^{*} \right] |\chi_{np}^{(3)}|^{2}$$

$$- \frac{4}{7} f L |L|^{6} \left[2L^{2} \chi_{np}^{(3)} + |L|^{2} (\chi_{np}^{(3)})^{*} \right] \chi_{np}^{(5)},$$

Reyna, de Araújo, Optics Express 22 (2014) 22456

Nonlinearity Management

A procedure to obtain exotic metal-dielectric composites

It is possible to supress one specific order of nonlinearity and enhance another one

Nonlinearity management: Silver NPs + CS2

 $4 \times 10^8 \text{ W/cm}^2$

 $1 \times 10^8 \,\mathrm{W/cm^2}$

Effective $\chi^{(7)}$

Self-defocusing due to $\chi^{(7)}$ f = 3.3 x 10⁻⁵

Cross-phase modulation with two counter - propagating beams

$$-\frac{\partial A_{1}}{\partial z} - \frac{i}{2k} \left(\frac{\partial^{2} A_{1}}{\partial x^{2}} + \frac{\partial^{2} A_{1}}{\partial y^{2}} \right) = \frac{i k n_{2}}{n_{0}} \left(\left| A_{1} \right|^{2} + 2 \left| A_{2} \right|^{2} \right) A_{1} + \frac{i k n_{4}}{n_{0}} \left(\left| A_{1} \right|^{4} + 6 \left| A_{1} \right|^{2} \left| A_{2} \right|^{2} + 3 \left| A_{2} \right|^{4} \right) A_{1},$$

$$\frac{\partial A_2}{\partial z} - \frac{i}{2k} \left(\frac{\partial^2 A_2}{\partial x^2} + \frac{\partial^2 A_2}{\partial y^2} \right) = \frac{i \ln n_2}{n_0} \left(\left| A_2 \right|^2 + 2 \left| A_1 \right|^2 \right) A_2 + \frac{i \ln n_4}{n_0} \left(\left| A_2 \right|^4 + 6 \left| A_1 \right|^2 \left| A_2 \right|^2 + 3 \left| A_1 \right|^4 \right) A_2,$$

Spatial Cross-Phase Modulation

NPs: 9 nm, L=5 cm, I_{pump} =2 GW/cm², I_{probe} = 0.1 I_{pump}^{54}

Counter-propagating beams First observation of Spatial Modulational Instability due to $\chi_{eff}^{(5)}$

Ag NPs + acetone

$$n_2 = 0$$

$$n_4 = +3.2 \times 10^{-25} \, cm^4 / W^2$$

Cross-phase modulation

Co-propagating beams

$$\begin{split} -2ik\frac{\partial E_{1}}{\partial z} + \Delta E_{1} &= -\frac{\omega^{2}}{c^{2}} \left[\left(2\chi_{\text{eff}}^{(3)} \right) \left| E_{1} \right|^{2} + 2\left| E_{2} \right|^{2} \right) E_{1} \\ &+ 10 \left(\chi_{\text{eff}}^{(5)} \right) \left| E_{1} \right|^{4} + 6\left| E_{1} \right|^{2} \left| E_{2} \right|^{2} + 3\left| E_{2} \right|^{4} \right) E_{1} \\ &+ 35 \left(\chi_{\text{eff}}^{(7)} \right) \left| E_{1} \right|^{6} + 18\left| E_{1} \right|^{2} \left| E_{2} \right|^{4} + 12\left| E_{1} \right|^{4} \left| E_{2} \right|^{2} + 4\left| E_{2} \right|^{6} \right) E_{1} \right]. \end{split}$$

$$\begin{split} 2ik\frac{\partial E_{2}}{\partial z} + \Delta E_{2} &= -\frac{\omega^{2}}{c^{2}} \bigg[3\chi_{\text{eff}}^{(3)} \big) 2\left|E_{1}\right|^{2} + \left|E_{2}\right|^{2} \big) E_{2} \\ &+ 10\chi_{\text{eff}}^{(5)} \big) 3\left|E_{1}\right|^{4} + 6\left|E_{1}\right|^{2}\left|E_{2}\right|^{2} + \left|E_{2}\right|^{4} \big) E_{2} \\ &+ 35\chi_{\text{eff}}^{(7)} \Big(4\left|E_{1}\right|^{6} + 12\left|E_{1}\right|^{2}\left|E_{2}\right|^{4} + 18\left|E_{1}\right|^{4}\left|E_{2}\right|^{2} + \left|E_{2}\right|^{6} \Big) E_{2} \bigg], \end{split}$$

Induced focusing due to the seventh-order susceptibility

$$n_2 = 0$$
; $n_4 = 0$; $n_6 < 0$

Diffraction

Self-focusing

Bright Spatial Soliton

First demonstration of (2+1)D soliton propagating in a homogeneous medium with local nonlinearity

Falcão-Filho, de Araújo, Boudebs, Leblond, Skarka Robust two-dimensional spatial solitons in liquid carbon disulfide Phys. Rev. Lett. 110 (2013) 013901.

Low intensity

soliton

Very important: contributions of third and fifth order of opposite signs

CS_2 : stable (2+1)D soliton

$$Re \chi^{(3)} > 0$$
 $Re \chi^{(5)} < 0$

Is it possible to observe a stable (2+1)D soliton in a system with:

$$Re \chi^{(3)} = 0$$
 , $Re \chi^{(5)} > 0$, $Re \chi^{(7)} < 0$?

$$2ik\frac{\partial E}{\partial z} + \Delta E = -\frac{\omega^{2}}{c^{2}} \left[3\chi_{\text{eff}}^{(3)} \left| E \right|^{2} E + 10\chi_{\text{eff}}^{(5)} \left| E \right|^{4} E + 35\chi_{\text{eff}}^{(7)} \left| E \right|^{6} E \right]$$

First observation of 2D Spatial-Solitons in a quintic-septimal medium

$$n_2 = 0$$
; $n_4 > 0$; $n_6 < 0$

experiment

theory

Reyna, Jorge, de Araújo, de Araújo et al., Phys. Rev. A 90 (2014) 063835 J. Lumin. 169 (2016) 492-496

$$2ik\frac{\partial E}{\partial z} + \Delta E = -\frac{\omega^{2}}{c^{2}} \left[3\chi_{\text{eff}}^{(3)} \left| E \right|^{2} E + 10\chi_{\text{eff}}^{(5)} \left| E \right|^{4} E + 35\chi_{\text{eff}}^{(7)} \left| E \right|^{6} E \right]$$

Optics Letters

41 (2016) 191

Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium

ALBERT S. REYNA* AND CID B. DE ARAÚJO

0.1

3.0

GW/cm²

 $10 \text{ mm} - 25 Z_{R}$

63

Z= 0

3

E

10 mm

 $I_{OVS} = 3.0 \, GW/cm^2$ $I_{HeNe} = 0.1 \, GW/cm^2$

HeNe

Guided HeNe

How to address the long standing problem of discovering a very good material for all-optical switching?

We need a material with large NL refraction and low NL absorption

In general large NL refraction presents large NL absorption

PbO-GeO2 films with gold NPs for all-optical switching

RF sputtering

800 nm 150 fs

Figure-of-merit enhanced by two orders of magnitude

Germanate	$n_2/\lambda\alpha_2$
film	
As grown	8.3 x 10 ⁻⁴
With Au NPs	>2.1 x 10 ⁻¹

Optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites

$$\Delta n = n_2 I + n_4 I^2 + n_6 I^3 + \dots = n_{NL} I$$

$$\alpha_{NL} = \alpha_2 + \alpha_4 I + \alpha_6 I^2 + \cdots$$

$$W = \frac{\Delta n}{\lambda \alpha_0} > 1$$

$$T = \frac{\lambda \, \alpha_{NL}}{n_{NL}} < 1$$

These results show that it is possible to have an efficient all-optical switch if a nanocomposite is made according to the nonlinearity management procedure presented

Challange for materials scientists

Summary

Metal composites present large NL susceptibility which depends on the shape and volume fraction of NPs

Metallic NPs can be nucleated inside different media allowing enhancement of:

- luminescence properties (Stokes and anti-Stokes)
- optical gain/amplification in waveguides
- random lasers, DFB lasers
- all-optical switching, etc.

Nonlinearity Management

The control of NPs volume fraction allows supression and/or enhancement of nonlinear optical contributions

Robust two-dimensional spatial solitons in liquid carbon disulfide Phys. Rev. Lett. 110 (2013) 013901.

Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90 (2014) 063835.

Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity. Phys. Rev. A 89 (2014) 063803.

Spatial phase modulation due to quintic and septimal nonlinearities in metal colloids. Opt. Express 22 (2014) 22456.

An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites. Opt. Express 23 (2015) 7659.

Robust self-trapping of optical vortex beams in a saturable optical medium. Phys. Rev. A 93 (2016) 013840.

Taming the emerging beams after the split of optical vortex solitons in a saturable. Phys. Rev. A 93 (2016) 013843.

Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium. Opt. Lett. 41 (2016) 191.

Thank you for your attention

Our work has been supported by the Brazilian agencies

