Experimental determination of the Schmidt number of two-photon states entangled in spatial degrees of freedom

C. H. Monken

UFMG Belo Horizonte, Brazil

XV Jorge André Swieca School on Nonlinear and Quantum Optics

Campinas - 2016

Entanglement in bipartite systems of photons

Experimental quantification

Tomographic state reconstruction

Low dimensional systems

Direct measurement

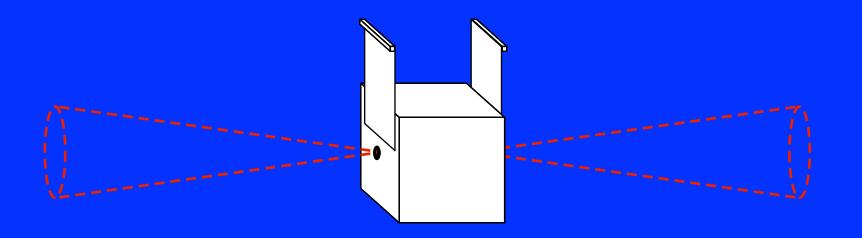
Low dimensional systems

- S. P. Walborn et al., Nature 440, 1022 (2006) pure state
- L. Neves et al., Phys. Rev. A 76, 032314 (2007) pure state
- C. Schmid et al., Phys. Rev. Lett. 101, 260505 (2008) mixed state

High dimensional systems - transverse modes - pure states

- M. V. Fedorov et al., Phys. Rev. A 69, 052117 (2004)
- M. V. Fedorov et al., Phys. Rev. A 72, 032110 (2005)
- M. V. Fedorov *et al.*, Phys. Rev. Lett. 99, 063901 (2007)
- M. V. Fedorov et al., Phys. Rev. A 77, 032336 (2008)
- J. Janousek et al., Nature Photon. 3, 399 (2009)

Two-photon Sources



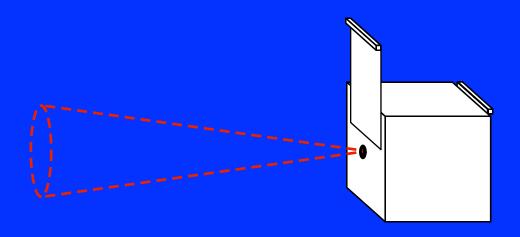
Pure states
$$ho_{12} = |\Psi\rangle\langle\Psi|$$

Schmidt decomposition

$$|\Psi\rangle = \sum_{n} \sqrt{\lambda_n} |\phi_n\rangle \otimes |\psi_n\rangle$$

One-photon states in the Schmidt modes

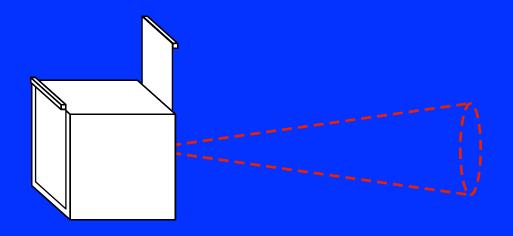
Two-photon Sources



$$\rho_1 = \operatorname{Tr}_2[\rho_{12}] = \sum_n \lambda_n |\phi_n\rangle\langle\phi_n|$$

 ho_{12} entangled ightarrow ho_1 Mixed

Two-photon Sources



$$\rho_2 = \operatorname{Tr}_1[\rho_{12}] = \sum_n \lambda_n |\psi_n\rangle \langle \psi_n|$$

 ho_{12} entangled ightarrow ho_2 Mixed

Representation of the reduced state operator in terms of plane-wave modes

$$\phi(\mathbf{x}_1) = \mathscr{F}[\tilde{\phi}(\mathbf{q}_1)]$$
 Fourier transform

$$\varrho(\mathbf{q}_1,\mathbf{q}_1')\longrightarrow w(\mathbf{x}_1,\mathbf{x}_1')$$

Schmidt modes for photon 1

$$w(\mathbf{x}_1, \mathbf{x}_1') = \sum_{n} \lambda_n \, \phi_n(\mathbf{x}_1) \, \phi_n^*(\mathbf{x}_1')$$

$$\phi(\mathbf{x}_1) = \mathscr{F}[\tilde{\phi}(\mathbf{q}_1)]$$
 Fourier transform

$$\varrho(\mathbf{q}_1,\mathbf{q}_1')\longrightarrow w(\mathbf{x}_1,\mathbf{x}_1')$$

Schmidt modes for photon 1

$$w(\mathbf{x}_1, \mathbf{x}_1') = \sum_{n} \lambda_n \phi_n(\mathbf{x}_1) \phi_n^*(\mathbf{x}_1')$$

Coherent modes for field 1

$$w(\mathbf{x}_1, \mathbf{x}_1') \propto \langle \mathscr{E}_{\omega}^*(\mathbf{x}_1) \mathscr{E}_{\omega}(\mathbf{x}_1') \rangle$$

Cross-spectral density

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge)

Quantum mechanics of pure monochromatic two-photon states

$$\varrho_1(\mathbf{q}_1, \mathbf{q}_1') = \sum_n \lambda_n \tilde{\phi}_n(\mathbf{q}_1) \tilde{\phi}_n^*(\mathbf{q}_1')$$

Reduced (one-photon) density matrix

Schmidt modes

Classical coherence theory

n

$$w(\mathbf{x}_1, \mathbf{x}_1') = \sum \lambda_n \, \phi_n(\mathbf{x}_1) \, \phi_n^*(\mathbf{x}_1')$$

Cross-spectral density function

Coherent modes

The Schmidt number

$$K = \frac{1}{\text{Tr}[\rho_1^2]} = \frac{1}{\text{Tr}[\rho_2^2]} = \frac{1}{\sum_n \lambda_n^2}$$

The overall degree of coherence

$$\bar{\mu}^2 = \iint d\mathbf{x} d\mathbf{x}' |w(\mathbf{x}, \mathbf{x}')|^2 = \sum_n \lambda_n^2$$

$$K = \frac{1}{\bar{\mu}^2}$$

The Schmidt number

$$K = \frac{1}{\text{Tr}[\rho_1^2]} = \frac{1}{\text{Tr}[\rho_2^2]} = \frac{1}{\sum_n \lambda_n^2}$$

The overall degree of coherence

$$\bar{\mu}^2 = \iint d\mathbf{x} d\mathbf{x}' \ |w(\mathbf{x}, \mathbf{x}')|^2 = \sum_n \lambda_n^2$$

$$K = \frac{1}{\bar{\mu}^2}$$

May be difficult to measure

Quasi-homogeneous light sources

$$w(\mathbf{x}_1, \mathbf{x}_1') \to \mu(|\mathbf{x}_1 - \mathbf{x}_1'|) P(\frac{1}{2}|\mathbf{x}_1 + \mathbf{x}_1'|)$$

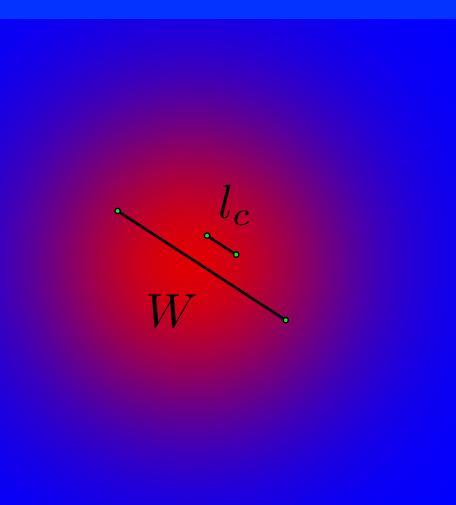
Transverse coherence function

Normalized intensity
$$P(\mathbf{x}) = \frac{\mathscr{I}(\mathbf{x})}{\int d\mathbf{x}\,\mathscr{I}(\mathbf{x})}$$

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge)

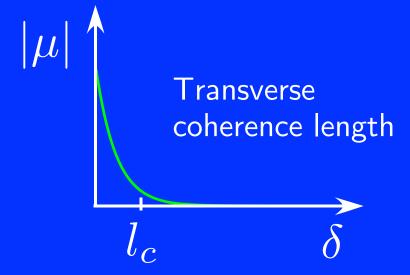
Quasi-homogeneous light sources

$$w(\mathbf{x}_1, \mathbf{x}_1') \to \mu(|\mathbf{x}_1 - \mathbf{x}_1'|) P(\frac{1}{2}|\mathbf{x}_1 + \mathbf{x}_1'|)$$



Smooth intensity profile

$$l_c \ll W$$

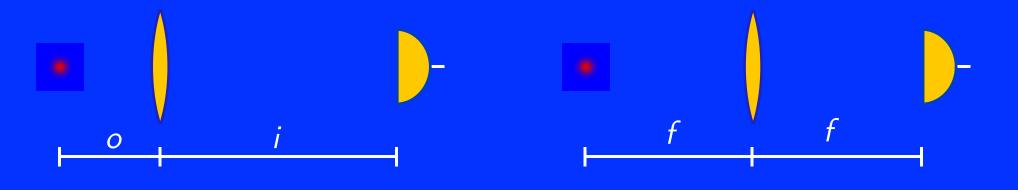


Quasi-homogeneous light sources

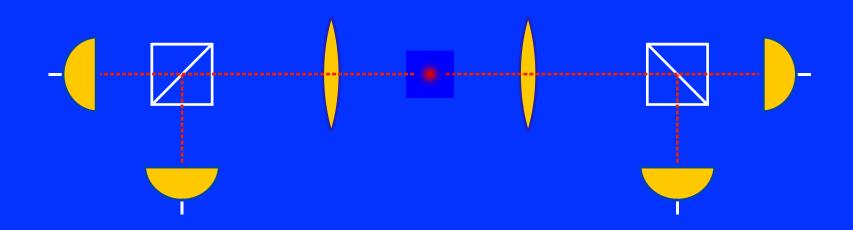
$$\bar{\mu}^{2} \approx \underbrace{\frac{\int \mathscr{I}^{2}(\mathbf{x})d\mathbf{x}}{[\int \mathscr{I}(\mathbf{x})d\mathbf{x}]^{2}}}_{\text{Source}} \times \underbrace{\frac{\int \mathscr{I}^{2}(\mathbf{q})d\mathbf{q}}{[\int \mathscr{I}(\mathbf{q})d\mathbf{q}]^{2}}}_{\text{Far field}}$$

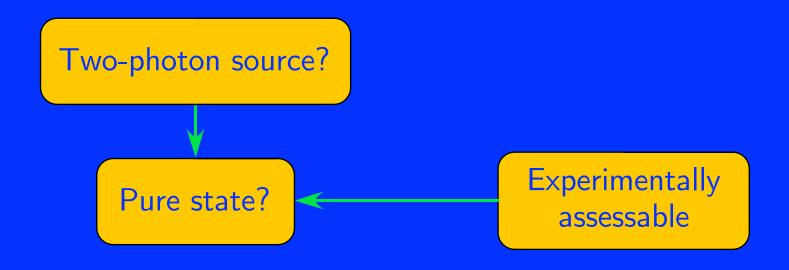
$$\bar{\mu}^2 \approx \int P^2(\mathbf{x}) d\mathbf{x} \times \int P^2(\mathbf{q}) d\mathbf{q}$$

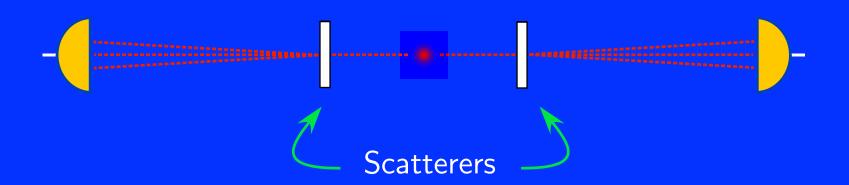
Easy to measure



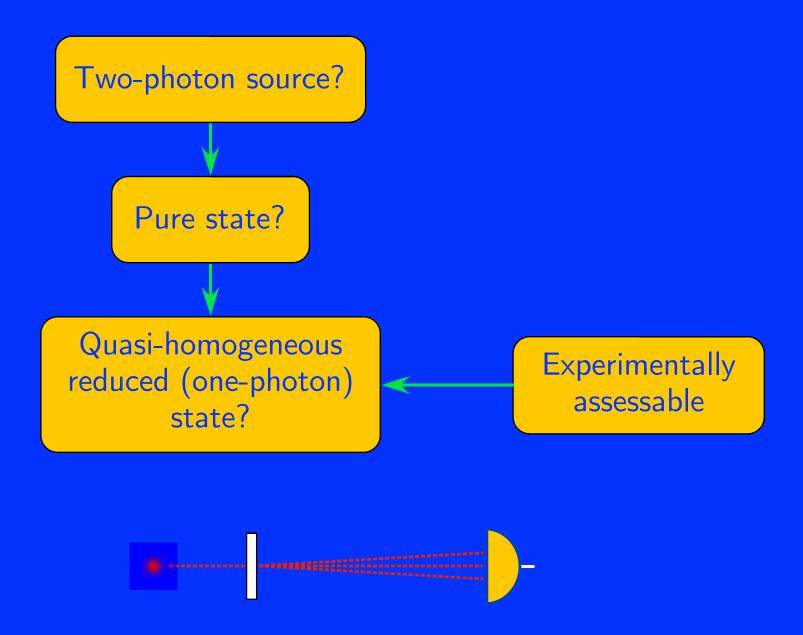
Two-photon source? Experimentally assessable



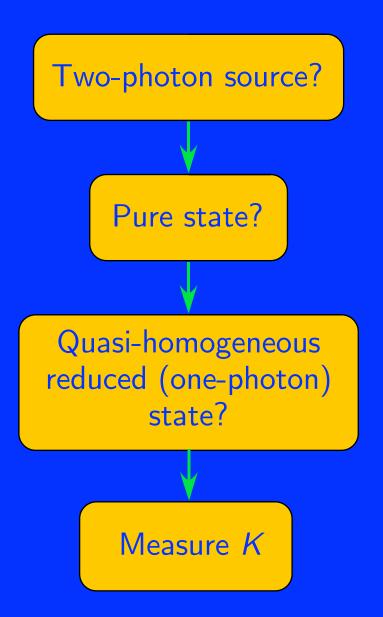




- L. Neves et al., Phys. Rev. A 76, 032314 (2007)
- C. W. J. Beenakker et. al., Phys. Rev. Lett. 102, 193601 (2009)



Jannson et al., Opt Lett. 13, 1060 (1988)

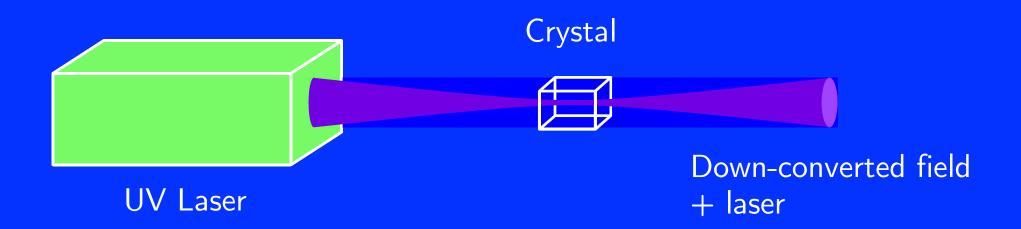


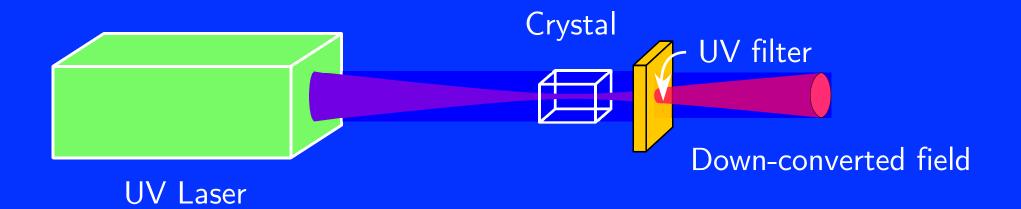
Application

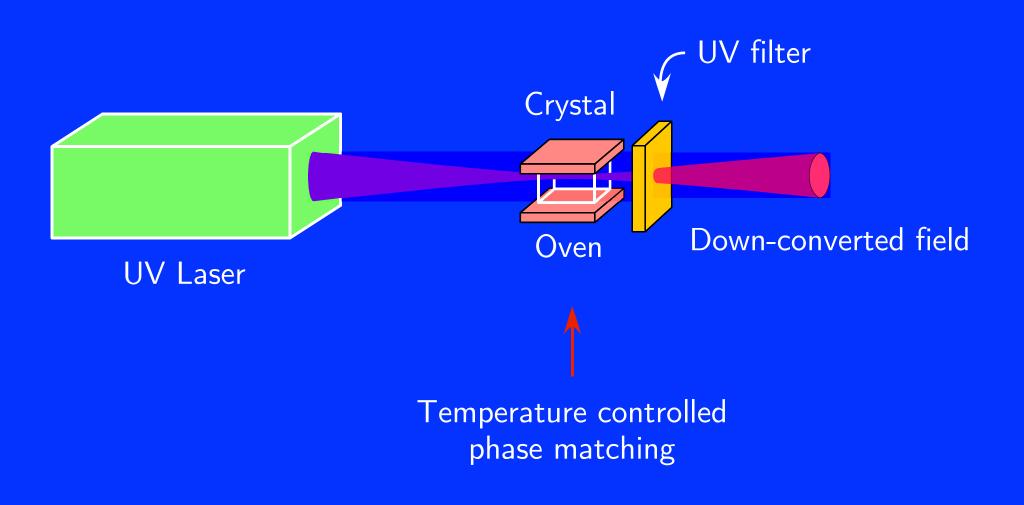
Spontaneous parametric down-conversion

Pump photon \mathbf{k} Down-converted photons \mathbf{k}_2

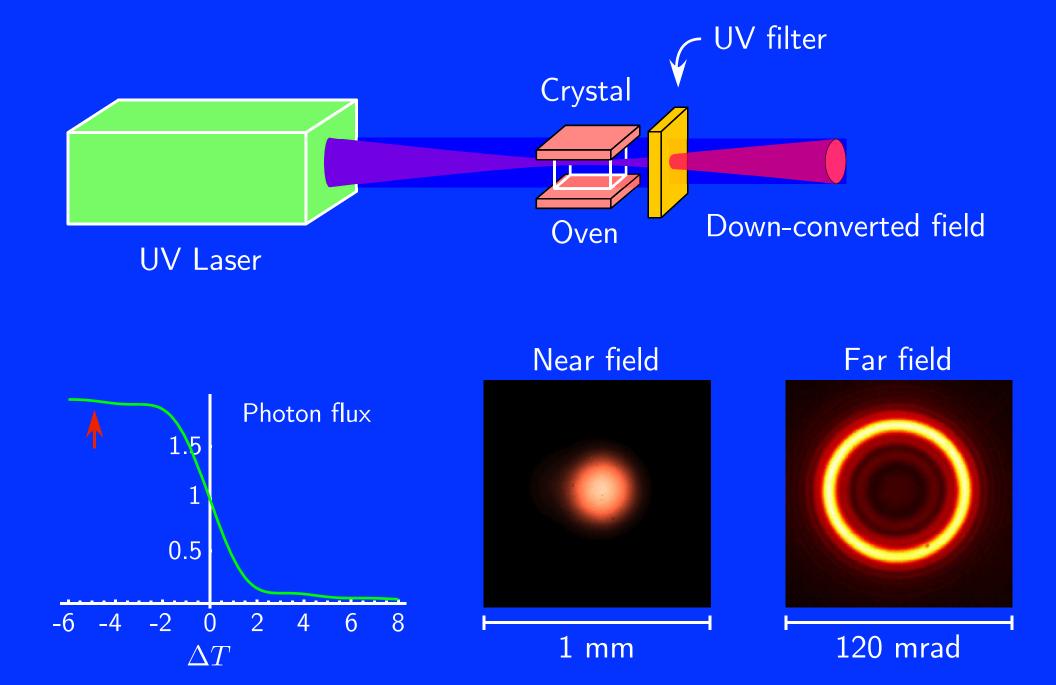
$$a(\mathbf{k})a^{\dagger}(\mathbf{k}_1)a^{\dagger}(\mathbf{k}_2)$$

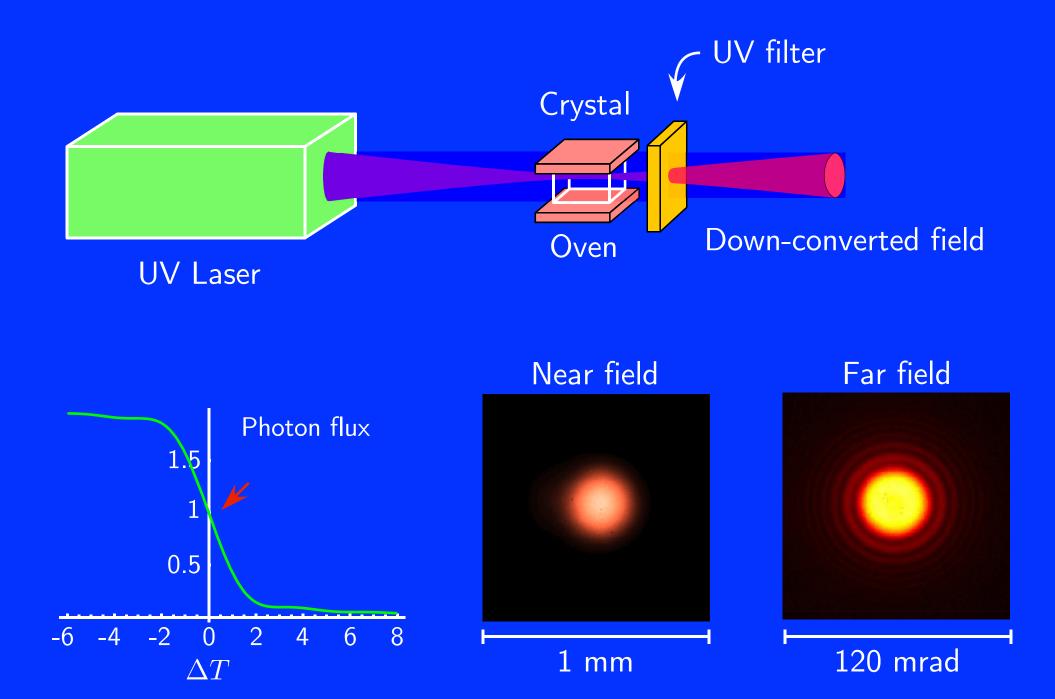


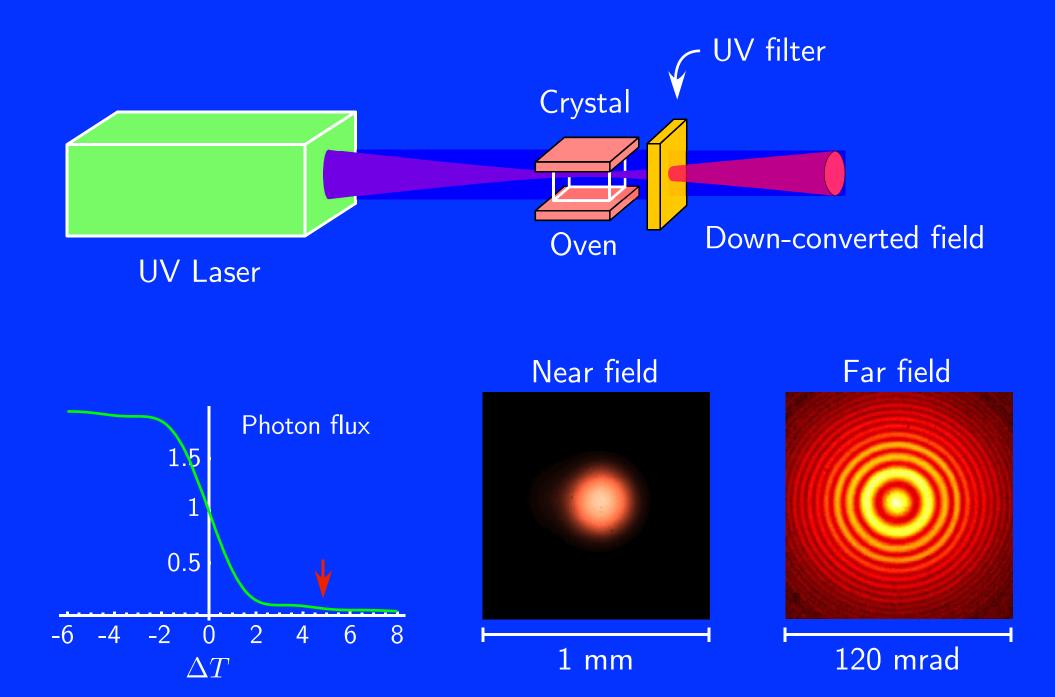




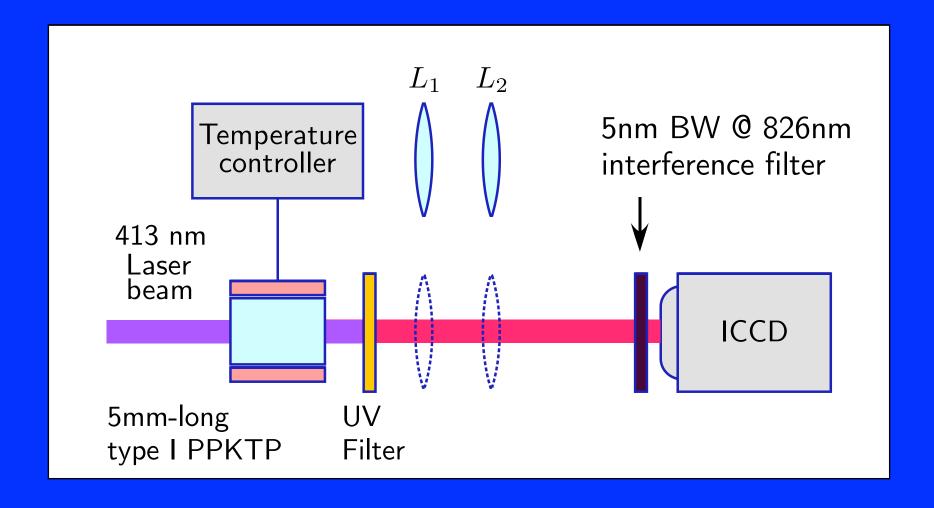
$$T_0 = 60\,{}^{\mathrm{o}}C$$
 (in our setup)







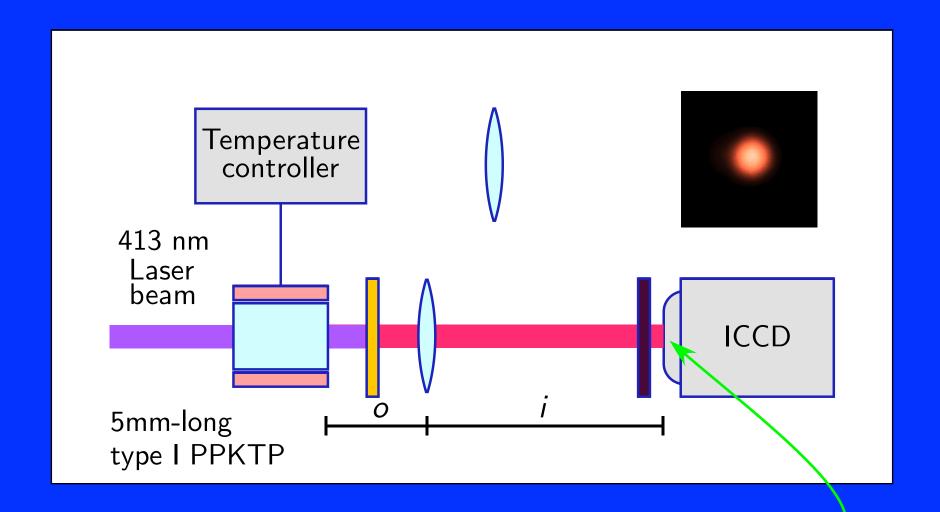
Experimental setup



 L_1 : f=49mm

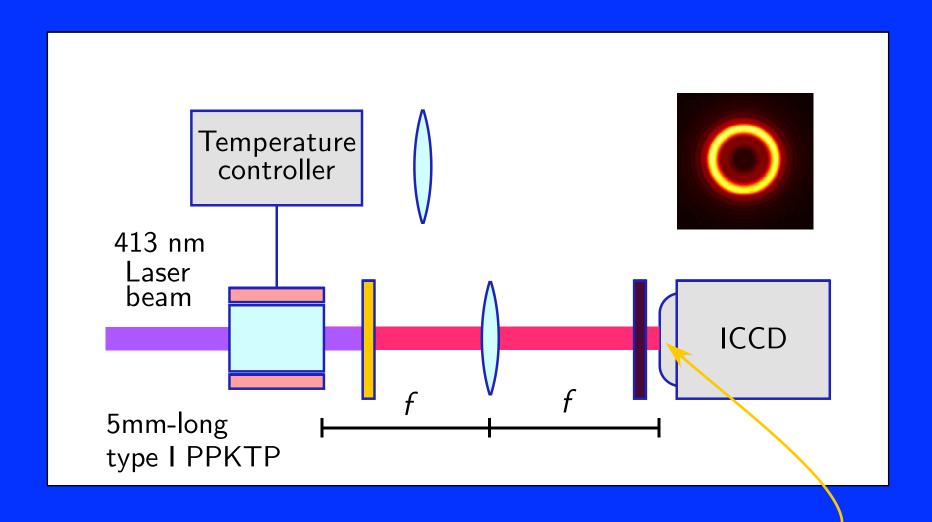
 L_2 : f=100mm

Experimental setup



12 x image of the source (near field)

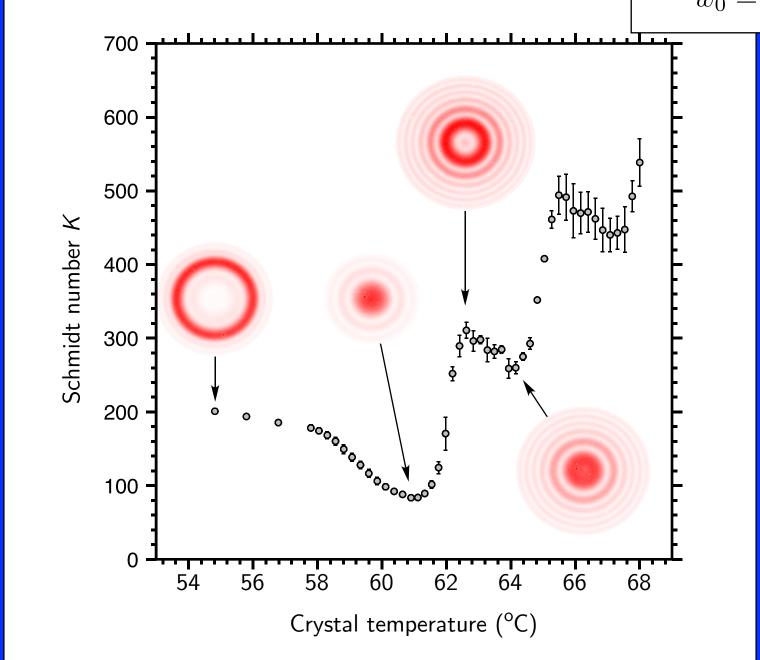
Experimental setup



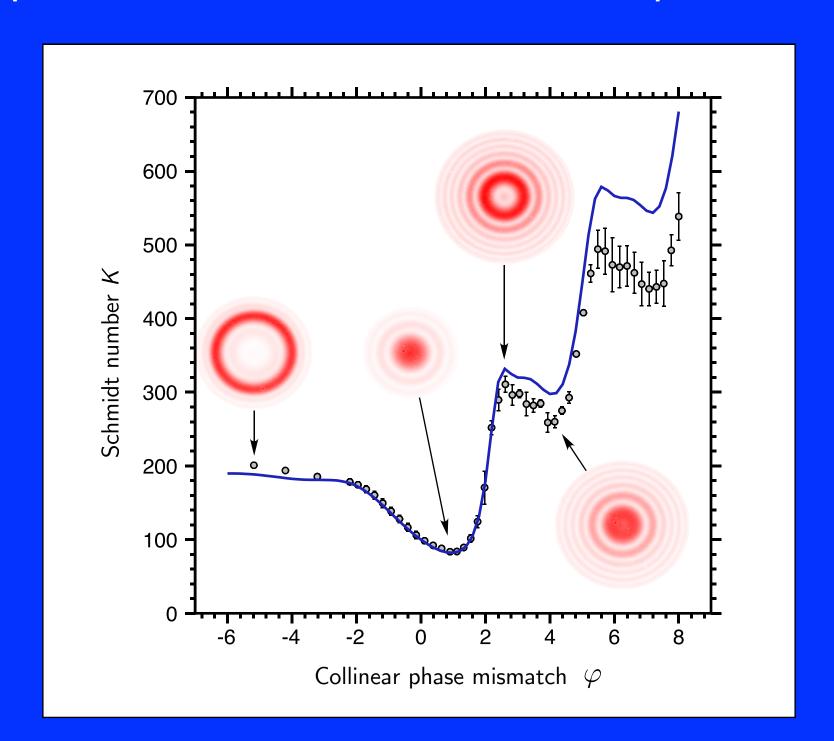
Fourier transform (far field)

Experimental results

 $L_{\rm cryst.} = 5.06 {\rm mm}$ $w_0 = 161 \mu {\rm m}$

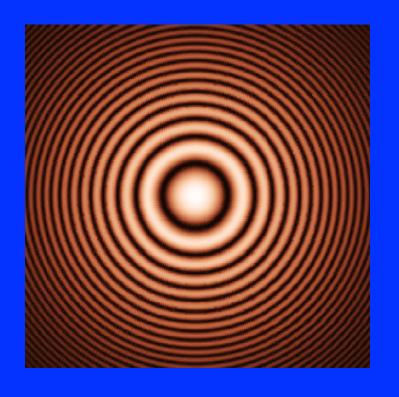


Experimental results + theoretical predictions



Theoretical predictions

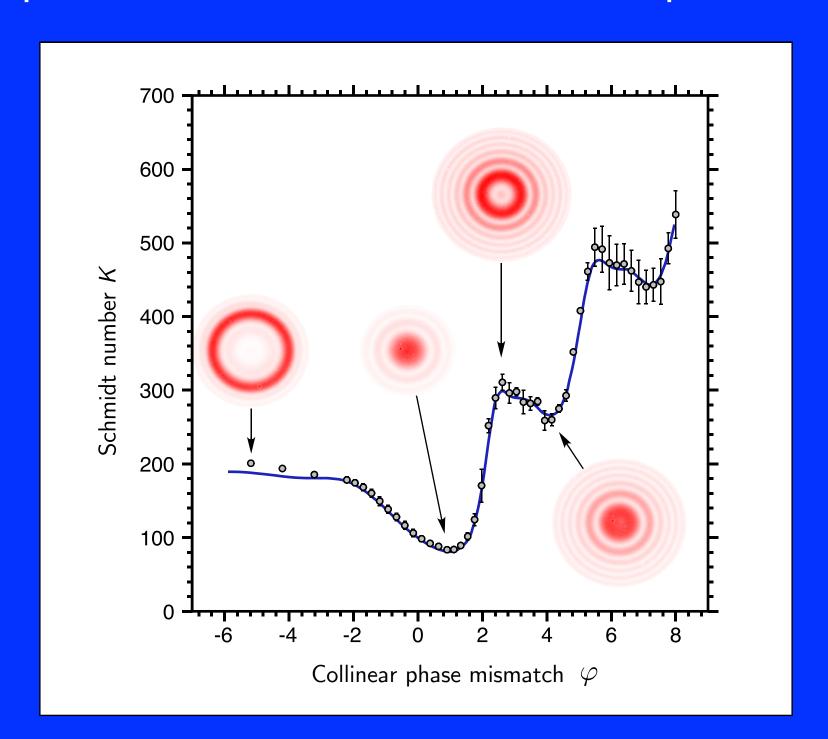
Correction for the finite detection aperture



$$\varphi < 0$$

$$\varphi > 0$$

Experimental results + theoretical predictions



Conclusions

The Schmidt number of two-photon states entangled in transverse modes is identical to the inverse of the overall degree of coherence of the reduced one-photon states.

If the reduced (one-photon) states describe quasi-homogeneous light sources, the overall degree of coherence can be easily measured, providing a direct measurement of the Schmidt number.

Phys. Rev. A 80, 022307 (2009)