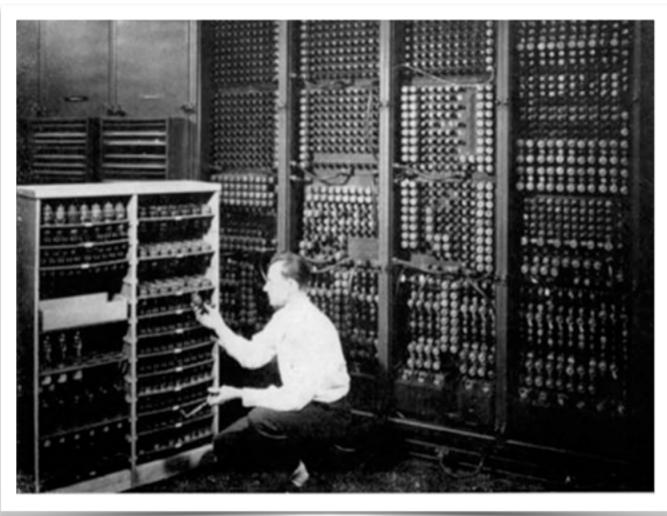
Cavity optomechanics: keeping light and sound under control

Gustavo Wiederhecker University of Campinas

Silicon Nanophotonics



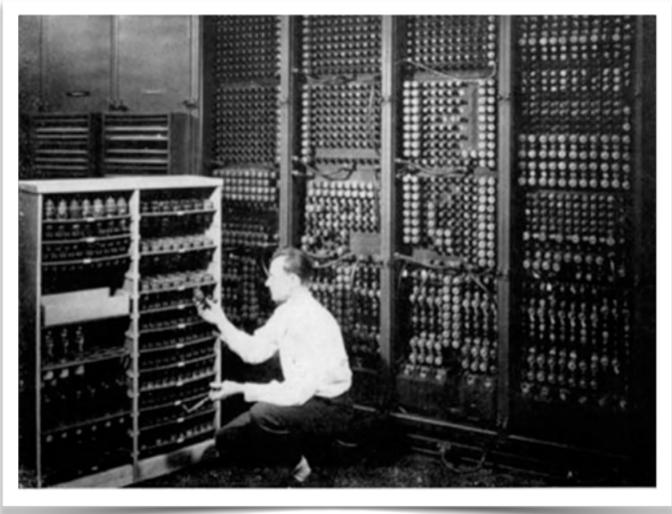
Z2 (Germany, 1939)

- 1.2 flops
- 300 kg
- 1 kW

ENIAC (USA, 1946)

- 300 flops
- 27,000 kg
- 150 kW

Silicon Nanophotonics



Z2 (Germany, 1939)

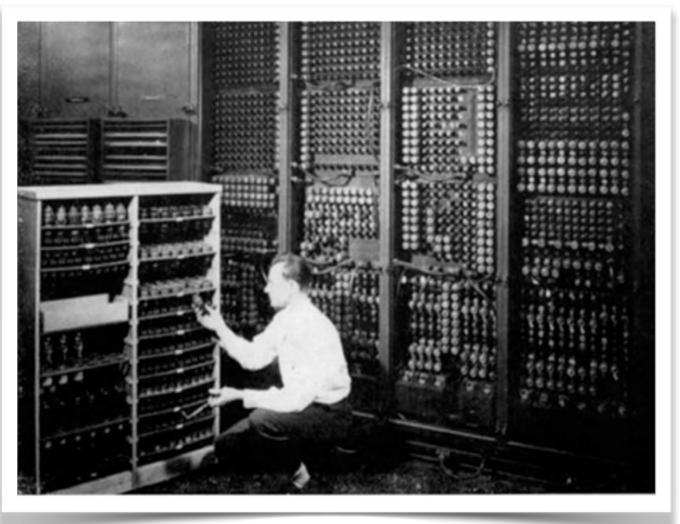
- 1.2 flops
- 300 kg
- 1 kW

ENIAC (USA, 1946)

- 300 flops
- 27,000 kg
- 150 kW

Iphone 6 (2014)

Silicon Nanophotonics



Z2 (Germany, 1939)

- 1.2 flops
- 300 kg
- 1 kW

ENIAC (USA, 1946)

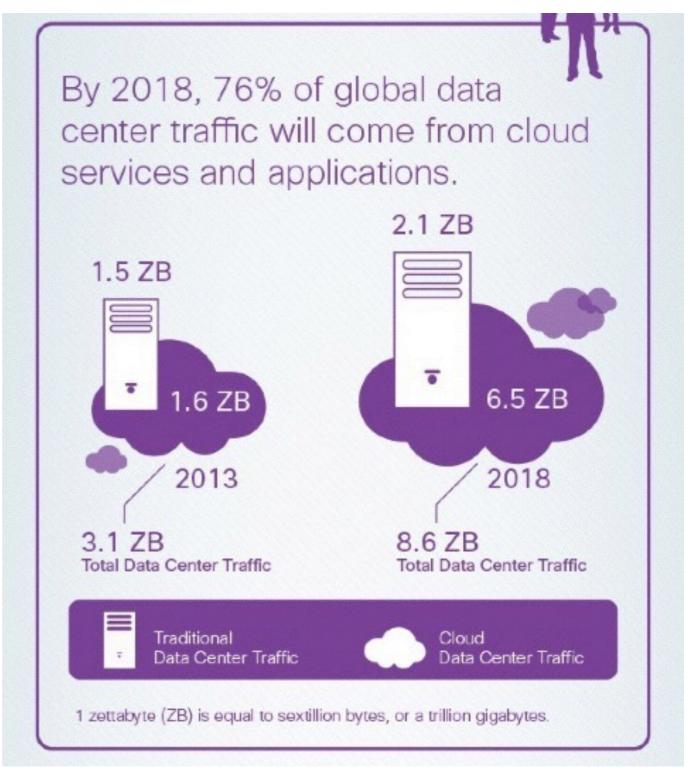
- 300 flops
- 27,000 kg
- 150 kW

Iphone 6 (2014)

- 150 Gflops
- 130 g
- battery

Silicon Nanchatanica

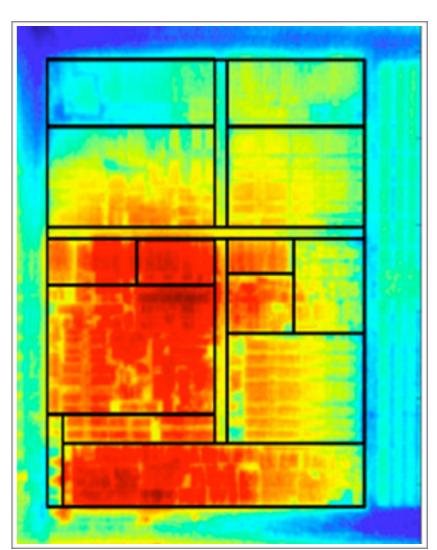
Datacenter bottleneck



Temperature Issues



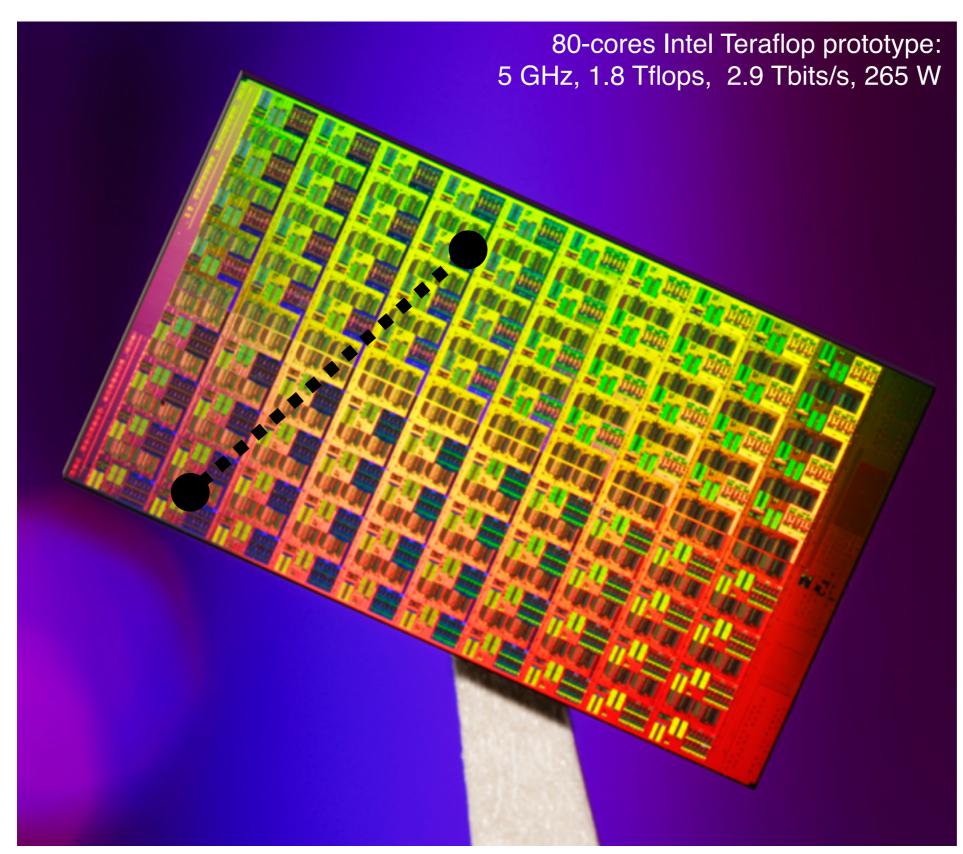
Bacon "on-chip"



Temperature map ∆T≈80 K

≈mm

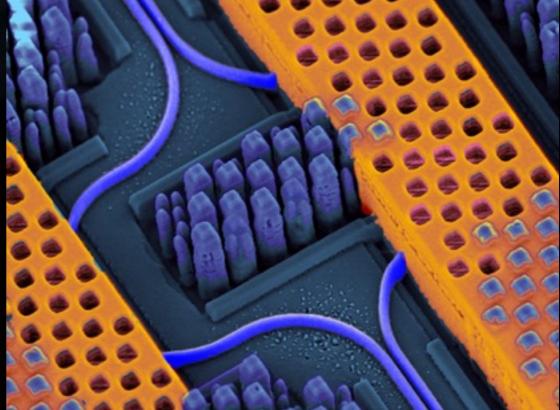
The multi-core solution



Si Nanophotonics

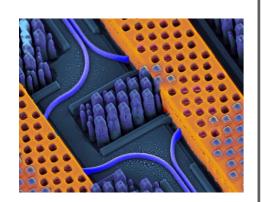
Si Nanophotonics

What kind of nanophotonic building blocks we need here?

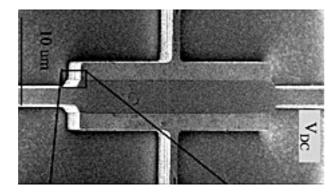


IBM 90-nm BEOL integration (2013)

Technological viewpoint: Si Nanophotonics Building Blocks

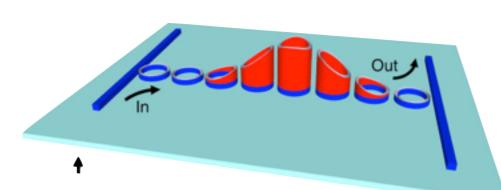


Silicon MEMS oscillators



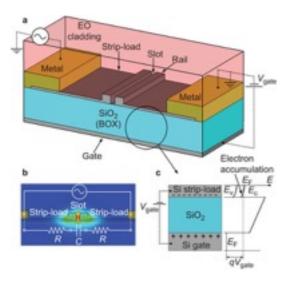
Bhave's group (Cornell)
Journal of MEMS (2009)

Wavelength Conversion



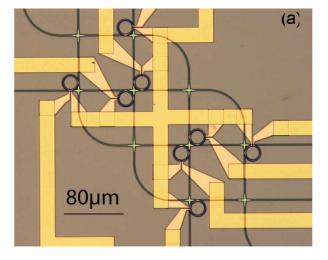
Melloni Group (Milano) Nature Comm. 2011

Modulators



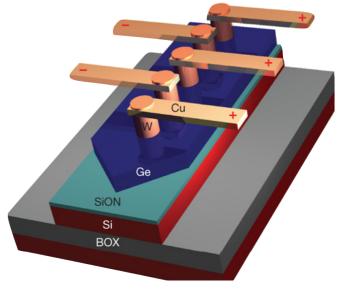
Leuthold group (KIT)
Nature 2005

Routers



Lipson's group (Cornell)
Opt. Express 2008

Photodetectors

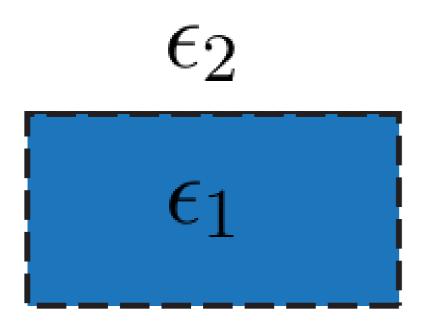


Vlasov's group (IBM) Nature 2010

Outline

- ⋆ Optical and acoustic mode interaction
- ⋆ Optical force actuation
- ⋆ Dynamical back-action
- ⋆ Optomechanical clocks
- ⋆ Bullseye a case study
- ⋆ Outlook

Light-sound interaction



Dielectric waveguide

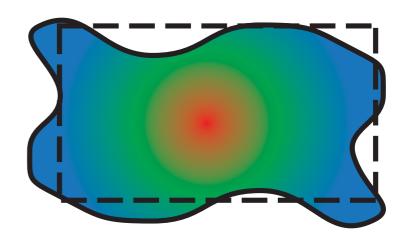
E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett., vol. 21, pp. 539–541, Dec. 1972.
R. H. Stolen - "The Early Years of Fiber Nonlinear Optics". JLT, VOL. 26, NO. 9, MAY 1, 2008

Light-sound interaction

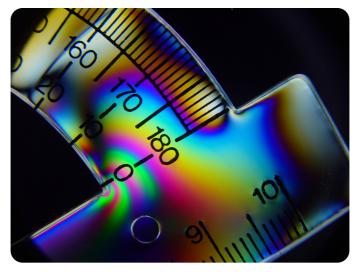
 ϵ_2

 ϵ_1

Dielectric waveguide

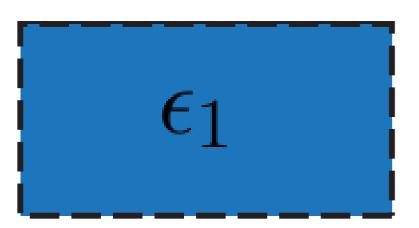


- boundary distortion

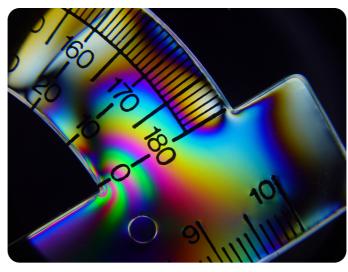


strain-optic effect

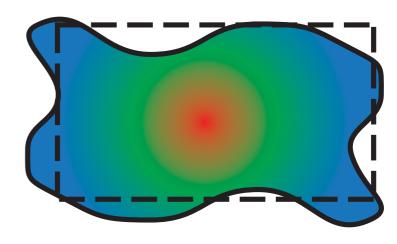
Light-sound interaction



Dielectric waveguide



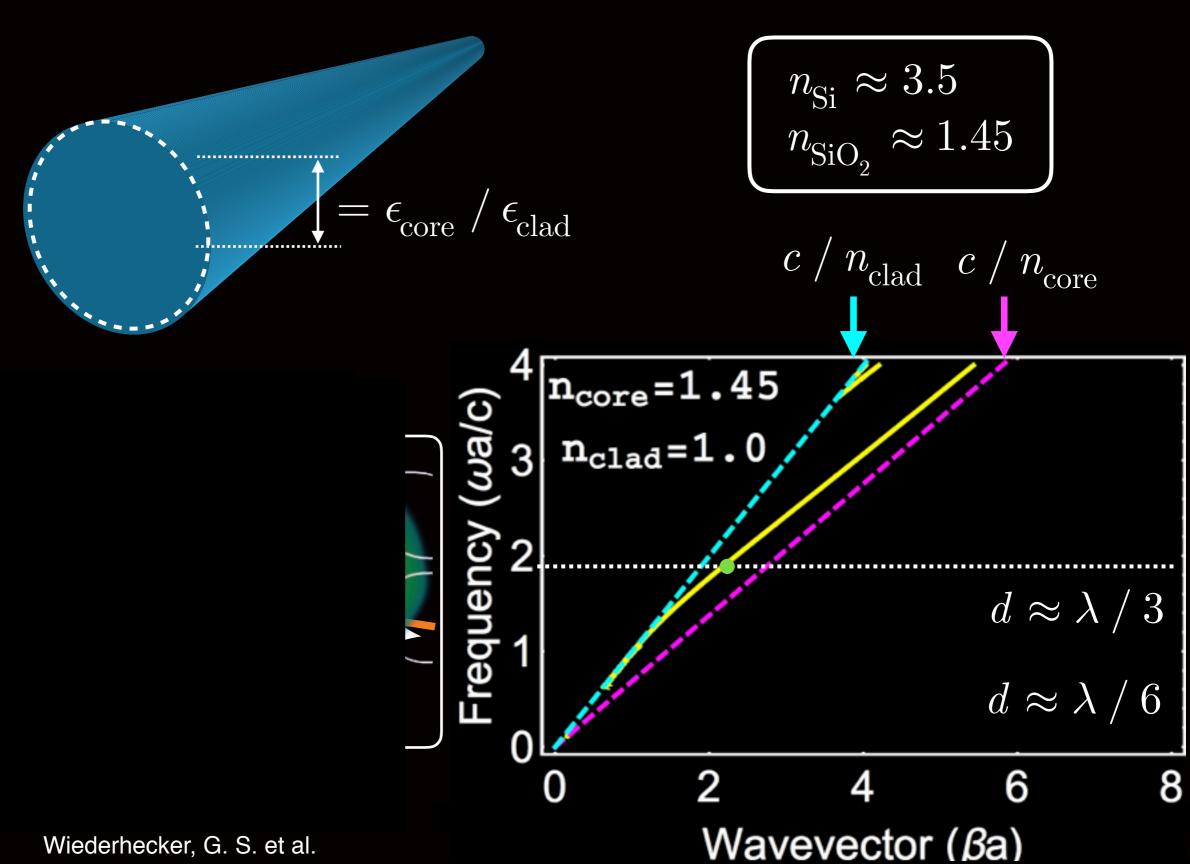
strain-optic effect



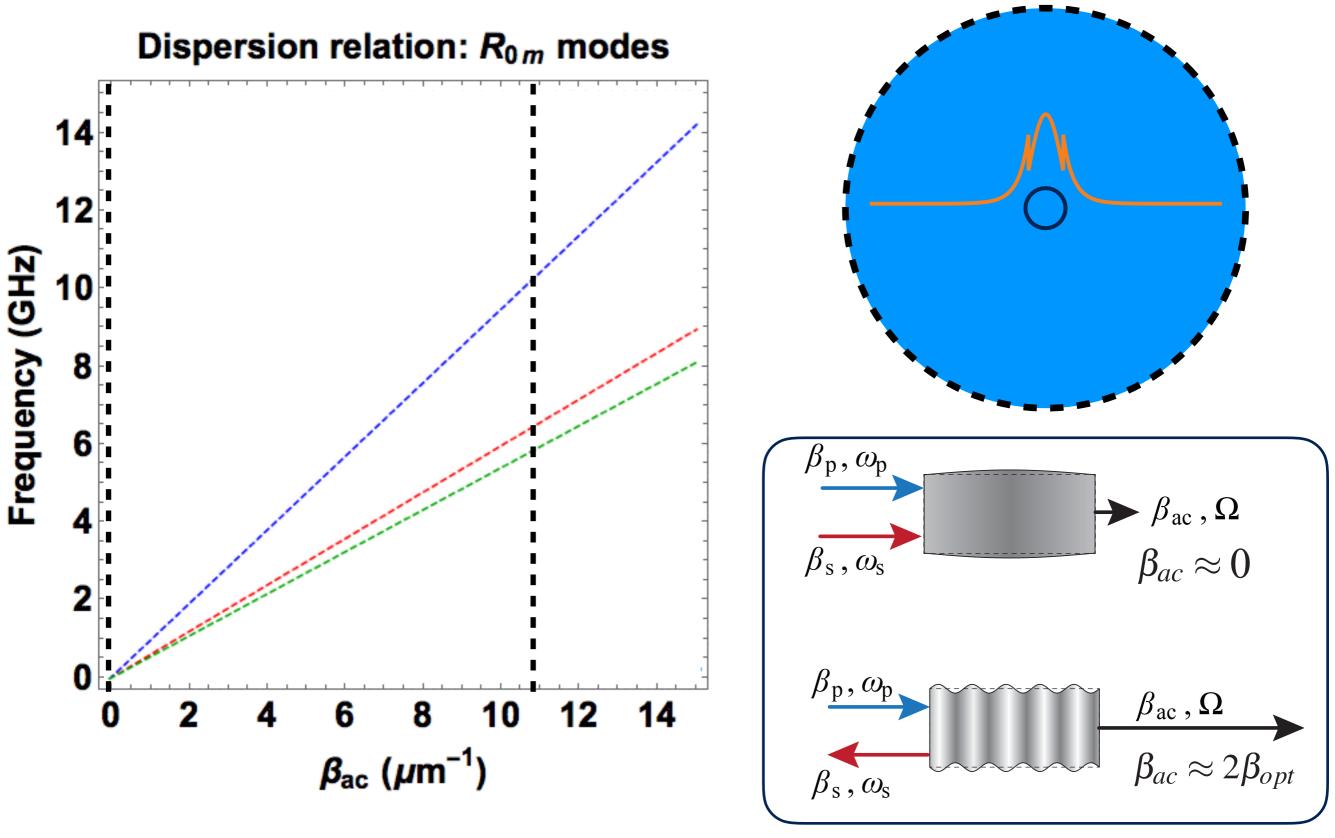
- boundary distortion

refractive index modulation

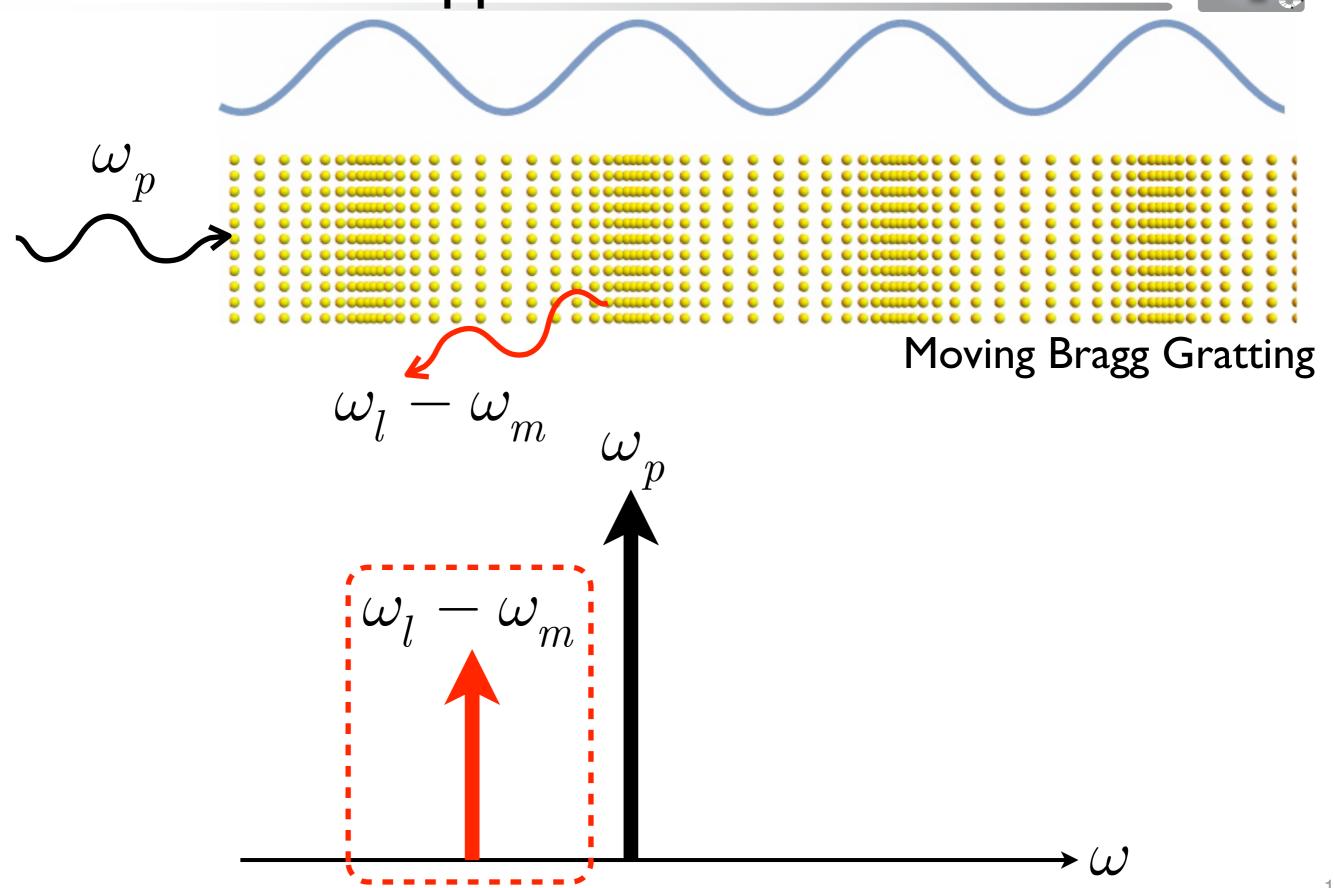
Sub-wavelength confinement



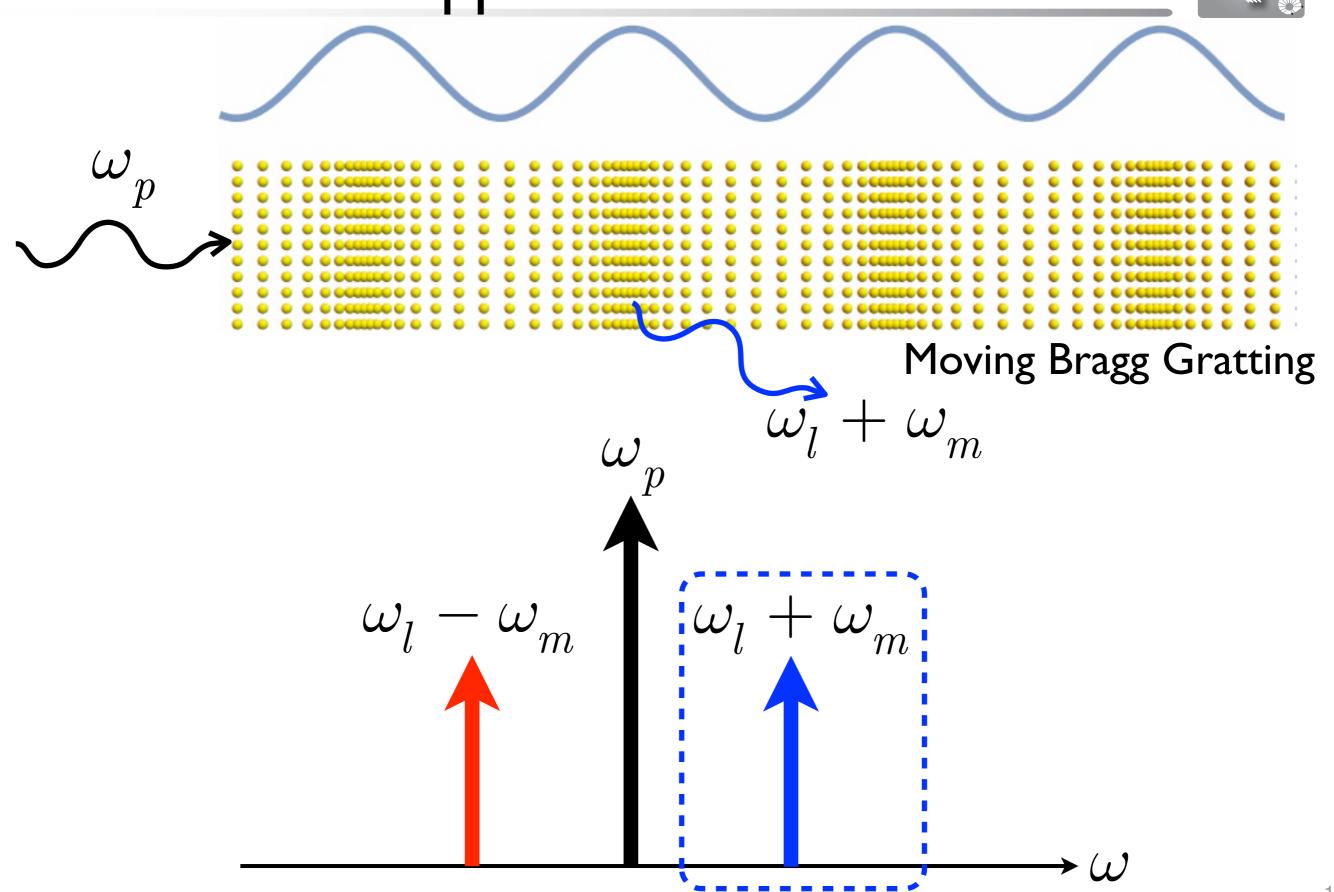
Light-sound interaction: Brillouin scattering



Photoelastic: Doppler Shift

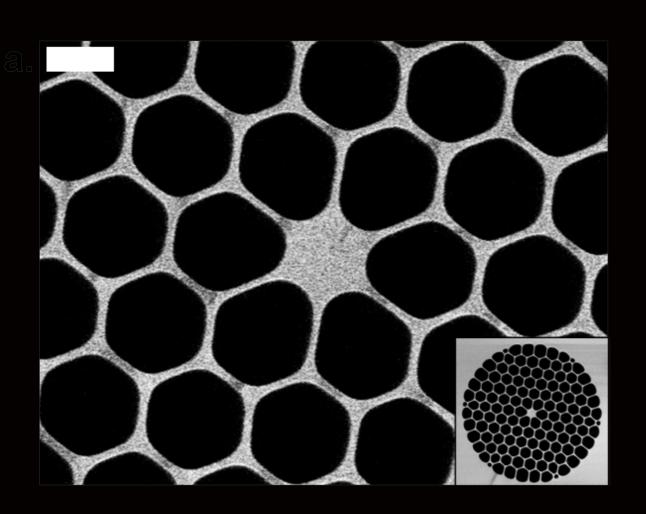


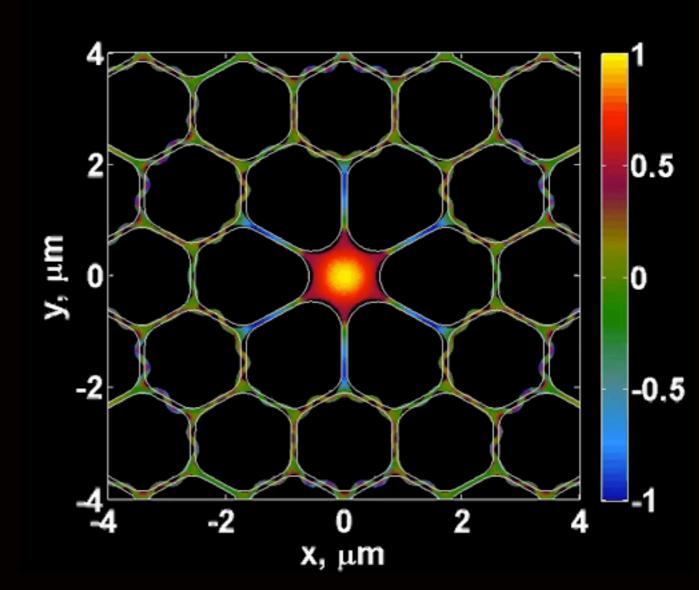
Photoelastic: Doppler Shift



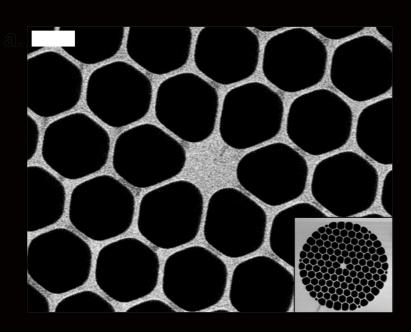
Light-sound interaction: Brillouin scattering

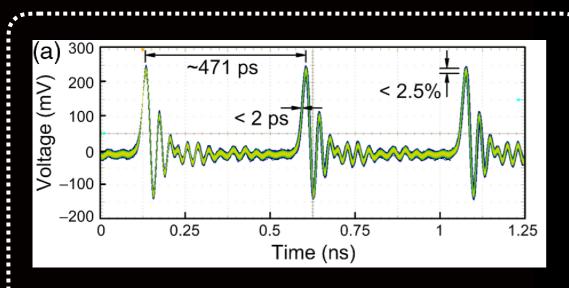
Steady Bragg Gratting



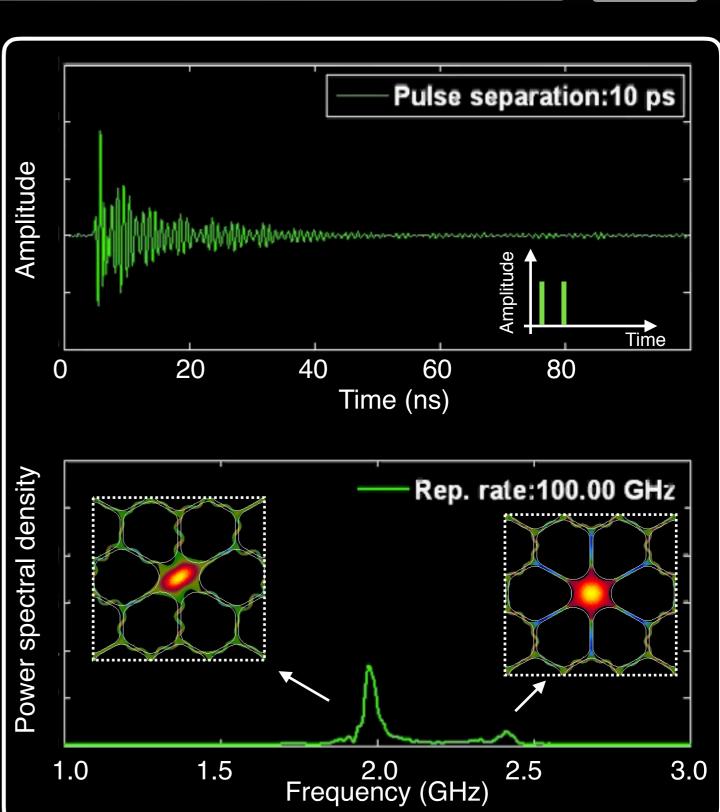


Dainese, P., et al. (2006). Nature Physics, 2(6), 388. Dainese, P., et al (2006). Optics Express, 14(9), 4141–4150 Wiederhecker, G. S., et al. (2008). PRL, 100(20), 203903. Kang, M., et al (2008). Applied Physics Letters, 93, 131110. Brenn, A., et al (2009). Josa B, 26(8), 1641–1648.

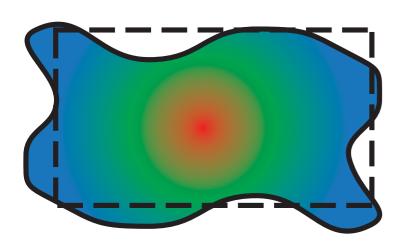


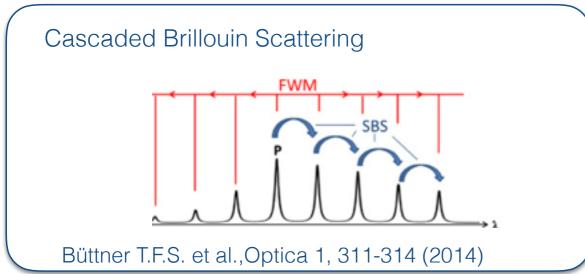


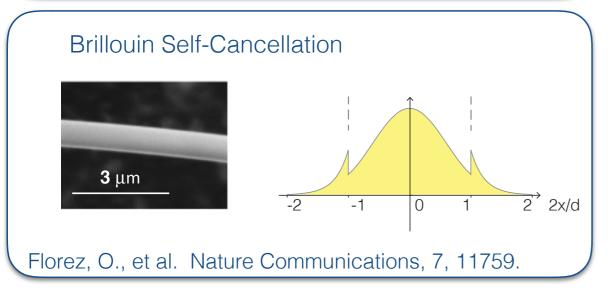
W. He, et al, Optics Express, 23(19), 24945-24954 (2015) M. Pang, Optica, Vol. 2, Issue 4, pp. 339-342 (2015)

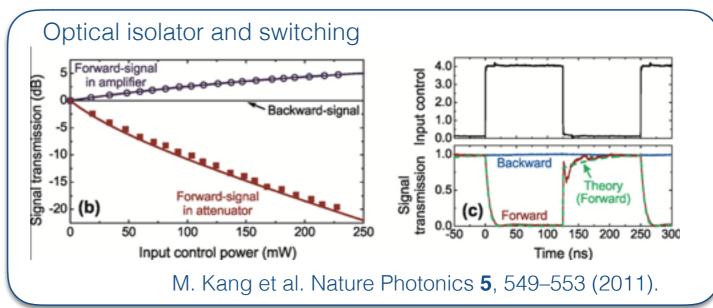


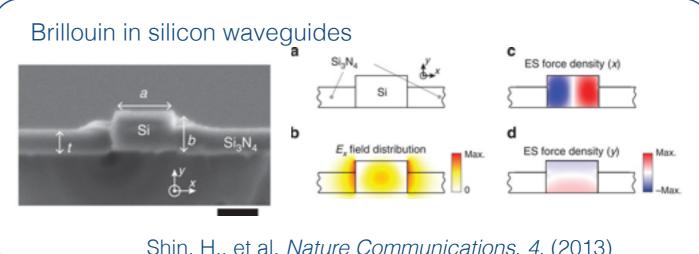
Light-sound interaction: Brillouin scattering



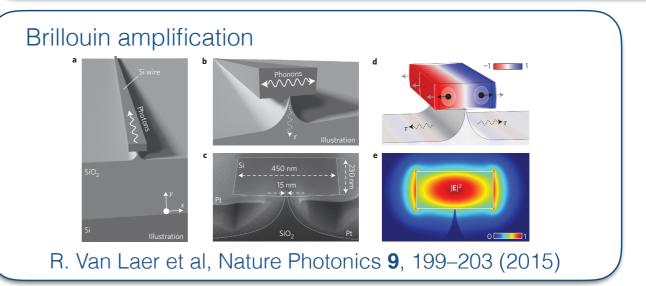






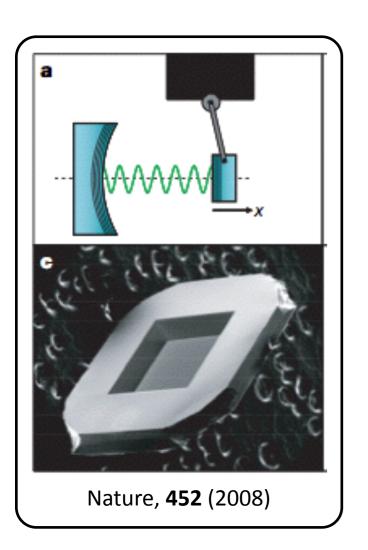


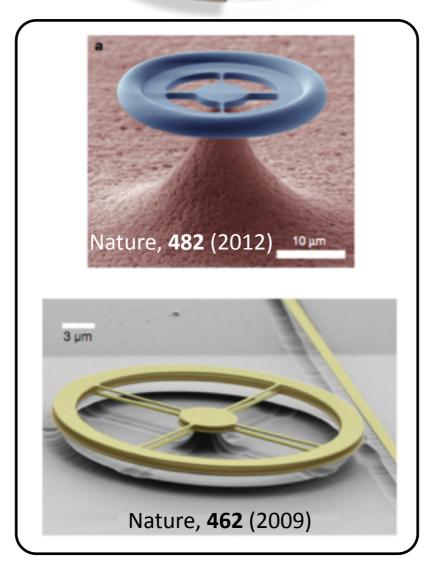
Shin, H., et al. Nature Communications, 4. (2013)

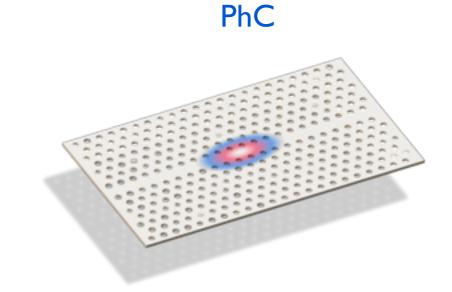


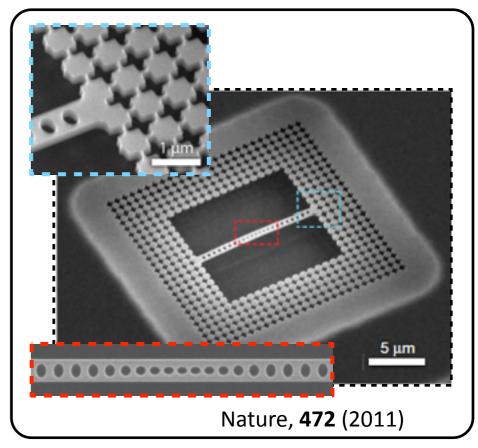
S. G. Johnson et al., Physical Review E 65, (2002)

Examples of optical cavities

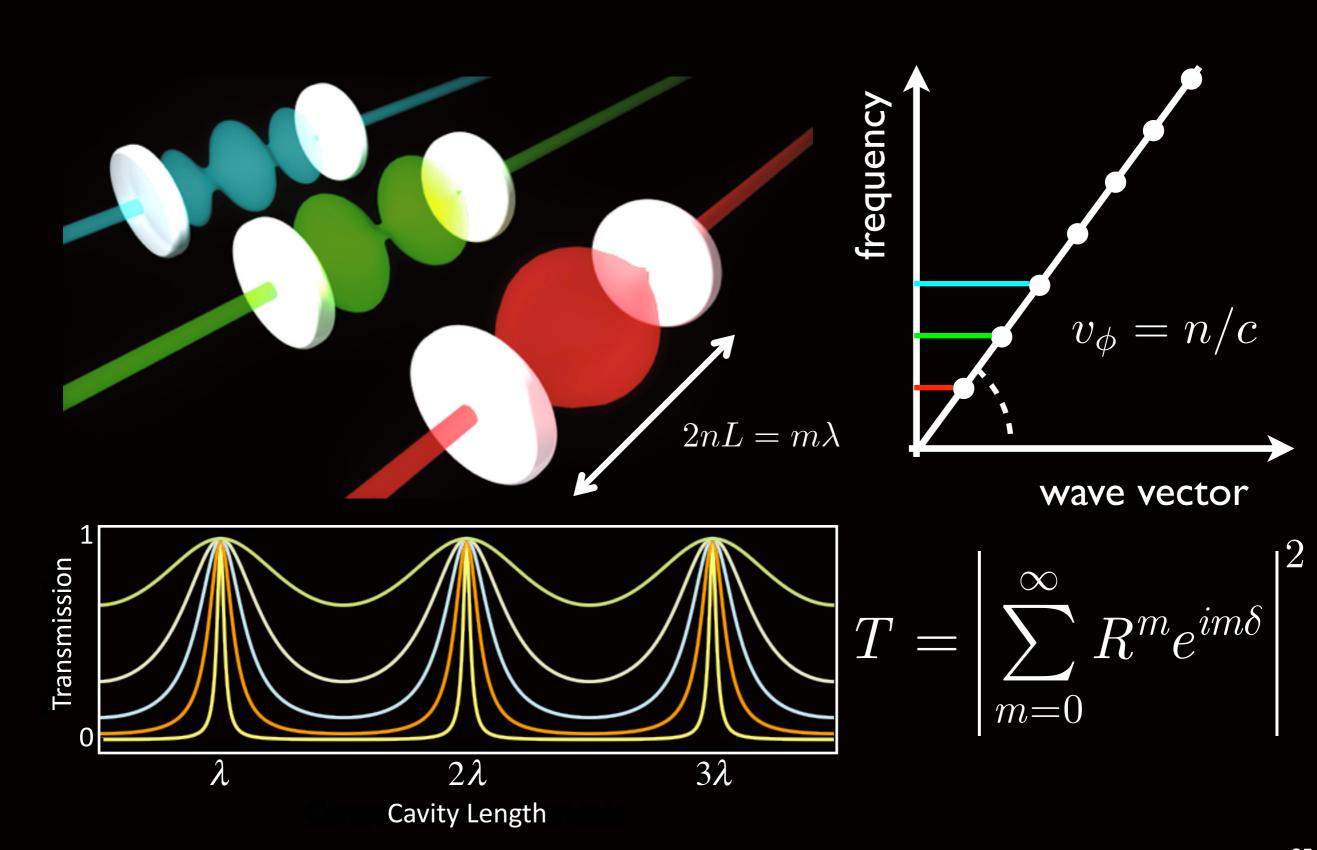




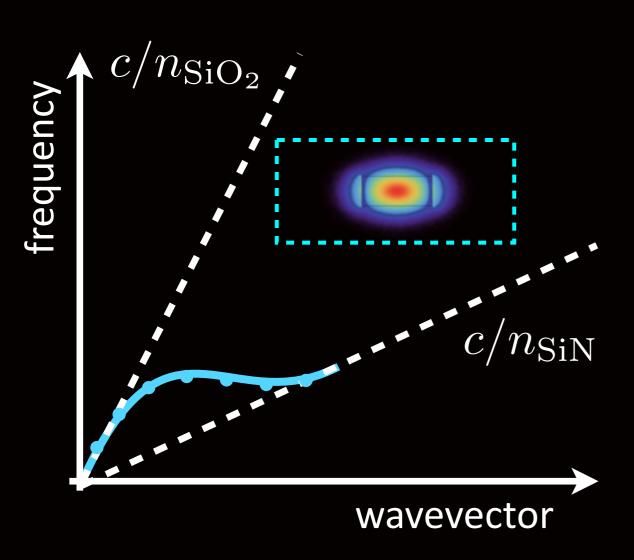




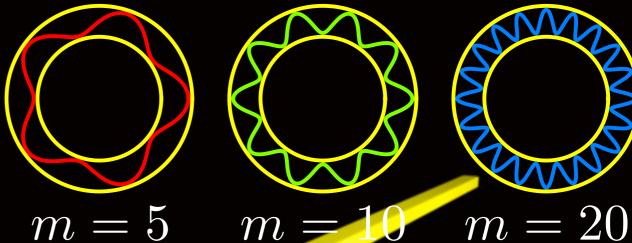
Optical Cavities



Ringtoavities



$$\omega(k) = k_z \frac{c}{n}$$



Power enhancement

$$P_{\rm circ} \propto \mathcal{F} P_0$$

$$R = 15 \ \mu \text{m}$$

 $Q = 10^6 \ (\tau \approx 1 \text{ ns})$
 $\mathcal{F} \approx 50 \times 10^3$

Volume 137, number 7,8

PHYSICS LETTERS A

QUALITY-FACTOR AND NONLINEAR PROPERTIES OF OPTICAL WHISPERING-GALLERY MODES

V.B. BRAGINSKY, M.L. GORODETSKY and V.S. ILCHENKO

Department of Physics, Moscow University, 119899 Moscow, USSR

Received 10 March 1989; accepted for publication 21 March 1989 Communicated by V.M. Agranovich

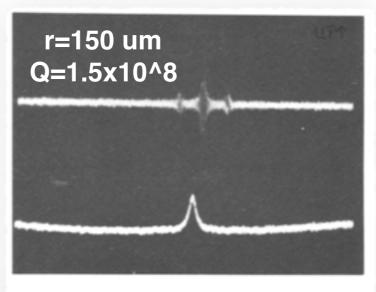


Fig. 2. Detailed resonant curve of the mode; second trace is the precise marks ± 7 MHz. Bandwidth of the mode ≈ 3 MHz, quality-factor 1.5×10^8 (the whispering-gallery microresonator 150 μ m in diameter).

Braginsky, V. B., et al. Physics Letters A, 137(7-8), 393–397. (1989)

Collot, L., Europhys. Lett. 23, 327-334 (1993).

M. L. Gorodetsky et al, Opt. Commun.113, 133 (1994).

J. C. Knight, et al. Opt. Lett. 20, 1515-1517 (1995)

D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).

Volume 137, number 7,8

PHYSICS LETTERS A

QUALITY-FACTOR AND NONLINEAR PROPERTIES OF OPTICAL WHISPERING-GALLERY MODES

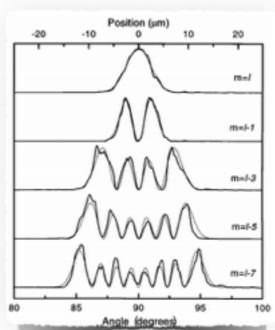
V.B. BRAGINSKY, M.L. GORODETSKY and V.S. ILCHENKO

Department of Physics, Moscow University, 119899 Moscow, USSR

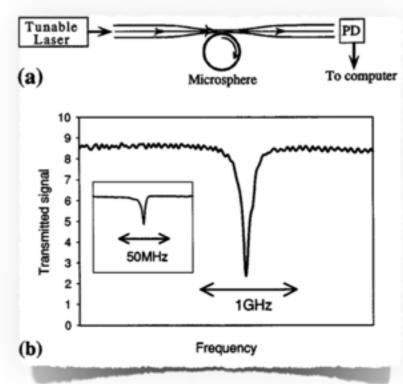
Received 10 March 1989; accepted for publication 21 March 1989 Communicated by V.M. Agranovich

Braginsky, V. B., et al. Physics Letters A, 137(7-8), 393–397. (1989) Collot, L., Europhys. Lett. 23, 327-334 (1993).

- M. L. Gorodetsky et al, Opt. Commun.113, 133 (1994).
- J. C. Knight, et al. Opt. Lett. 20, 1515-1517 (1995)
- D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).



J. C. Knight, et al. Opt. Lett. 20, 1515-1517 (1995)



Knight, J. C., et al. Optics Letters, 22(15), 1129–1131 (1997).

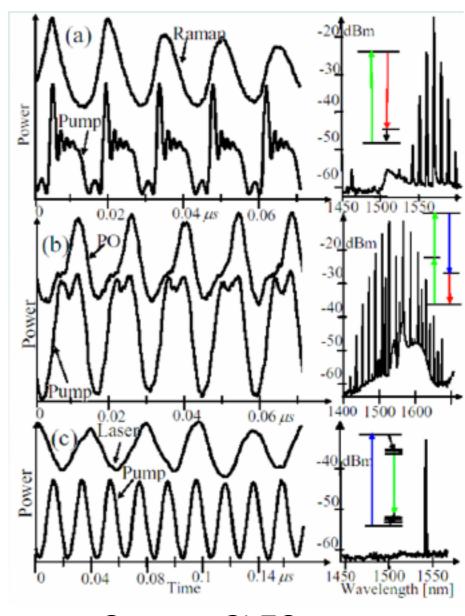
Nature 415, 621-623 (2002). Silica Raman Laser

Nature 421, 925-928 (2003) Ultra-high Q thoroids

Spillane, S. M., et al. Nature 415, 621-623 (2002) D. K. Armani, et al., Nature 421, 925-928 (2003)

Nature 415, 621-623 (2002). Silica Raman Laser

Nature 421, 925-928 (2003) Ultra-high Q thoroids



Carmon, CLEO 2005

Carmon, T., et al. Physical Review Letters, 94(22), 223902. (2005)

Spillane, S. M., et al. Nature 415, 621-623 (2002) D. K. Armani, et al., Nature 421, 925-928 (2003)

Standing on the shoulder of giants

Vladimir Braginsky, 1931-2016

Credit: LIGO website

V.B. Braginsky, Y.I. Vorontsov, K.S. Thome: Science 209, 547 (1980)

V.B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Parametric oscillatory instability in Fabry–Perot interferometer, Physics Letters A, Volume 287, Issues 5–6, 3 September 2001, Pages 331-338,

Mechanical effects of light

Photons' linear momentum results in *radiation pressure*

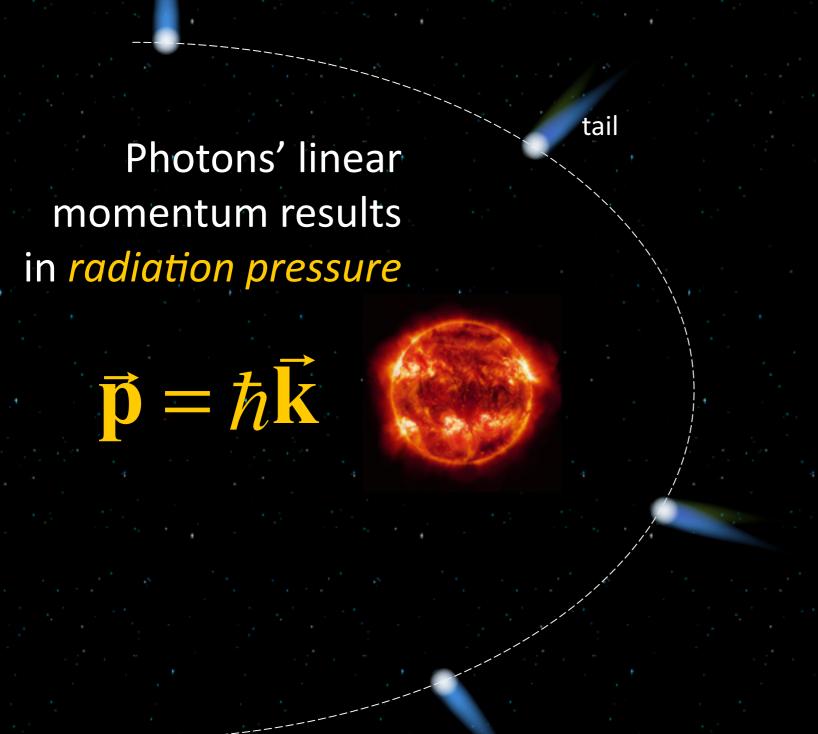
$$\vec{p} = \hbar \vec{k}$$

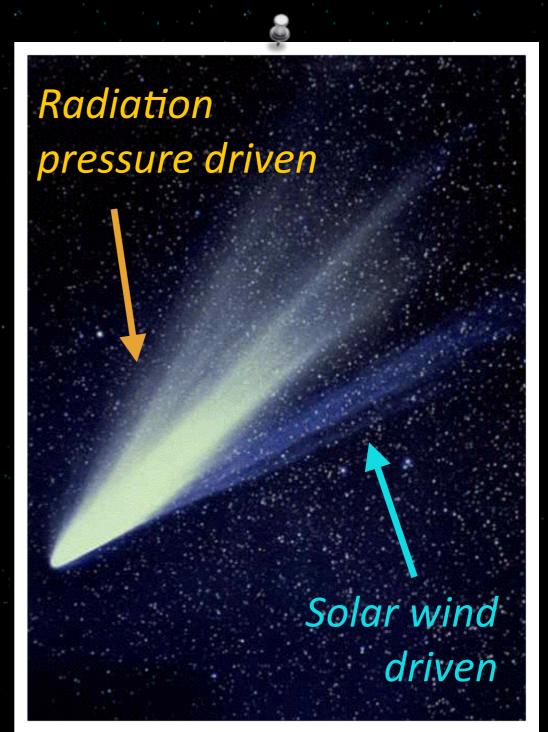


tail

Nichols, E. F., & Hull, G. F. (1903). The Astrophysical Journal, 17, 352. Fulle, M. (2004). Motion of cometary dust. Comets II, 565–575.

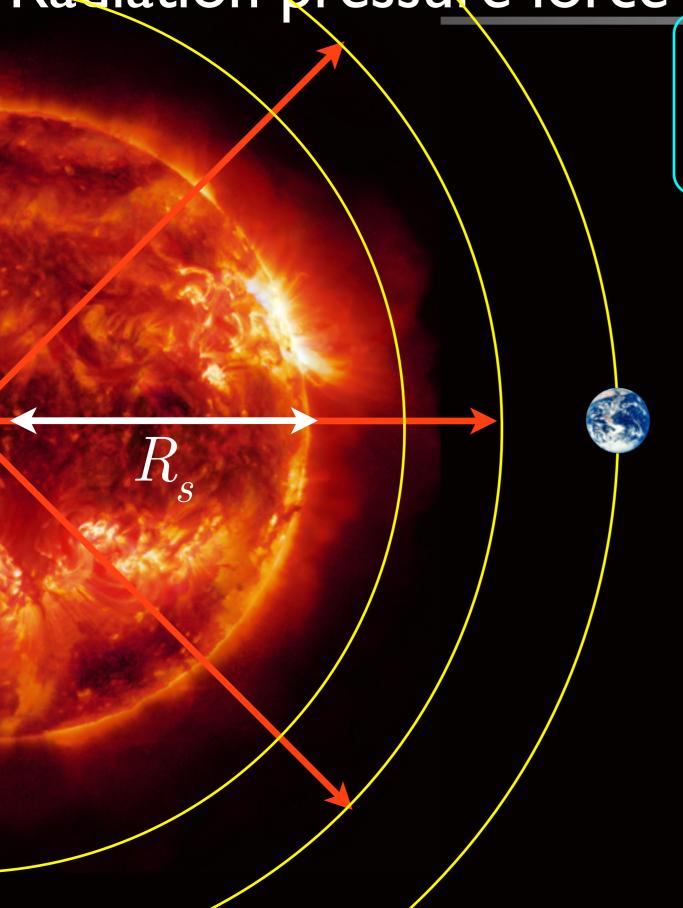
Mechanical effects of light





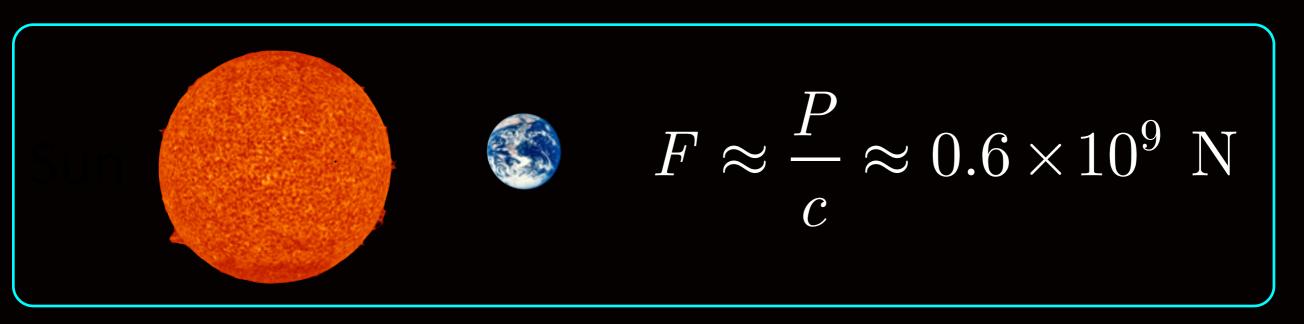
Nichols, E. F., & Hull, G. F. (1903). The Astrophysical Journal, 17, 352. Fulle, M. (2004). Motion of cometary dust. Comets II, 565–575.

Radiation pressure force

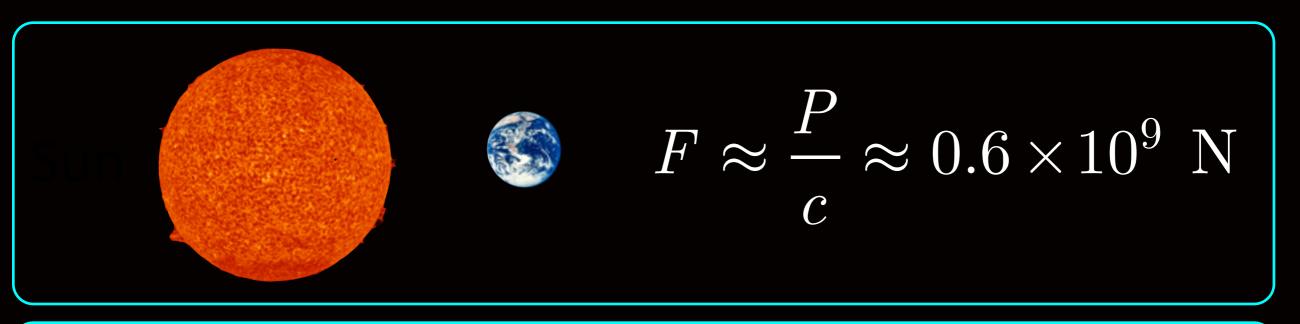


$$P_{rad} = (4\pi R_s^2)\sigma T^4$$

Sun vs laser pointer

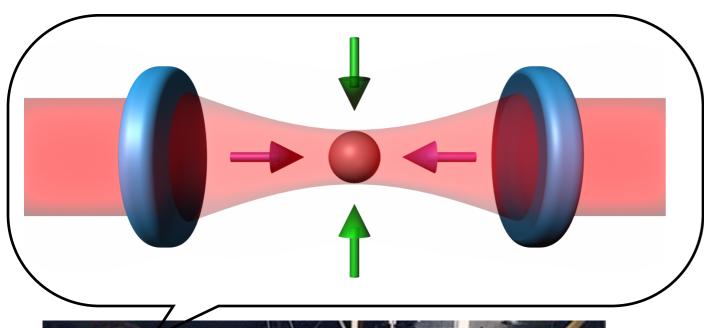


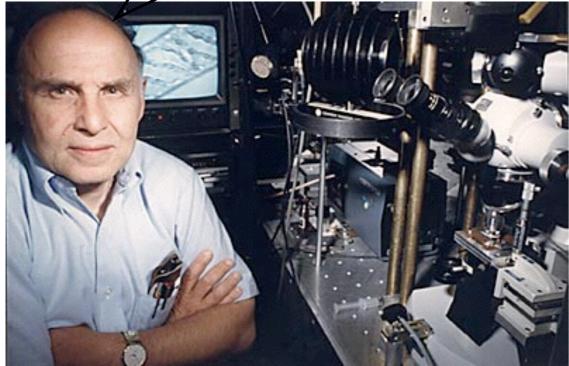
Sun vs laser pointer



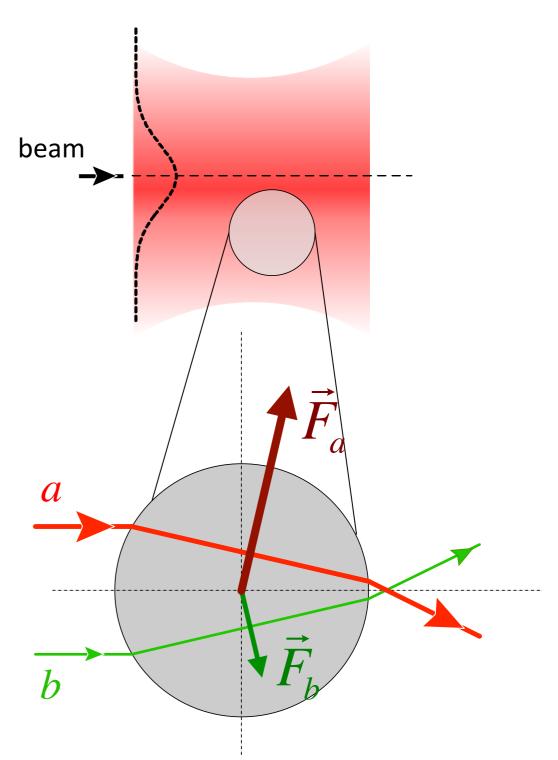
What can we do with this force?

Optical Forces in the Microscopic World





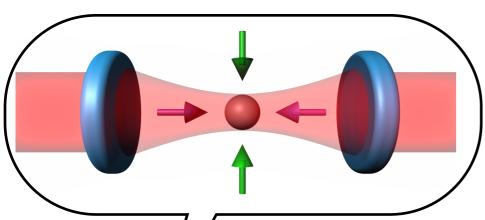
A. Ashkin et al. Science (1987)

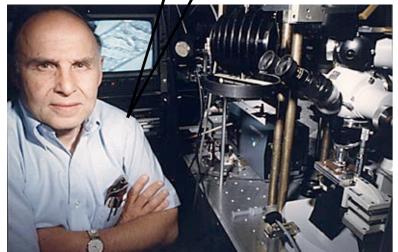


A. Ashkin. IEEE JSTE, 6(6):841–856, 2000.

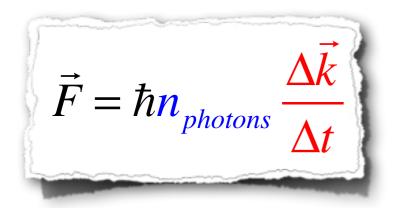
S. Chu, et al. PRL, 57(3):314–317, 1986.

Optical Forces in the Microscopic World

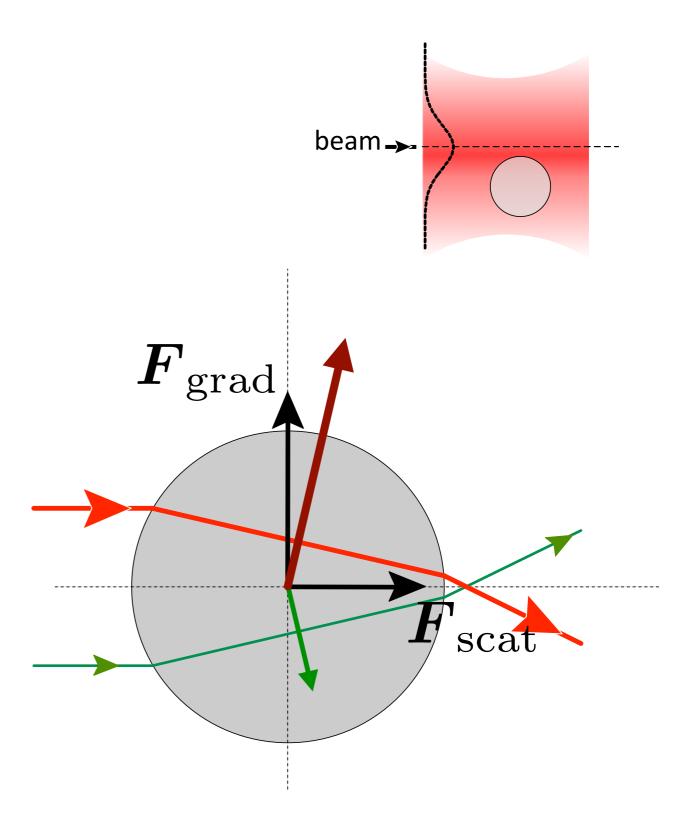




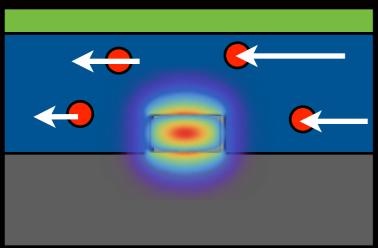
A. Ashkin et al. Science (1987)



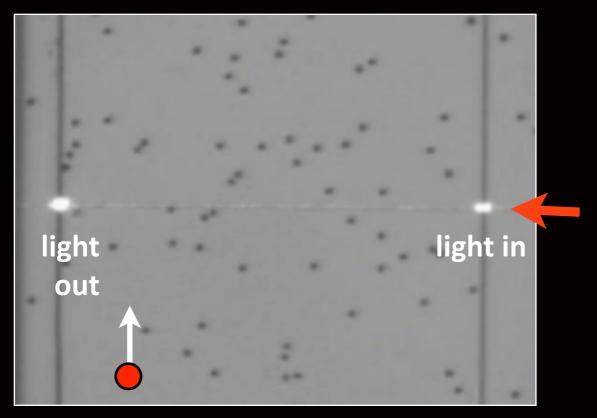
A. Ashkin. IEEE JSTE, 6(6):841–856, 2000. S. Chu, et al. PRL, 57(3):314–317, 1986.



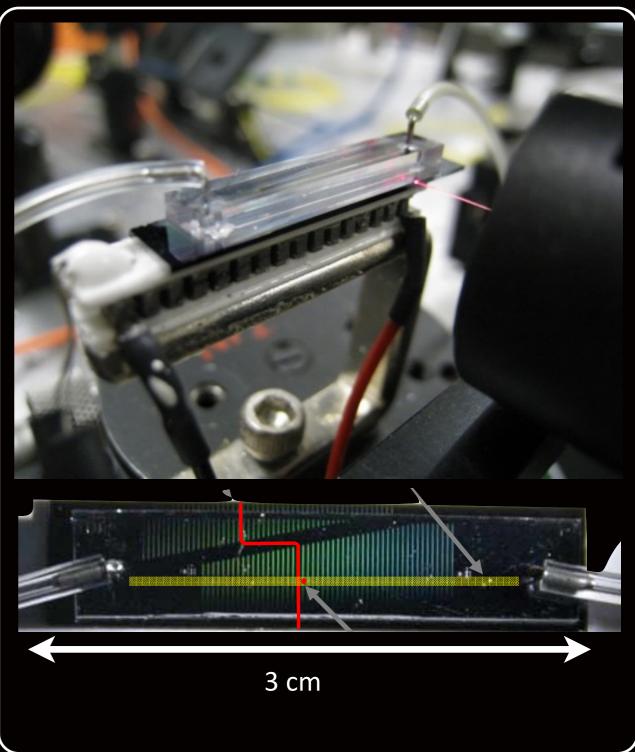
Optical Forces in the Microscopic World



waveguide cross-section

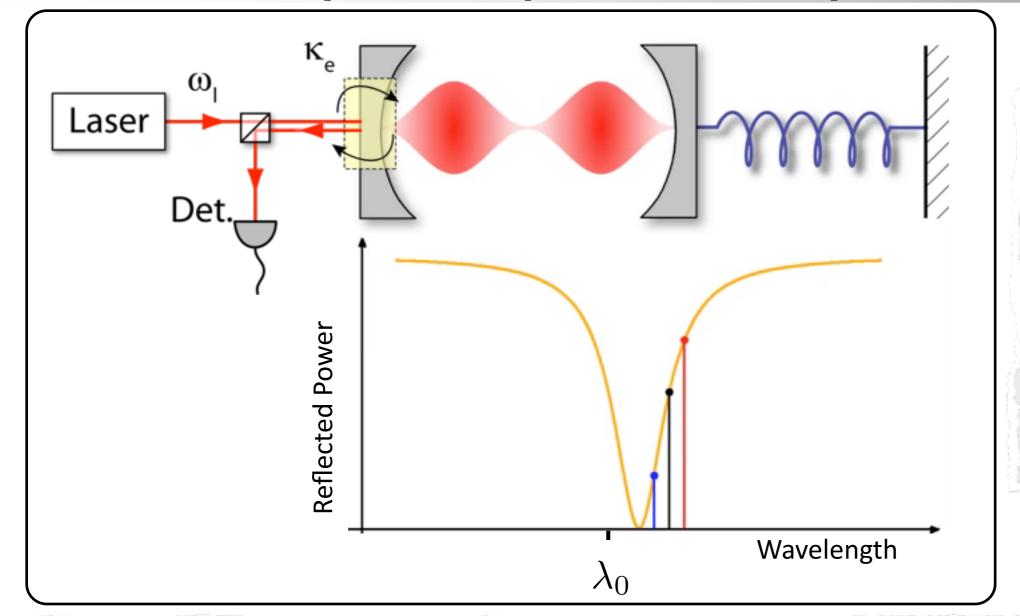


A. Nitkowski et al, Optics Letters 2009



Integrated particle trapping setup at Cornell (Lipson group)

Mechanically Susceptible Cavity



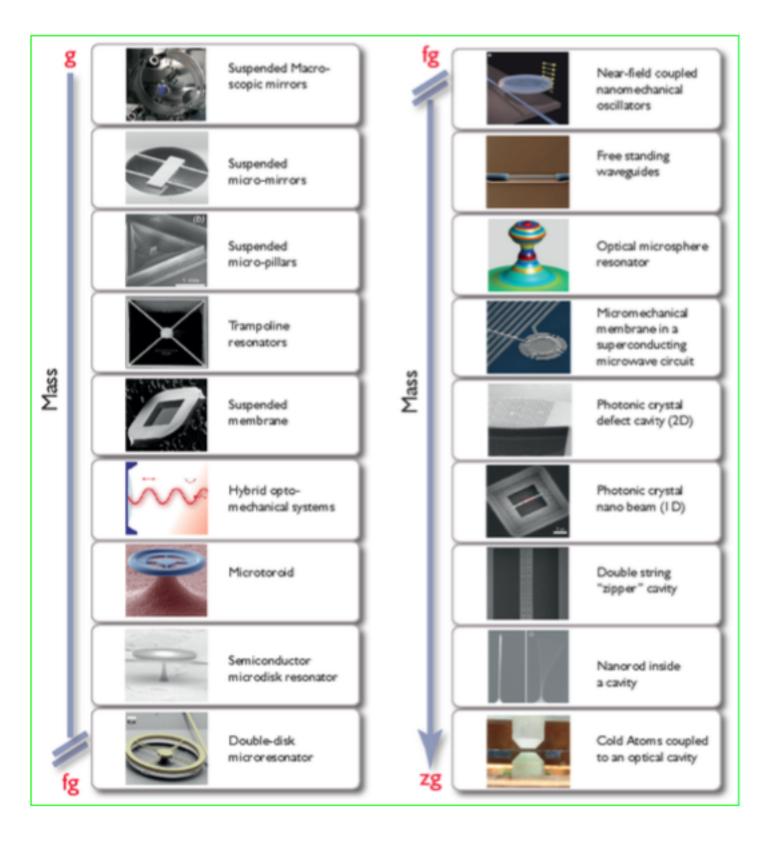
$$\phi_{\text{RT}} = m(2\pi)$$

$$= \frac{\omega_l}{c}(2L)$$

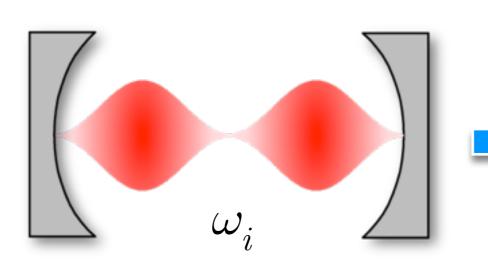
$$\Rightarrow \omega_m = m\frac{\pi c}{L}$$

$$L = L_0 + x(t) \Rightarrow \omega_m(t) = m \frac{\pi c}{L_0 + x(t)} \approx \omega_m - (\underbrace{\frac{\omega_m}{L}}_{g_{\text{OM}}}) x(t)$$

Mass-spring Fabry-Perot systems?



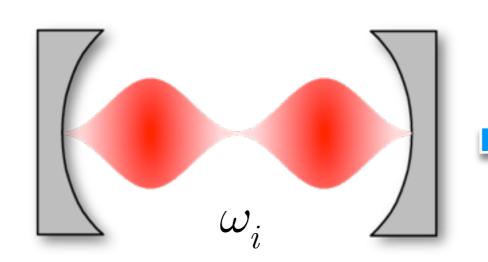
Maxwell's equations + boundary conditions



Optical Modes

$$\mathbf{E}_{j}(\mathbf{r},t) = \mathcal{E}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$
 $\mathbf{B}_{j}(\mathbf{r},t) = \mathcal{H}_{j}(\mathbf{r})e^{-i\omega_{j}t}$

Maxwell's equations boundary conditions



Optical Modes

$$\mathbf{E}_{j}(\mathbf{r},t) = \mathcal{E}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

$$\mathbf{B}_{j}(\mathbf{r},t) = \mathcal{H}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

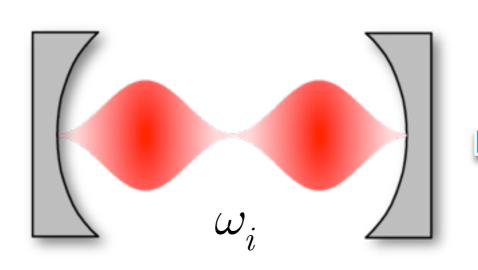
$$\mathbf{B}_{j}(\mathbf{r},t) = \mathcal{H}_{j}(\mathbf{r})e^{-\imath\omega_{j}t}$$

Orthogonality relation

$$\int \frac{1}{\mu} (\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j}) dV = \delta_{ij}$$

$$\int \epsilon (\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j}) dV = \delta_{ij}$$

Maxwell's equations + boundary conditions



Optical Modes

$$\mathbf{E}_{j}(\mathbf{r},t) = \mathcal{E}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

$$\mathbf{B}_{j}(\mathbf{r},t) = \mathcal{H}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

Orthogonality relation

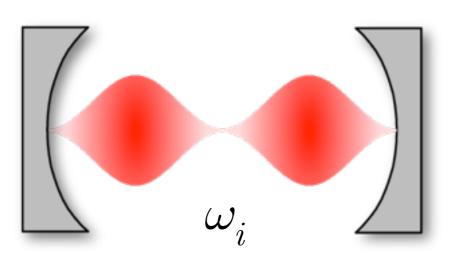
$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

$$\nabla \times \mathcal{H}_{j} = -i\omega_{j}\epsilon_{0}\mathcal{E}_{j}$$

$$\nabla \times \mathcal{E}_{j} = i\mu_{0}\omega_{j}\mathcal{H}_{j}$$

Maxwell's equations + boundary conditions



Optical Modes

$$\mathbf{E}_{j}(\mathbf{r},t) = \mathcal{E}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

$$\mathbf{B}_{j}(\mathbf{r},t) = \mathcal{H}_{j}(\mathbf{r})e^{-i\omega_{j}t}$$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

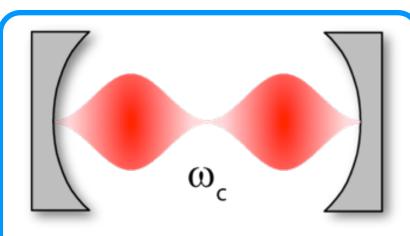
Spatial solution

$$\nabla \times \mathcal{H}_j = -i\omega_j \epsilon_0 \mathcal{E}_j$$
$$\nabla \times \mathcal{E}_j = i\mu_0 \omega_j \mathcal{H}_j$$

Expand total optical field as linear superposition of the optical modes

$$\mathbf{E}(\mathbf{r},t) = \sum a_j(t)\mathcal{E}_j(\mathbf{r})$$

$$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$$



$$\mathbf{E}(\mathbf{r},t) = \sum_{j} a_{j}(t)\mathcal{E}_{j}(\mathbf{r})$$

$$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

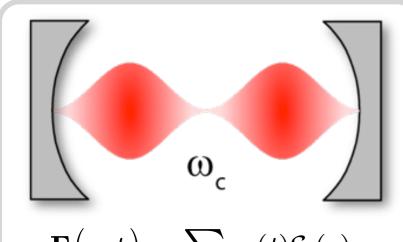
Spatial solution

$$\nabla \times \mathcal{H}_j = -i\omega_j \epsilon_0 \mathcal{E}_j$$
$$\nabla \times \mathcal{E}_j = i\mu_0 \omega_j \mathcal{H}_j$$

Maxwell's equations

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu_0 \, \partial_t \mathbf{H}(\mathbf{r},t)$$
$$\nabla \times \mathbf{H}(\mathbf{r},t) = \epsilon \, \partial_t \mathbf{E}(\mathbf{r},t)$$

$$\nabla \times \mathbf{H}(\mathbf{r},t) = \epsilon \, \partial_t \mathbf{E}(\mathbf{r},t)$$



$$\mathbf{E}(\mathbf{r},t) = \sum a_j(t)\mathcal{E}_j(\mathbf{r})$$

$$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}(\mathbf{r})$$

$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

Spatial solution

$$\nabla \times \mathcal{H}_{j} = -\mathrm{i}\omega_{j}\epsilon_{0}\mathcal{E}_{j}$$
$$\nabla \times \mathcal{E}_{j} = \mathrm{i}\mu_{0}\omega_{j}\mathcal{H}_{j}$$

Maxwell's equations

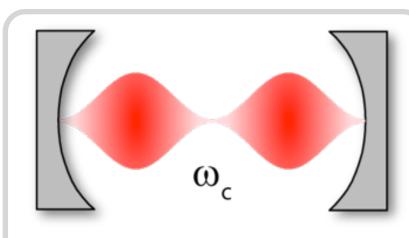
$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu_0 \, \partial_t \mathbf{H}(\mathbf{r},t)$$

$$\nabla \times \mathbf{H}(\mathbf{r},t) = \epsilon \, \partial_t \mathbf{E}(\mathbf{r},t)$$

To account for cavity loss we assume that:

$$\epsilon = \epsilon_r + i\epsilon_i$$

$$\epsilon_r \gg \epsilon_i
ightarrow \epsilon pprox \epsilon_r$$



$$\mathbf{E}(\mathbf{r},t) = \sum a_j(t)\mathcal{E}_j(\mathbf{r})$$
$$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

Spatial solution

$$\nabla \times \mathcal{H}_j = -i\omega_j \epsilon_0 \mathcal{E}_j$$
$$\nabla \times \mathcal{E}_j = i\mu_0 \omega_j \mathcal{H}_j$$

Maxwell's equations

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\mu_0 \, \partial_t \mathbf{H}(\mathbf{r}, t)$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \epsilon \, \partial_t \mathbf{E}(\mathbf{r}, t)$$

To account for cavity loss we assume that:

$$\epsilon = \epsilon_r + i\epsilon_i$$

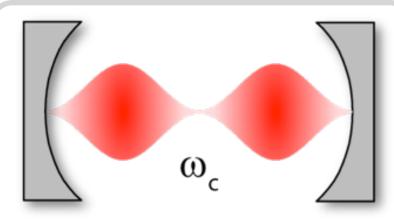
$$\epsilon = \epsilon_r + i\epsilon_i \qquad \epsilon_r \gg \epsilon_i \rightarrow \epsilon \approx \epsilon_r$$

Therefore:

$$\nabla \times \left(\sum a_j(t)\mathcal{H}_j(\mathbf{r})\right) = \left(\epsilon_r + i\epsilon_i\right)\partial_t\left(\sum a_j(t)\mathcal{E}_j(\mathbf{r})\right)$$

$$\sum a_j(t) (\nabla \times \mathcal{H}_j(\mathbf{r})) = \sum (\epsilon_r + i\epsilon_i) \mathcal{E}_j(\mathbf{r}) \dot{a}_j(t)$$

H. A. Haus. Waves and fields in optoelectronics. Prentice-Hall, 1984



$\mathbf{E}(\mathbf{r},t) = \sum a_j(t)\mathcal{E}_j(\mathbf{r})$ $\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$

Therefore:

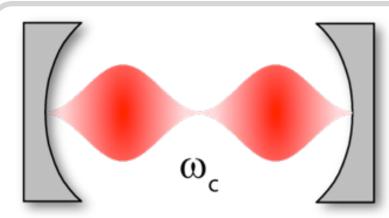
$$\sum a_j(t) \Big(\nabla \times \mathcal{H}_j(\mathbf{r}) \Big) = \sum (\epsilon_r + i\epsilon_i) \mathcal{E}_j(\mathbf{r}) \dot{a}_j(t)$$

Orthogonality relation

$$\int \frac{1}{\mu} \Big(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \Big) dV = \delta_{ij}$$

$$\int \epsilon \Big(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \Big) dV = \delta_{ij}$$

$$\nabla \times \mathcal{H}_{j} = -\mathrm{i}\omega_{j}\epsilon_{0}\mathcal{E}_{j}$$
$$\nabla \times \mathcal{E}_{j} = \mathrm{i}\mu_{0}\omega_{j}\mathcal{H}_{j}$$



$$\begin{split} \mathbf{E} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{E}_j(\mathbf{r}) \\ \mathbf{H} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{H}_j(\mathbf{r}) \end{split}$$

Therefore:

$$\sum a_j(t) (\nabla \times \mathcal{H}_j(\mathbf{r})) = \sum (\epsilon_r + i\epsilon_i) \mathcal{E}_j(\mathbf{r}) \dot{a}_j(t)$$

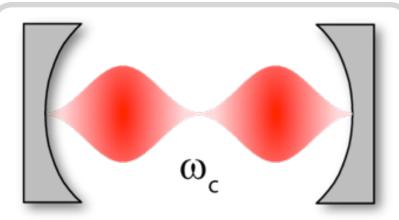
$$\int \left[\sum \epsilon \, \mathcal{E}_{j}(\mathbf{r}) \left[\left(1 + i \frac{\epsilon_{i}}{\epsilon}\right) \dot{a}_{j}(t) + i \omega_{j} a_{j}(t) \right] = 0 \right] \mathcal{E}_{n}^{*}(\mathbf{r}) dV$$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

$$\nabla \times \mathcal{H}_{j} = -i\omega_{j}\epsilon_{0}\mathcal{E}_{j}$$
$$\nabla \times \mathcal{E}_{j} = i\mu_{0}\omega_{j}\mathcal{H}_{j}$$



$$\begin{split} \mathbf{E} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{E}_j(\mathbf{r}) \\ \mathbf{H} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{H}_j(\mathbf{r}) \end{split}$$

Therefore:

$$\sum a_j(t) (\nabla \times \mathcal{H}_j(\mathbf{r})) = \sum (\epsilon_r + i\epsilon_i) \mathcal{E}_j(\mathbf{r}) \dot{a}_j(t)$$

$$\int \left[\sum \epsilon \, \mathcal{E}_{j}(\mathbf{r}) \left[\left(1 + i \frac{\epsilon_{i}}{\epsilon} \right) \dot{a}_{j}(t) + i \omega_{j} a_{j}(t) \right] = 0 \right] \mathcal{E}_{n}^{*}(\mathbf{r}) dV$$

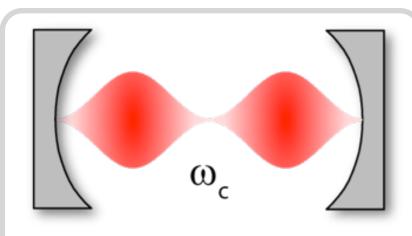
Orthogonality relation

$$\int \frac{1}{\mu} \Big(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \Big) dV = \delta_{ij}$$

$$\int \epsilon \Big(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \Big) dV = \delta_{ij}$$

$$\dot{a}_n(t) = -i\omega_n a_n(t) - \left(\omega_n \frac{\epsilon_i}{\epsilon}\right) a_n(t)$$

$$\nabla \times \mathcal{H}_j = -i\omega_j \epsilon_0 \mathcal{E}_j$$
$$\nabla \times \mathcal{E}_j = i\mu_0 \omega_j \mathcal{H}_j$$



$$\mathbf{E}(\mathbf{r},t) = \sum a_j(t)\mathcal{E}_j(\mathbf{r})$$

$$\mathbf{H}(\mathbf{r},t) = \sum a_j(t)\mathcal{H}_j(\mathbf{r})$$

Therefore:

$$\begin{split} \mathbf{E} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{E}_j(\mathbf{r}) \\ \mathbf{H} \Big(\mathbf{r}, t \Big) &= \sum a_j(t) \mathcal{H}_j(\mathbf{r}) \end{split}$$

Orthogonality relation

$$\int \frac{1}{\mu} \left(\mathcal{H}_{i}^{*} \cdot \mathcal{H}_{j} \right) dV = \delta_{ij}$$

$$\int \epsilon \left(\mathcal{E}_{i}^{*} \cdot \mathcal{E}_{j} \right) dV = \delta_{ij}$$

Spatial solution

$$\nabla \times \mathcal{H}_{j} = -\mathrm{i}\omega_{j}\epsilon_{0}\mathcal{E}_{j}$$
$$\nabla \times \mathcal{E}_{j} = \mathrm{i}\mu_{0}\omega_{j}\mathcal{H}_{j}$$

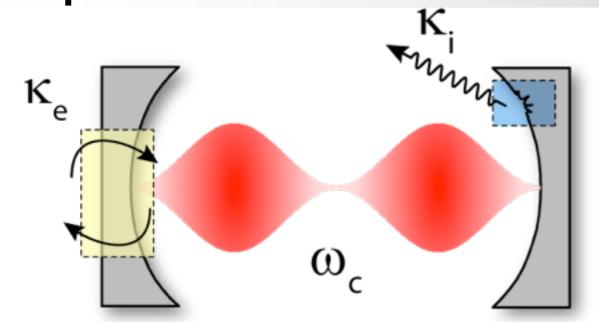
$$\dot{a}_n(t) = -i\omega_n a_n(t) - \left(\omega_n \frac{\epsilon_i}{\epsilon}\right) a_n(t)$$

Lumped Model

$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2}a(t)$$

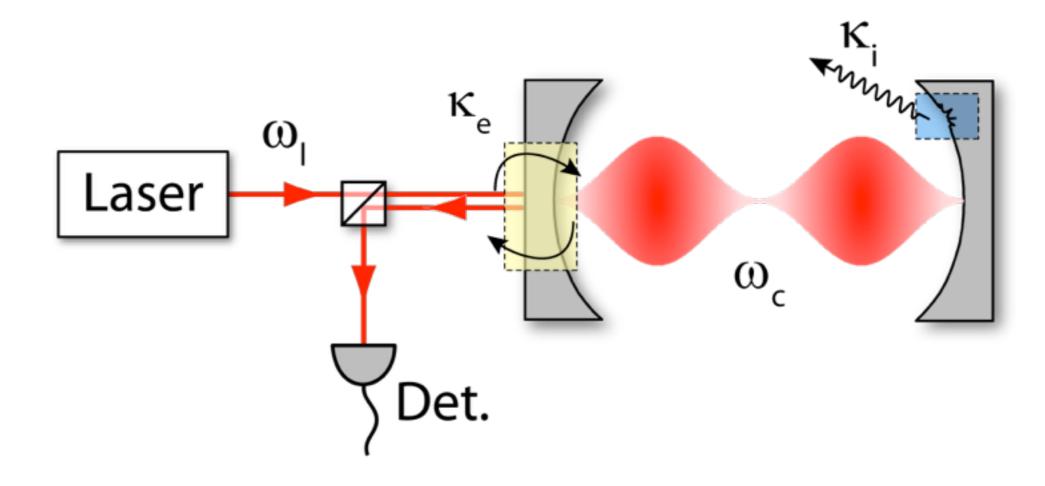
H. A. Haus. Waves and fields in optoelectronics. Prentice-Hall, 1984. $_{52}$

Equation for the field amplitude



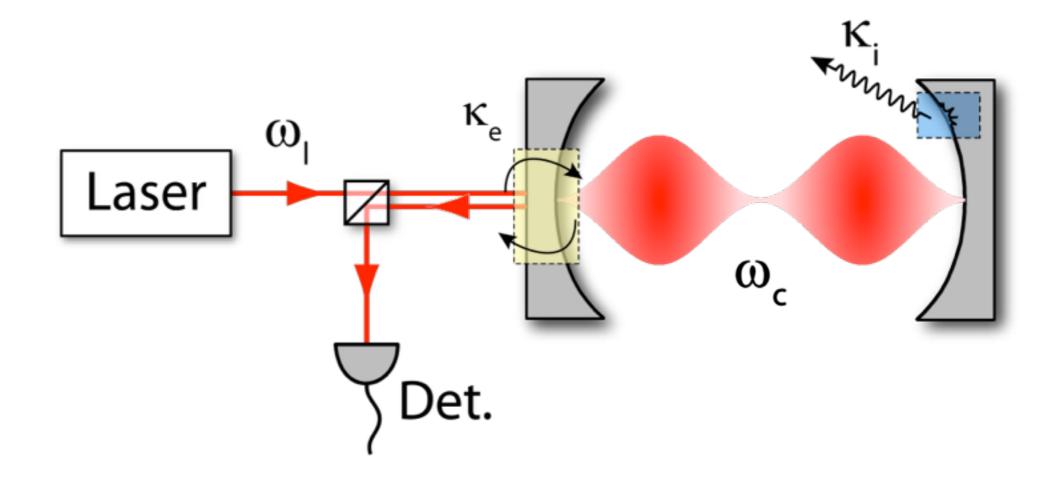
$$\kappa = \kappa_e + \kappa_i$$

$$\dot{a}(t) = -\mathrm{i}\omega_c a(t) - \frac{\kappa}{2}a(t) + \sqrt{\kappa_e}\alpha_{\mathrm{in}} e^{-\mathrm{i}\omega_l t}$$



$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2} a(t) + \sqrt{\kappa_e} \alpha_{\text{in}} e^{-i\omega_l t}$$

$$lpha_{
m in}=$$
 Optical Pump Field Rate



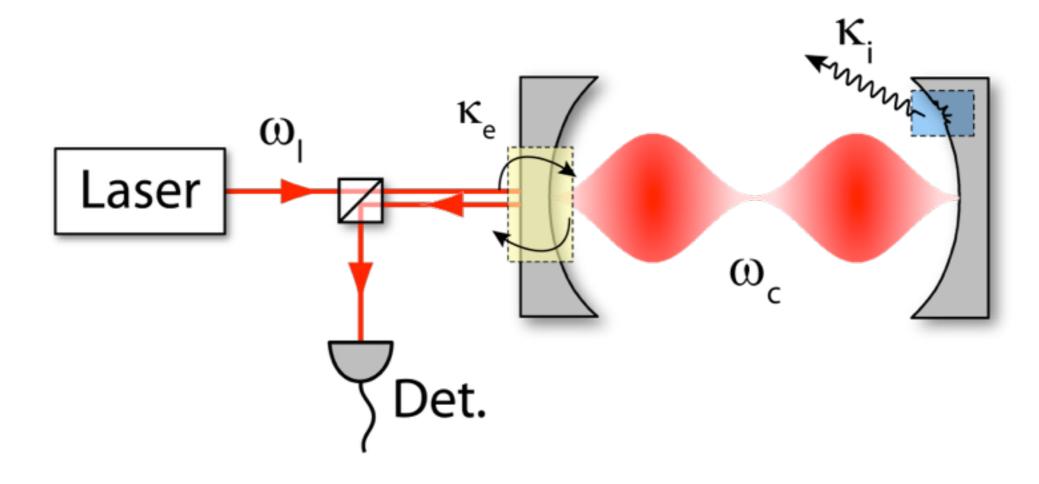
$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2} a(t) + \sqrt{\kappa_e \alpha_{in}} e^{-i\omega_l t}$$

Normalization

 $\alpha_{\mathrm{in}}=\mathrm{Optical\,Pump\,Field\,Rate}$

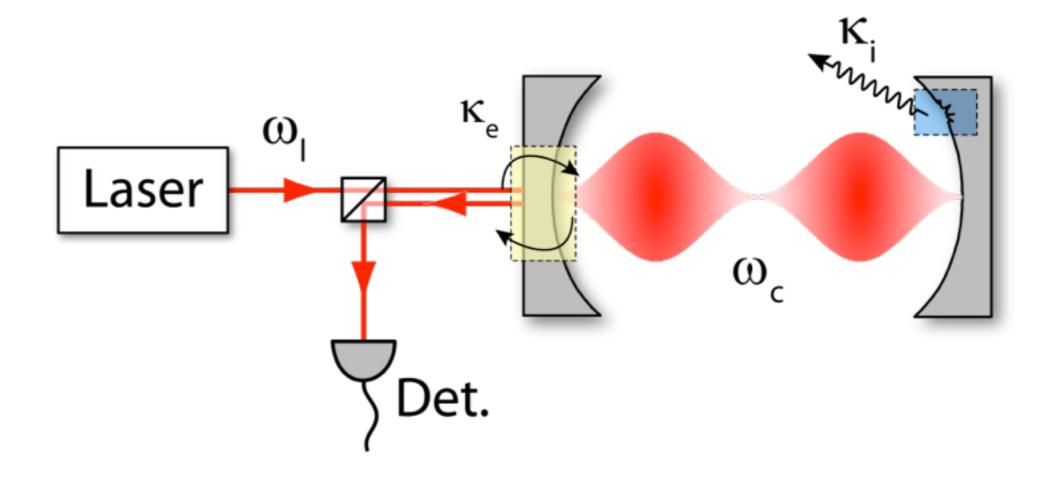
$$\hbar\omega_l \mid \alpha_{\rm in} \mid^2 = P_{in}$$

Rotating wave approximation



$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2} a(t) + \sqrt{\kappa_e} \alpha_{\rm in} e^{-i\omega_l t}$$

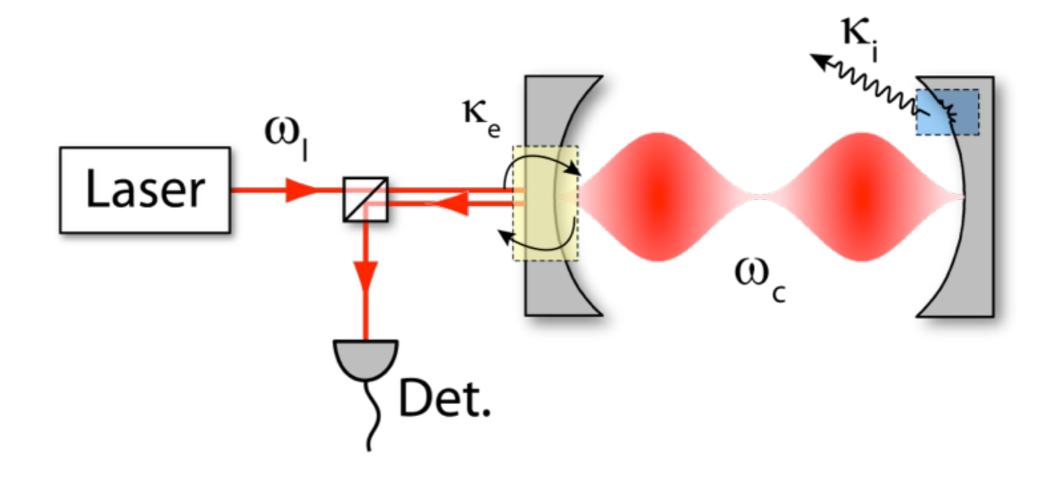
Rotating wave approximation



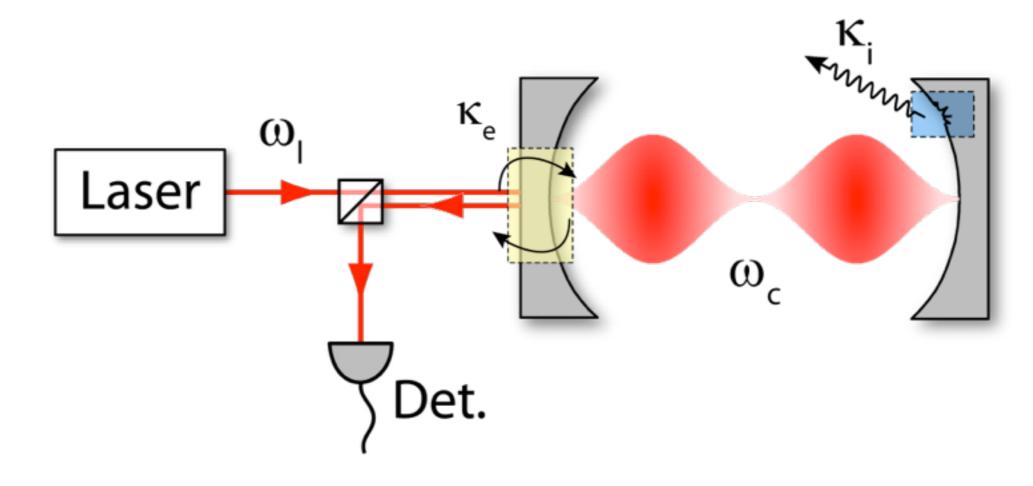
$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2} a(t) + \sqrt{\kappa_e} \alpha_{\rm in} e^{-i\omega_l t}$$

$$a_{\rm old}(t) = a(t)e^{-i\omega_l t}$$

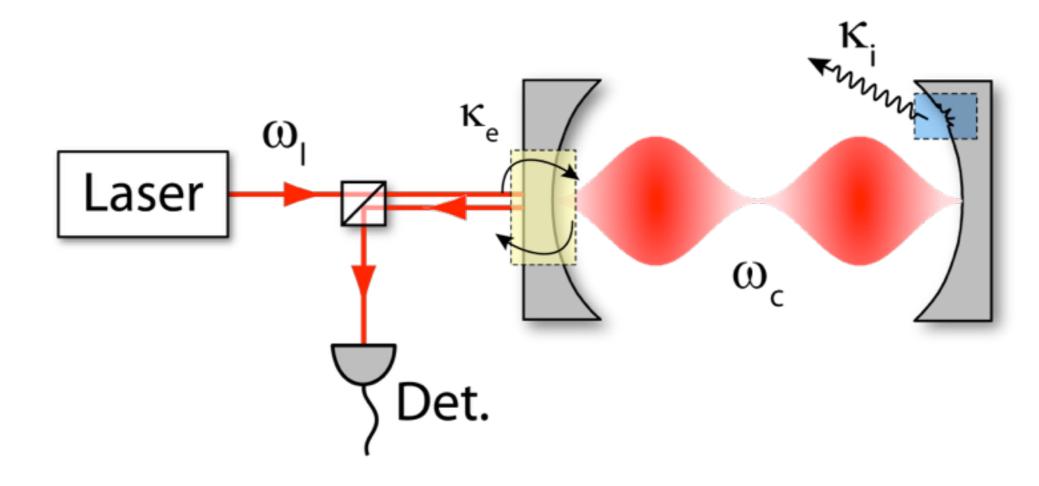
Rotating wave approximation



$$\dot{a}(t) = -i\omega_c a(t) - \frac{\kappa}{2} a(t) + \sqrt{\kappa_e} \alpha_{\rm in} e^{-i\omega_l t}$$

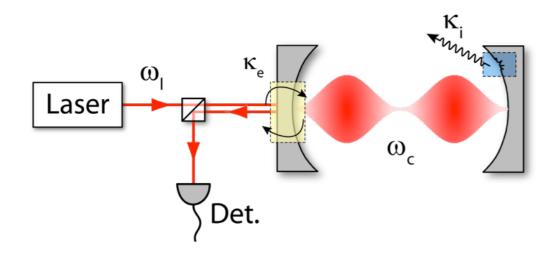


$$\dot{a}(t) = \mathrm{i}(\omega_l - \omega_c)a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\mathrm{in}}$$



$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$

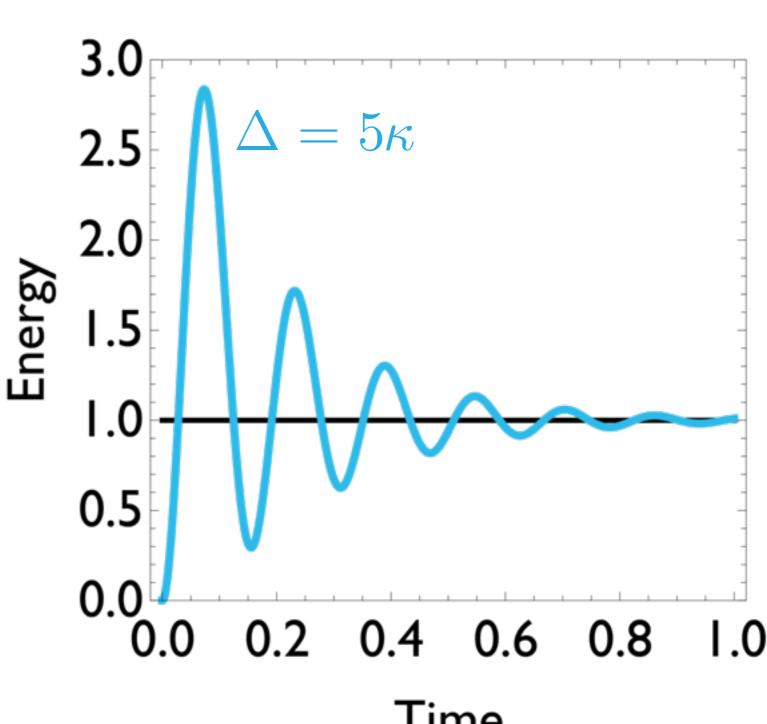
Optical Amplitude Equation

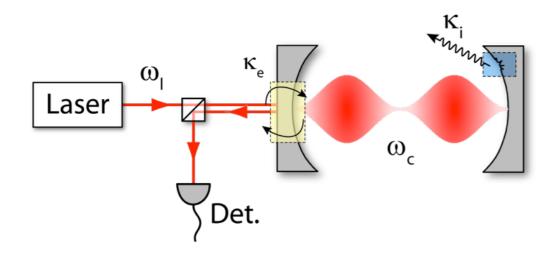


Solution

$$\dot{a}(t) = \mathrm{i}\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\mathrm{in}}$$

$$\left|a(t)\right|^2 \propto \text{Energy}$$

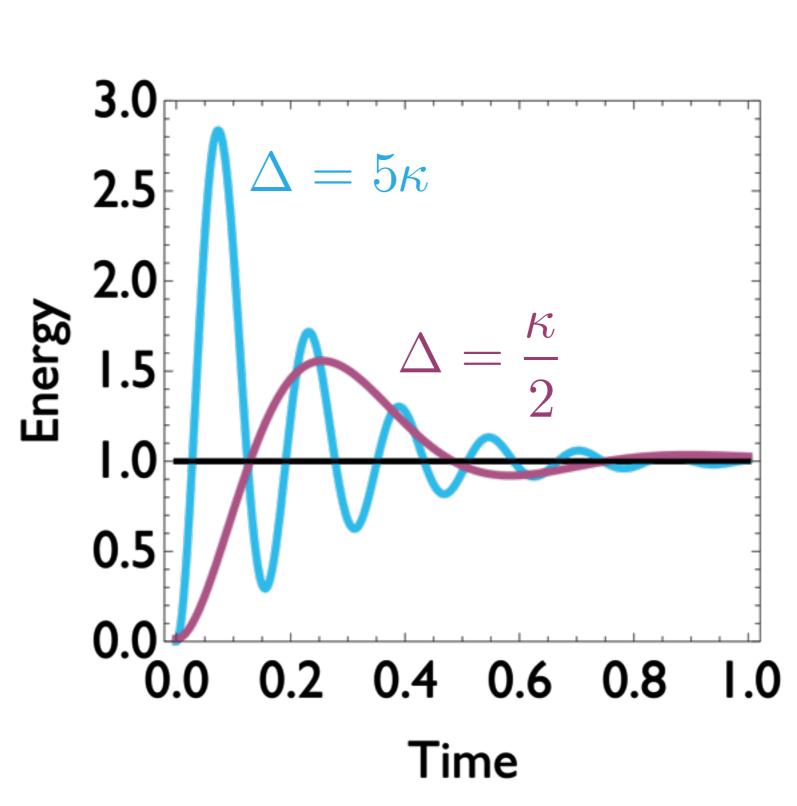


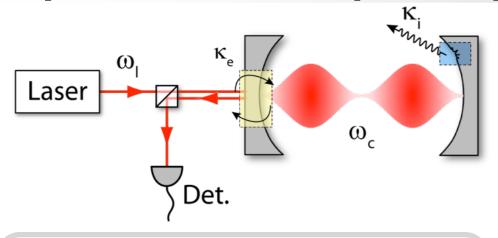


Solution

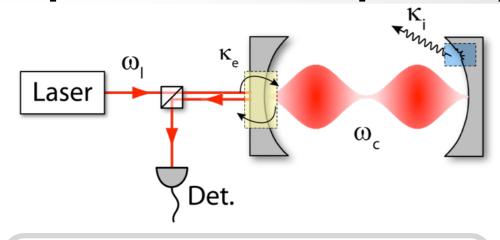
$$\dot{a}(t) = \mathrm{i}\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\mathrm{in}}$$

$$\left| a(t) \right|^2 \propto \text{Energy}$$





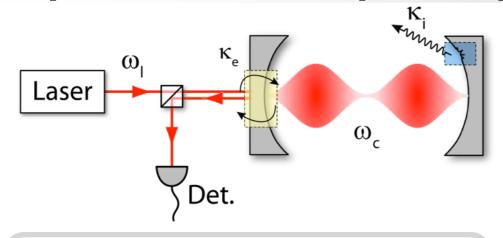
$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$



$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$

$$\dot{a}(t) = 0$$

$$\langle a \rangle = \frac{\sqrt{\kappa_e \alpha_{\text{in}}}}{\frac{\kappa}{2} - i\Delta}$$



$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$

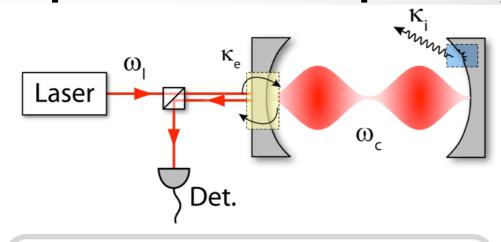
Steady state

$$\dot{a}(t) = 0$$

$$\langle a \rangle = \frac{\sqrt{\kappa_e \alpha_{\text{in}}}}{\frac{\kappa}{2} - i\Delta}$$

Input-output relation

$$\alpha_{\rm out} = \alpha_{\rm in} - \sqrt{\kappa_e a}$$



$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$

Steady state

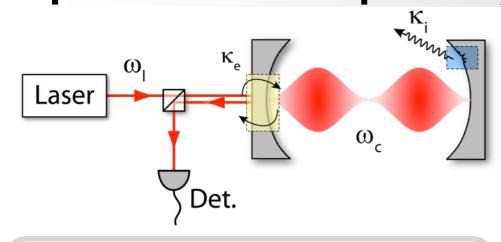
$$\dot{a}(t) = 0$$

$$\langle a \rangle = \frac{\sqrt{\kappa_e \alpha_{\text{in}}}}{\frac{\kappa}{2} - i\Delta}$$

Input-output relation

$$\alpha_{\rm out} = \alpha_{\rm in} - \sqrt{\kappa_e} a$$

$$R = \frac{\alpha_{\mathrm{out}}}{\alpha_{in}} = \frac{\left(\kappa_{i} - \kappa_{e}\right) / 2 - i\Delta}{\left(\kappa_{i} + \kappa_{e}\right) / 2 - i\Delta}$$



$$\dot{a}(t) = i\Delta a - \frac{\kappa}{2}a + \sqrt{\kappa_e}\alpha_{\rm in}$$

Steady state

$$\dot{a}(t) = 0$$

$$\langle a \rangle = \frac{\sqrt{\kappa_e \alpha_{\text{in}}}}{\frac{\kappa}{2} - i\Delta}$$

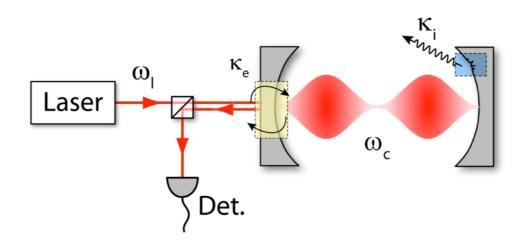
Input-output relation

$$\alpha_{\rm out} = \alpha_{\rm in} - \sqrt{\kappa_e} a$$

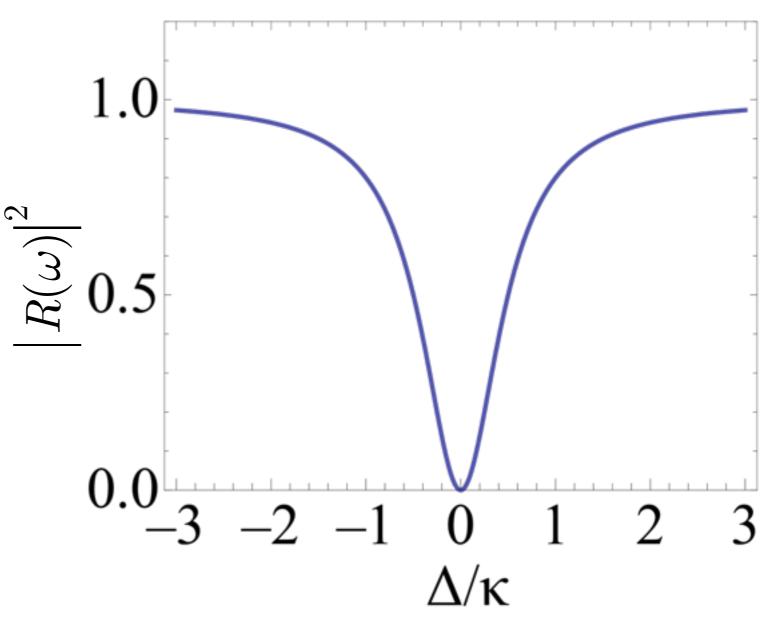
$$R = \frac{\alpha_{\text{out}}}{\alpha_{in}} = \frac{\left(\kappa_i - \kappa_e\right)/2 - i\Delta}{\left(\kappa_i + \kappa_e\right)/2 - i\Delta}$$

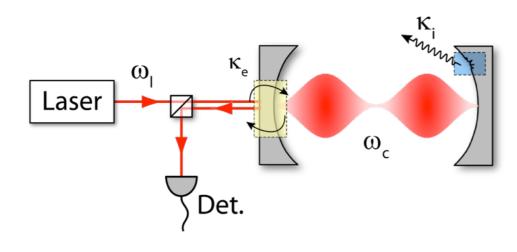
Optical Spectra (Probability)

$$\left|R(\omega)\right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2}$$

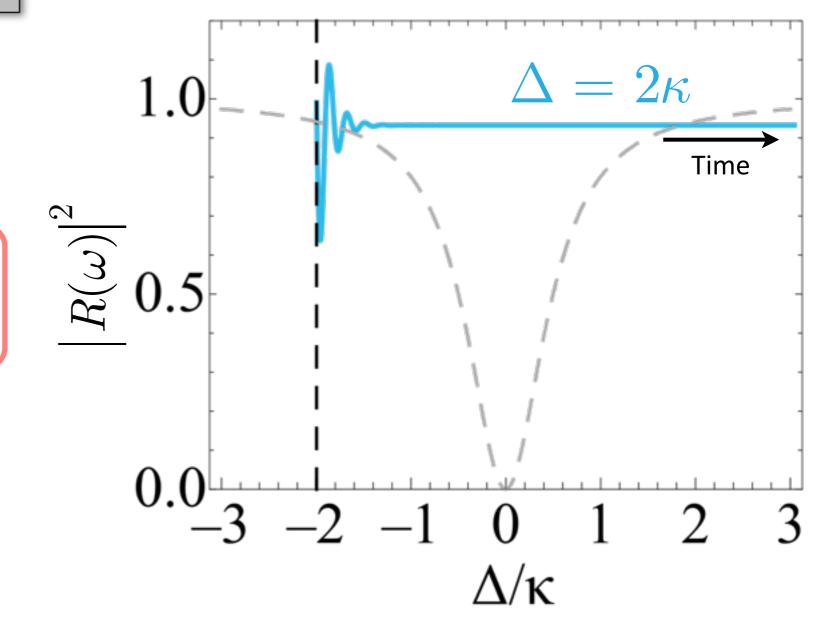


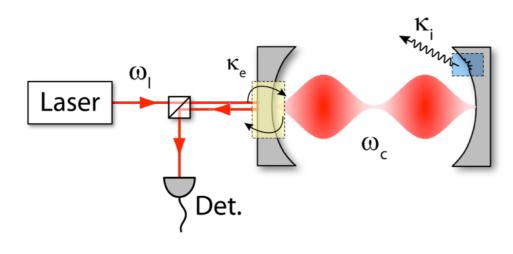
$$\left|R(\omega)\right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2} \qquad \boxed{\frac{3}{8}} \quad \mathbf{0.5}$$



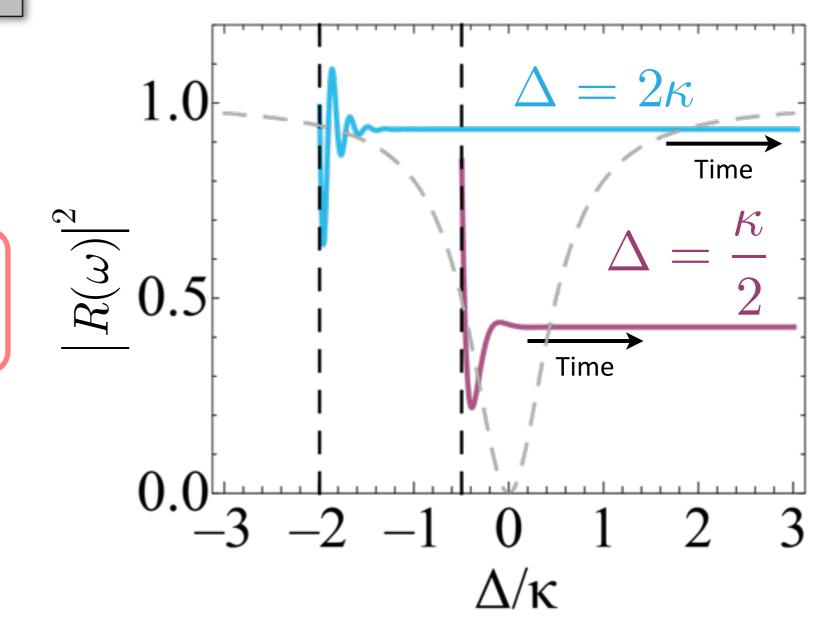


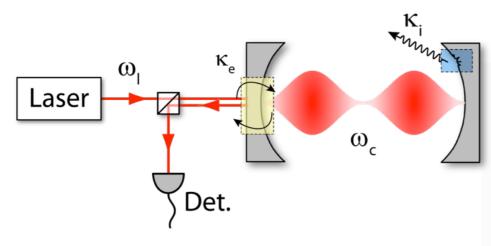
$$\left|R(\omega)\right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2}$$



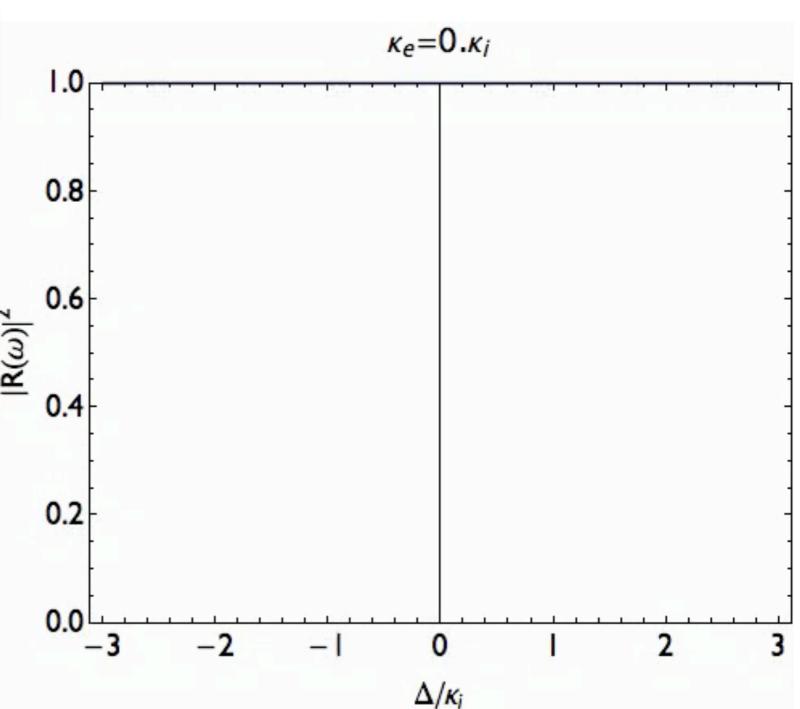


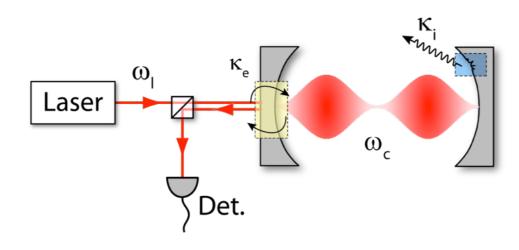
$$\left| R(\omega) \right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2}$$



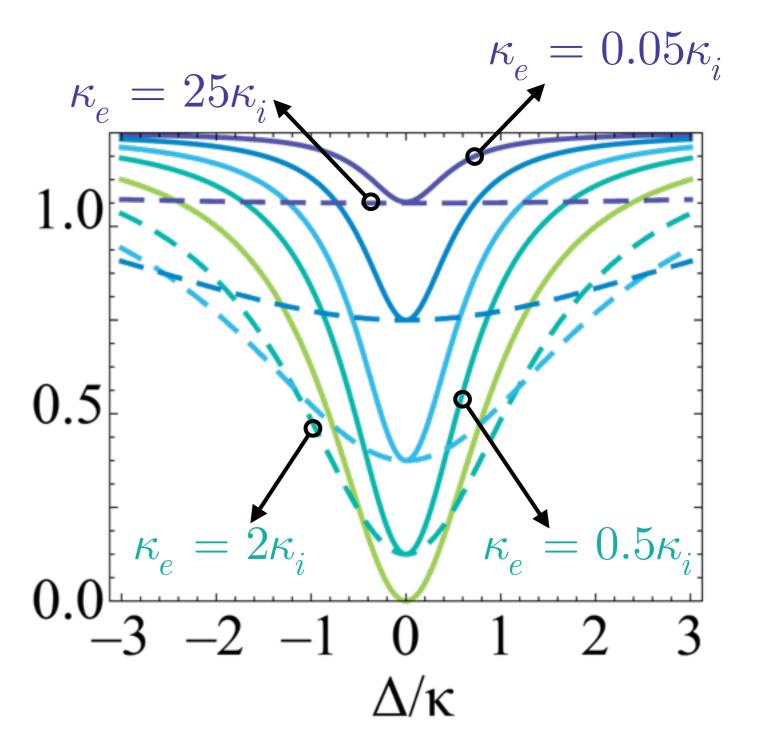


$$\left|R(\omega)\right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2}$$

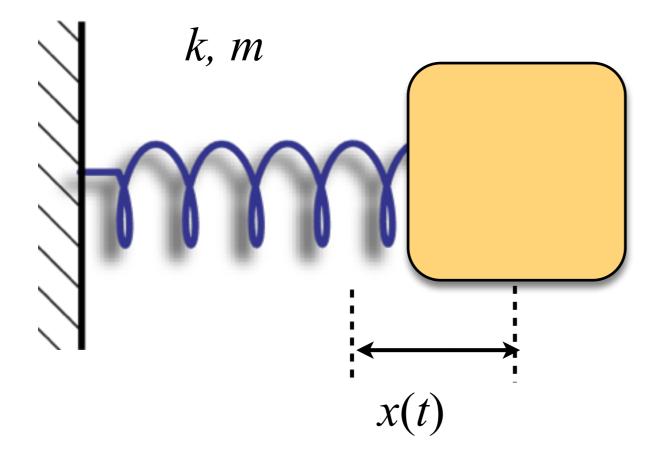




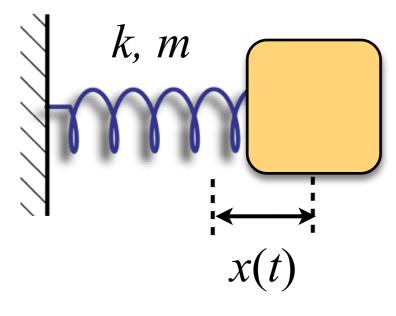
$$\left|R(\omega)\right|^2 = \frac{(\kappa_i - \kappa_e)^2 + 4\Delta^2}{(\kappa_i + \kappa_e)^2 + 4\Delta^2}$$



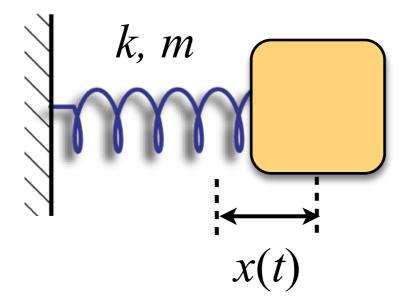
Mechanical modes



Single particle

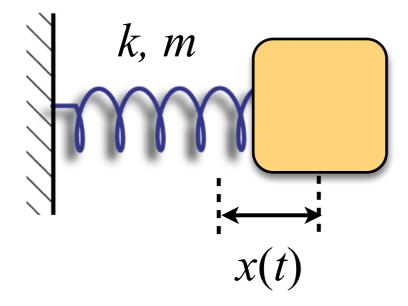


Single particle



$$F_x = m \frac{d^2x}{dt^2}$$

Single particle

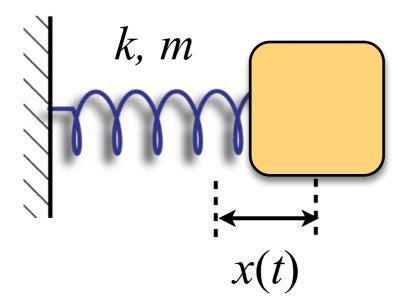


Newton's Law

$$F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law
$$F_x = -kx$$

Single particle

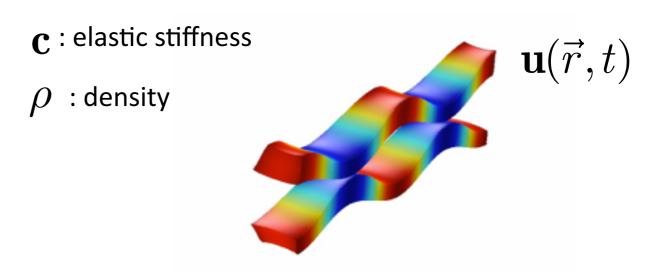


Newton's Law

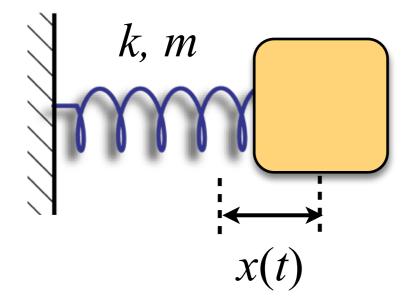
$$F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law $F_x = -kx$

Solid mechanics



Single particle



Newton's Law

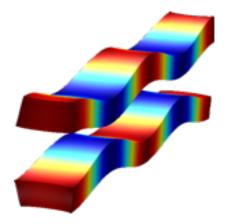
$$F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law $F_x = -kx$

Solid mechanics

 ${f c}$: elastic stiffness

 ρ : density

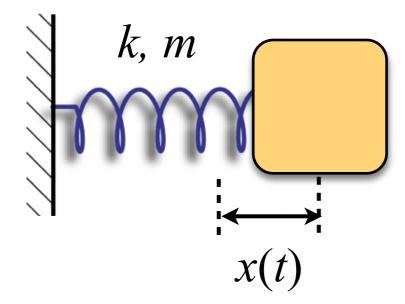


 $\mathbf{u}(\vec{r},t)$

Newton's Law (solid)

$$\nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Single particle



Newton's Law

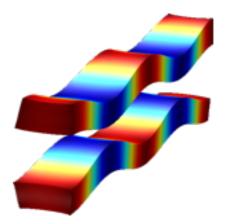
$$F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law $F_x = -kx$

Solid mechanics

 ${f c}$: elastic stiffness

ho : density



 $\mathbf{u}(\vec{r},t)$

Newton's Law (solid)

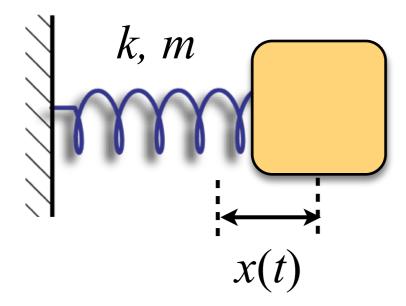
$$\nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law

$$T = c : S$$

$$\left(\mathbf{S} = \nabla_{s}\mathbf{u}\right)$$

Single particle



Newton's Law

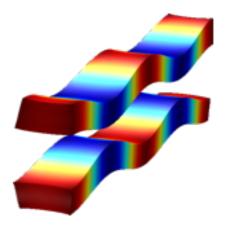
$$F_{\text{ext}} + F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law $F_x = -kx$

Solid mechanics

 ${f c}$: elastic stiffness

 ρ : density



 $\mathbf{u}(\vec{r},t)$

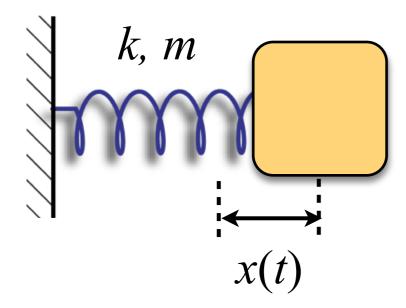
Newton's Law (solid)

$$\nabla \cdot \mathbf{T}_{\text{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law

$$abla \cdot \mathbf{T} =
abla \cdot (\mathbf{c} : \mathbf{S}) \\
 (\mathbf{S} =
abla_s \mathbf{u}) \\
 \text{strain}$$

Single particle



Newton's Law

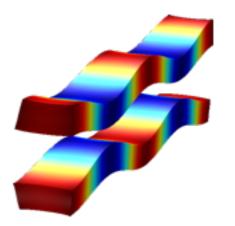
$$F_{\text{ext}} + F_x = m \frac{d^2x}{dt^2}$$

Hooke's Law $F_x = -kx$

Solid mechanics

 ${f c}$: elastic stiffness

 ρ : density



 $\mathbf{u}(\vec{r},t)$

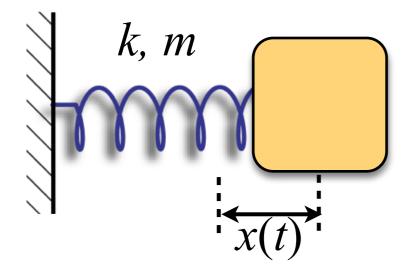
Newton's Law

$$\nabla \cdot \mathbf{T}_{\mathrm{ext}} + \nabla \cdot (\mathbf{c} : \mathbf{S}) = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law

$$abla \cdot \mathbf{T} =
abla \cdot (\mathbf{c} : \mathbf{S}) \\
 (\mathbf{S} =
abla_s \mathbf{u}) \\
 \text{strain}$$

Single particle



Newton's Law

$$F_{\text{ext}} + F_x = m \frac{d^2x}{dt^2}$$

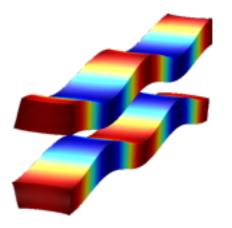
Hooke's Law (single mode)

$$F_x = -m \left(\frac{k}{m}\right) x = -m\Omega_j^2 x$$

Solid mechanics

 ${f c}$: elastic stiffness

 ρ : density



 $\mathbf{u}(\vec{r},t)$

Newton's Law

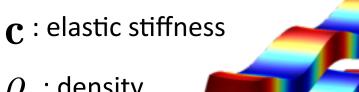
$$\nabla \cdot \mathbf{T}_{\mathrm{ext}} + \nabla \cdot (\mathbf{c} : \mathbf{S}) = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law (single mode)

$$S_j(\vec{r}) = \nabla_s U_j(\vec{r})$$

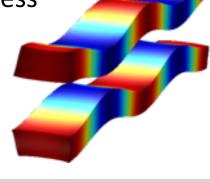
$$\nabla \cdot \left(\mathbf{c} : S_j \right) = -\rho \Omega_j^2 U_j$$

Solid mechanics



 $\mathbf{u}(\vec{r},t)$

 ρ : density



Newton's Law

$$\nabla \cdot \mathbf{T}_{\mathrm{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law (single mode)

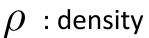
$$S_j(\vec{r}) = \nabla_s U_j(\vec{r})$$

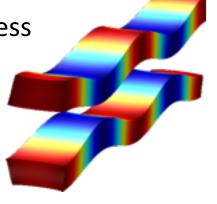
$$\nabla \cdot \left(\mathbf{c}: S_j\right) = -\rho \Omega_j^2 U_j$$

Orthogonality relation

$$\int \rho \left(U_i^* U_j \right) dV = \delta_{ij} m_{\text{eff}}$$

Solid mechanics





 $\mathbf{u}(\vec{r},t)$

Newton's Law

$$\nabla \cdot \mathbf{T}_{\text{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law (single mode)

$$S_j(\vec{r}) = \nabla_s U_j(\vec{r})$$

$$\nabla \cdot \left(\mathbf{c} : S_j \right) = -\rho \Omega_j^2 U_j$$

Orthogonality relation

$$\int \rho \left(U_i^* U_j \right) dV = \delta_{ij} m_{\text{eff}}$$

Mechanical Field

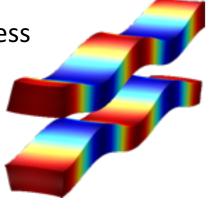
$$\mathbf{u}(\vec{r},t) = \sum b_j(t)U_j(\vec{r})$$

$$\mathbf{S}(\vec{r},t) = \sum b_j(t) S_j(\vec{r})$$

Solid mechanics

c: elastic stiffness





$\mathbf{u}(\vec{r},t)$

Mechanical Field

$$\mathbf{u}(\vec{r},t) = \sum b_j(t)U_j(\vec{r})$$

$$\mathbf{S}(\vec{r},t) = \sum b_j(t) S_j(\vec{r})$$

$$\nabla \cdot \mathbf{T}_{\text{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

$$S_j(\vec{r}) = \nabla_s U_j(\vec{r})$$

$$\nabla \cdot \left(\mathbf{c} : S_j \right) = -\rho \Omega_j^2 U_j$$

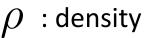
$$\mathbf{f}_{\text{ext}} + \nabla \cdot (\mathbf{c} : \sum b_j(t)S_j) = \rho \sum \frac{d^2}{dt^2} (b_j(t)U_j)$$

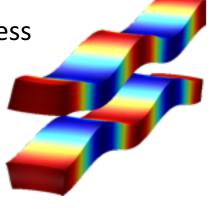
Orthogonality relation

$$\int \rho \left(U_i^* U_j \right) dV = \delta_{ij} m_{\text{eff}}$$

Solid mechanics

 ${f c}$: elastic stiffness





$$\mathbf{u}(\vec{r},t)$$

Mechanical Field

$$\mathbf{u}(\vec{r},t) = \sum b_j(t)U_j(\vec{r})$$

$$\mathbf{S}(\vec{r},t) = \sum b_j(t) S_j(\vec{r})$$

Newton's Law

$$\nabla \cdot \mathbf{T}_{\mathrm{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law (single mode)

$$S_j(\vec{r}) = \nabla_s U_j(\vec{r})$$

$$\nabla \cdot \left(\mathbf{c} : S_j \right) = -\rho \Omega_j^2 U_j$$

$$\mathbf{f}_{\text{ext}} + \nabla \cdot (\mathbf{c} : \sum b_j(t)S_j) = \rho \sum \frac{d^2}{dt^2} (b_j(t)U_j)$$

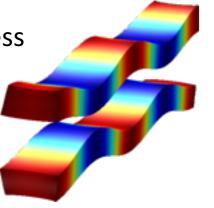
$$\int \left[\mathbf{f}_{\text{ext}} - \sum \Omega_j^2 b_j(t) \rho U_j = \sum \ddot{b}_j(t) \rho U_j \right] U_i^* dV$$

Orthogonality relation

$$\int \rho \left(U_i^* U_j \right) dV = \delta_{ij} m_{\text{eff}}$$

Solid mechanics

 ${f c}$: elastic stiffness



 $\mathbf{u}(\vec{r},t)$

Mechanical Field

$$\mathbf{u}(\vec{r},t) = \sum b_j(t)U_j(\vec{r})$$

$$\mathbf{S}(\vec{r},t) = \sum b_j(t) S_j(\vec{r})$$

Newton's Law

$$\nabla \cdot \mathbf{T}_{\text{ext}} + \nabla \cdot \mathbf{T} = \rho \frac{d^2 \mathbf{u}(\vec{r}, t)}{dt^2}$$

Hooke's Law (single mode)

$$S_{j}(\vec{r}) = \nabla_{s} U_{j}(\vec{r})$$

$$\nabla \cdot \left(\mathbf{c} : S_j\right) = -\rho \Omega_j^2 U_j$$

$$\mathbf{f}_{\text{ext}} + \nabla \cdot (\mathbf{c} : \sum b_j(t)S_j) = \rho \sum \frac{d^2}{dt^2} (b_j(t)U_j)$$

$$\int \int \left[\mathbf{f}_{\text{ext}} - \sum \Omega_j^2 b_j(t) \rho U_j \right] = \sum \ddot{b}_j(t) \rho U_j U_i^* dV$$

Orthogonality relation

$$\int \rho \left(U_i^* U_j \right) dV = \delta_{ij} m_{\text{eff}}$$

Lumped Model

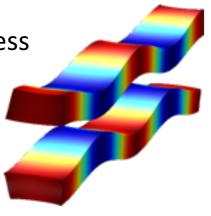
$$\ddot{b}_j(t) + \Omega_i^2 b_i(t) = rac{\mathbf{r}_{i,\mathrm{ext}}}{m_{\mathrm{eff}}}$$

Solid mechanics

Mechanical Loss Channel

 ${f c}$: elastic stiffness

ho : density

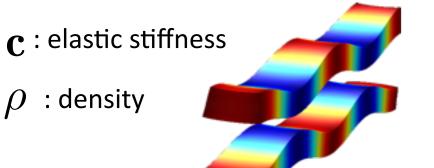


$$\mathbf{u}(\vec{r},t)$$

$$\ddot{b}(t) + \gamma_m \dot{b}(t) + \Omega_m^2 b(t) = \frac{\mathbf{F}_{\text{ext}}}{m_{\text{eff}}}$$

Solid mechanics

Jona mechanics



$$\mathbf{u}(\vec{r},t)$$

$$\tilde{b}(\Omega) = \int_{-\infty}^{+\infty} dt \ e^{i\Omega t} b(t)$$

Mechanical Loss Channel

$$\ddot{b}(t) + \gamma_m \dot{b}(t) + \Omega_m^2 b(t) = \frac{\mathbf{F}_{\text{ext}}}{m_{\text{eff}}}$$

Solid mechanics

Mechanical Loss Channel

ho : density

$$\mathbf{u}(\vec{r},t)$$

$$\ddot{b}(t) + \gamma_m \dot{b}(t) + \Omega_m^2 b(t) = \frac{\mathbf{F}_{\text{ext}}}{m_{\text{eff}}}$$

$$\int_{-\infty}^{+\infty} dt \ e^{i\Omega t} b(t)$$

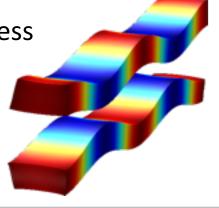
$$-\Omega^2 \tilde{b}(\Omega) - i\Omega \gamma_m \tilde{b}(\Omega) + \Omega_m^2 \tilde{b}(\Omega) = \frac{\mathbf{F}_{\mathrm{ext}}(\Omega)}{m_{\mathrm{eff}}}$$

Solid mechanics

Mechanical Loss Channel

 ${f c}$: elastic stiffness

ho : density



$$\mathbf{u}(\vec{r},t)$$

$$\ddot{b}(t) + \gamma_m \dot{b}(t) + \Omega_m^2 b(t) = \frac{\mathbf{F}_{\text{ext}}}{m_{\text{eff}}}$$

$$\tilde{b}(\Omega) = \int_{-\infty}^{+\infty} dt \ e^{i\Omega t} b(t)$$

$$-\Omega^2 \tilde{b}(\Omega) - i\Omega \gamma_m \tilde{b}(\Omega) + \Omega_m^2 \tilde{b}(\Omega) = \frac{\mathbf{F}_{\text{ext}}(\Omega)}{m_{\text{eff}}}$$

Mechanical Frequency Response

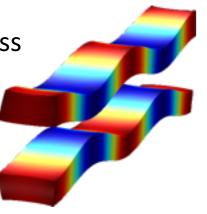
$$\tilde{b}(\Omega) = \chi_{bb}(\Omega) \mathbf{F}_{\text{ext}}(\Omega)$$

Mechanical Susceptibility

$$\chi_{bb}(\Omega) = \left[m_{\text{eff}} \left(\Omega_m^2 - \Omega^2 - i \Omega \gamma_m \right) \right]^{-1}$$

Solid mechanics

c: elastic stiffness



$$\mathbf{u}(\vec{r},t)$$

Mechanical Frequency Response

$$\tilde{b}(\Omega) = \chi_{bb}(\Omega) \mathbf{F}_{\mathrm{ext}}(\Omega)$$

Mechanical Susceptibility

$$\chi_{bb}(\Omega) = \left[m_{\text{eff}} \left(\Omega_m^2 - \Omega^2 - i\Omega \gamma_m \right) \right]^{-1}$$

DC response

$$\Omega \approx 0$$

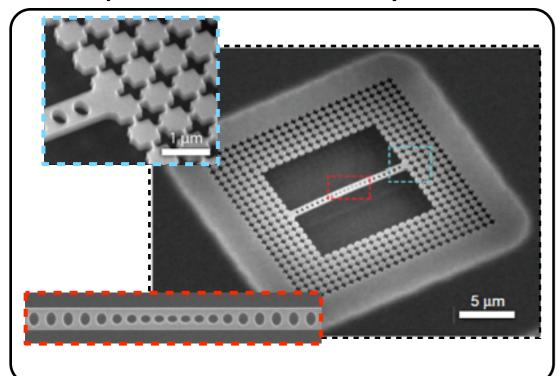
$$\chi_{bb}(0) = \left[m_{\text{eff}} \Omega_m^2 \right]^{-1} = 1 / k$$

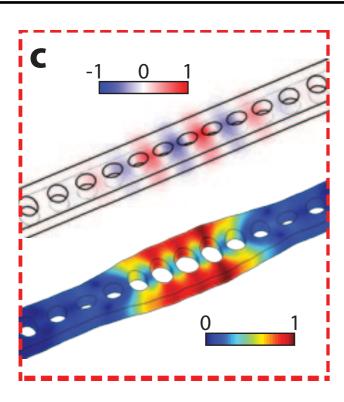
Lorentzian shape

$$\Omega \approx \Omega_m$$

$$\chi_{bb}(\Omega) \approx \left[\, 2 m_{\rm eff} \Omega_m \left((\Omega_m - \Omega) - i \, \gamma_m \big/ 2 \, \right) \right]^{-1}$$

Optomechanical Crystal





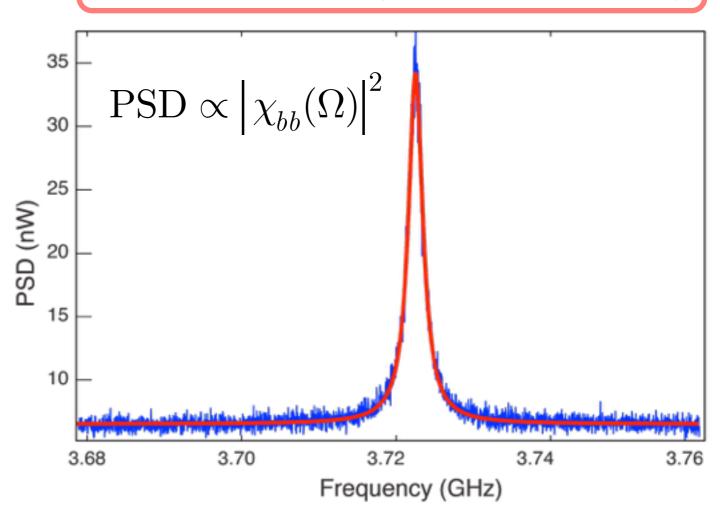
Mechanical Frequency Response

$$\widetilde{b}(\Omega) = \chi_{bb}(\Omega)\widetilde{\mathbf{F}}_{\mathrm{ext}}(\Omega)$$

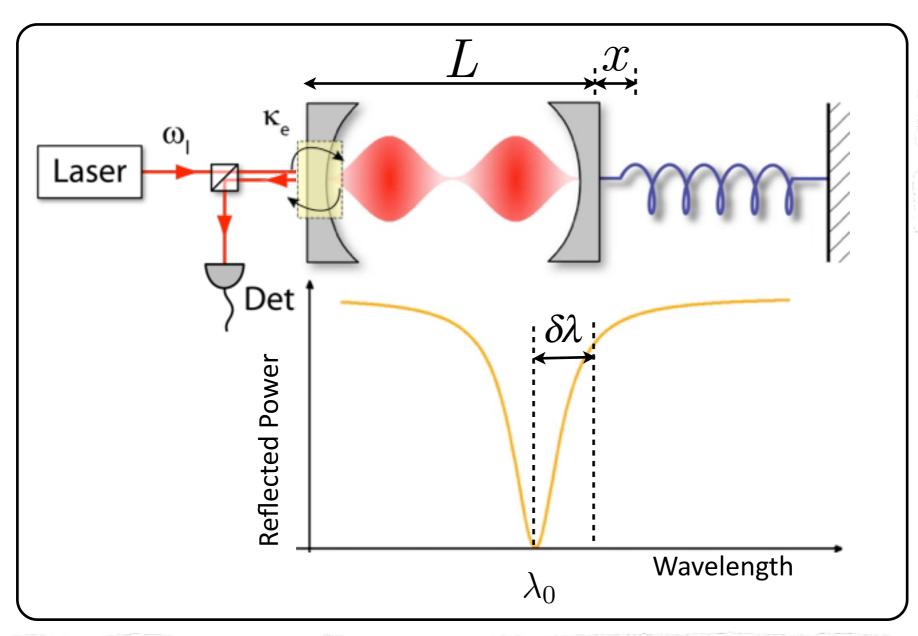
$$\chi_{bb}(\Omega) \approx \left[2m_{\rm eff}\Omega_m \left((\Omega_m - \Omega) - i\,\gamma_m/2\right)\right]^{-1}$$

Lorentzian shape

$$\left|\chi_{bb}(\Omega)\right|^2 \approx \frac{1}{4m_{\rm eff}^2\Omega_m^2\left((\Omega_m-\Omega)^2-(\gamma_m/2)^2\right)}$$



Optomechanical cavity toy-model



$$\omega_c = n \frac{\pi c}{L}$$

$$\omega_c(x) \approx \omega_c + \frac{\partial \omega}{\partial x} x = \omega_c - \left(\frac{\omega}{L}\right) x$$

$$g_{\text{om}}$$

Outline

- ⋆ Optical and acoustic mode interaction
- ⋆ Optical force actuation
- ⋆ Dynamical back-action
- ⋆ Optomechanical clocks
- ⋆ Bullseye a case study
- ⋆ Outlook

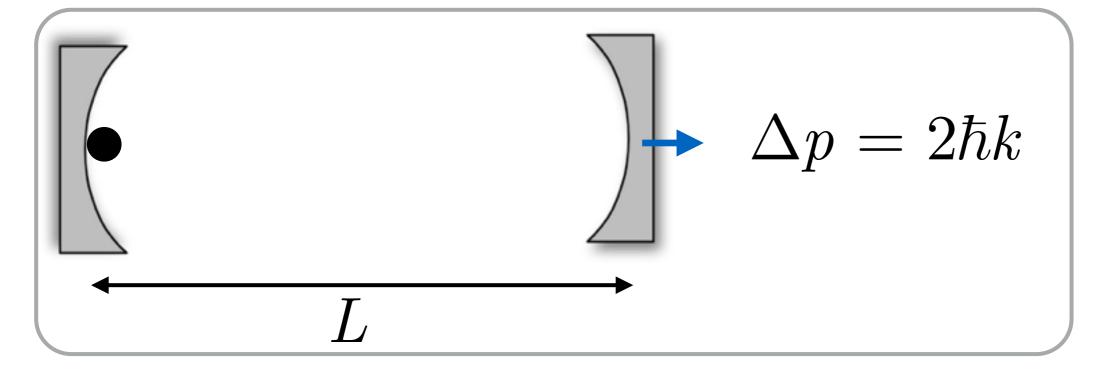
Optical Cavities: Harnessing Light Force

$$\omega_c(x) \approx \omega_c - g_{\text{om}} x$$
 $\left[g_{\text{om}} = \omega / L \right]$

$$g_{\rm om} = \omega / L$$

Frequency pull parameter

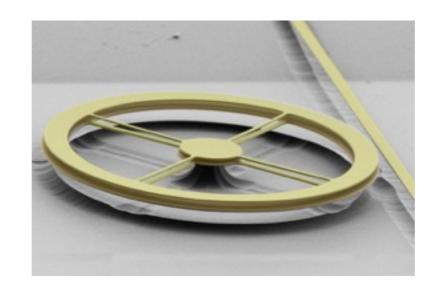
$$\begin{array}{c|c} f = \frac{\Delta p}{\Delta t} &= \frac{2\hbar k}{\Delta t} = 2\hbar k (\frac{c}{2L}) = \hbar \frac{\omega_c}{L} = \hbar g_{\rm om} & \frac{\rm single-photon}{\rm force} \\ &\approx 2~{\rm fN} \end{array}$$



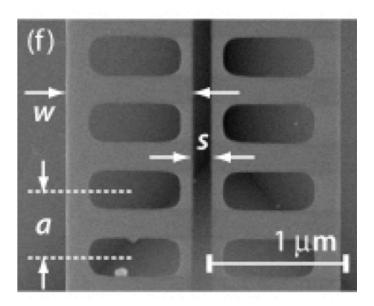
Optical Forces Among Guiding Structures



Eichenfield et al. Nature Photonics (2007)

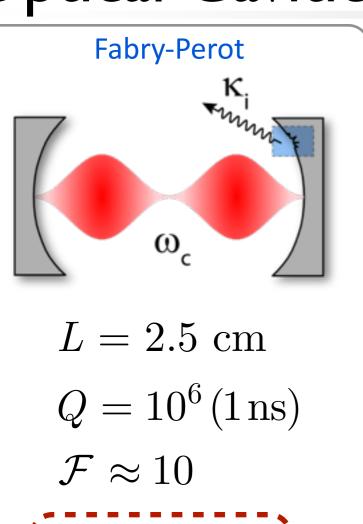


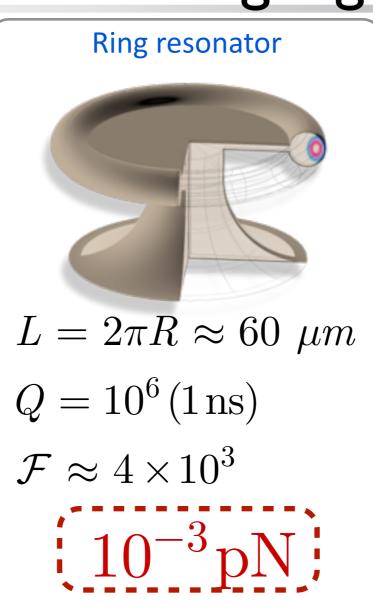
Wiederhecker et al. Nature (2009)

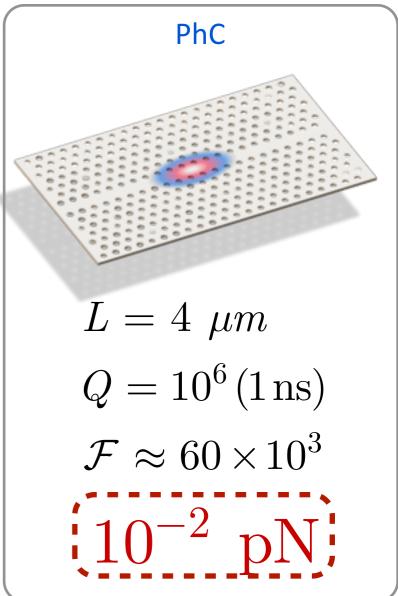


Eichenfield et al. Nature (2009)

Optical Cavities: Harnessing Light Force







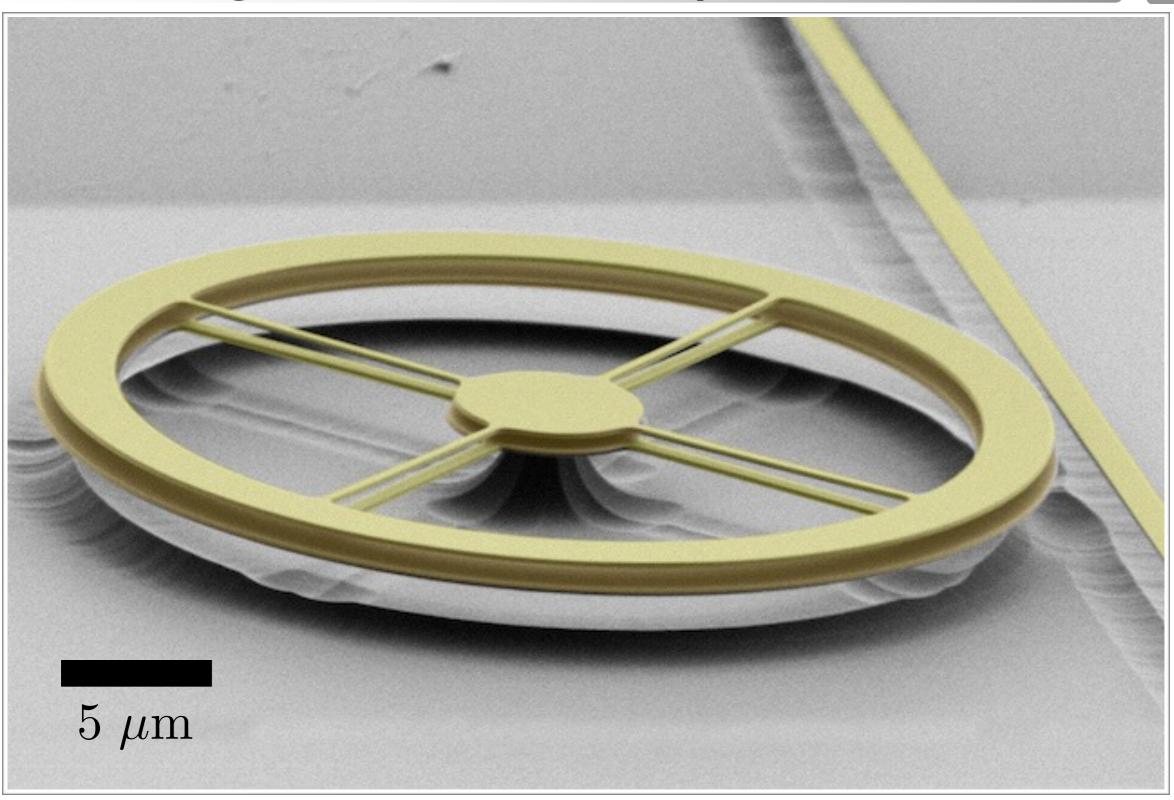
$$f = \hbar g_{\rm om}$$

 10^{-5} pN

force due to singlephoton A standard laser pointer can load a cavity with as much as 10 million photons!

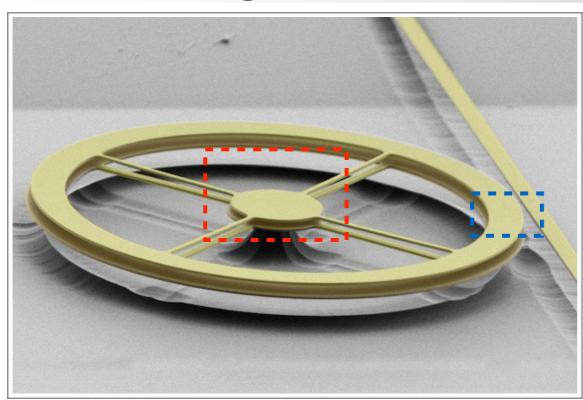
$$F = 10^6 \hbar g_{\rm om} \approx \rm nN$$

Controlling Cavities with Optical Forces

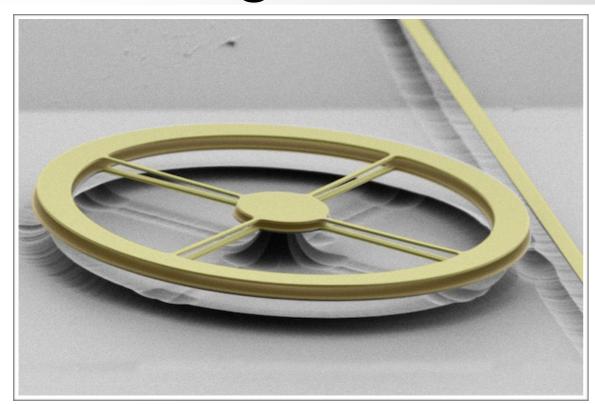


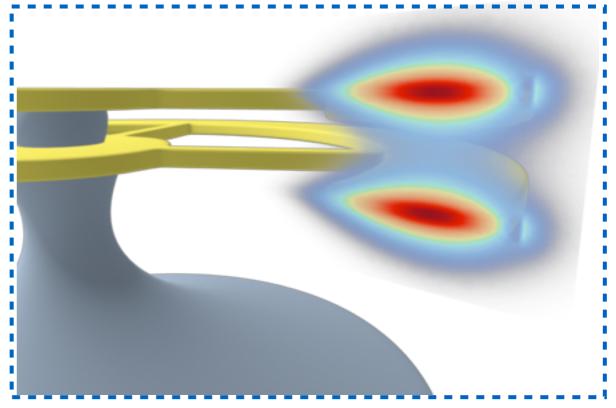
Wiederhecker et al, Nature 462 (2009) Wiederhecker et al, OpEx 19, 2782 (2011)

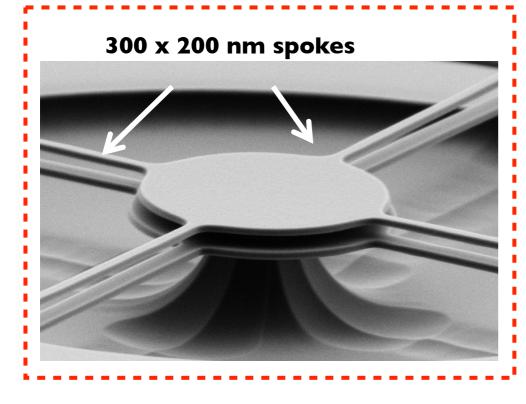
Controlling Cavities with Optical Forces



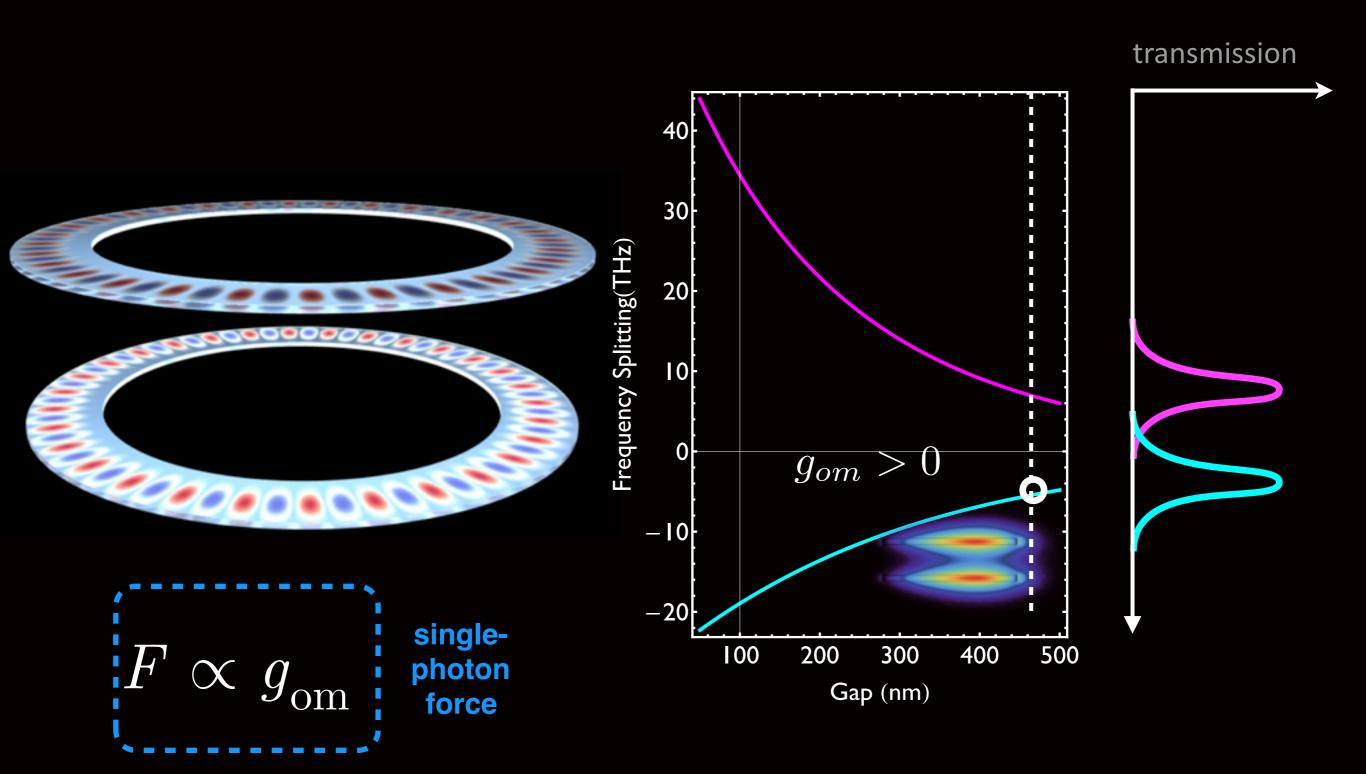
Controlling Cavities with Optical Forces

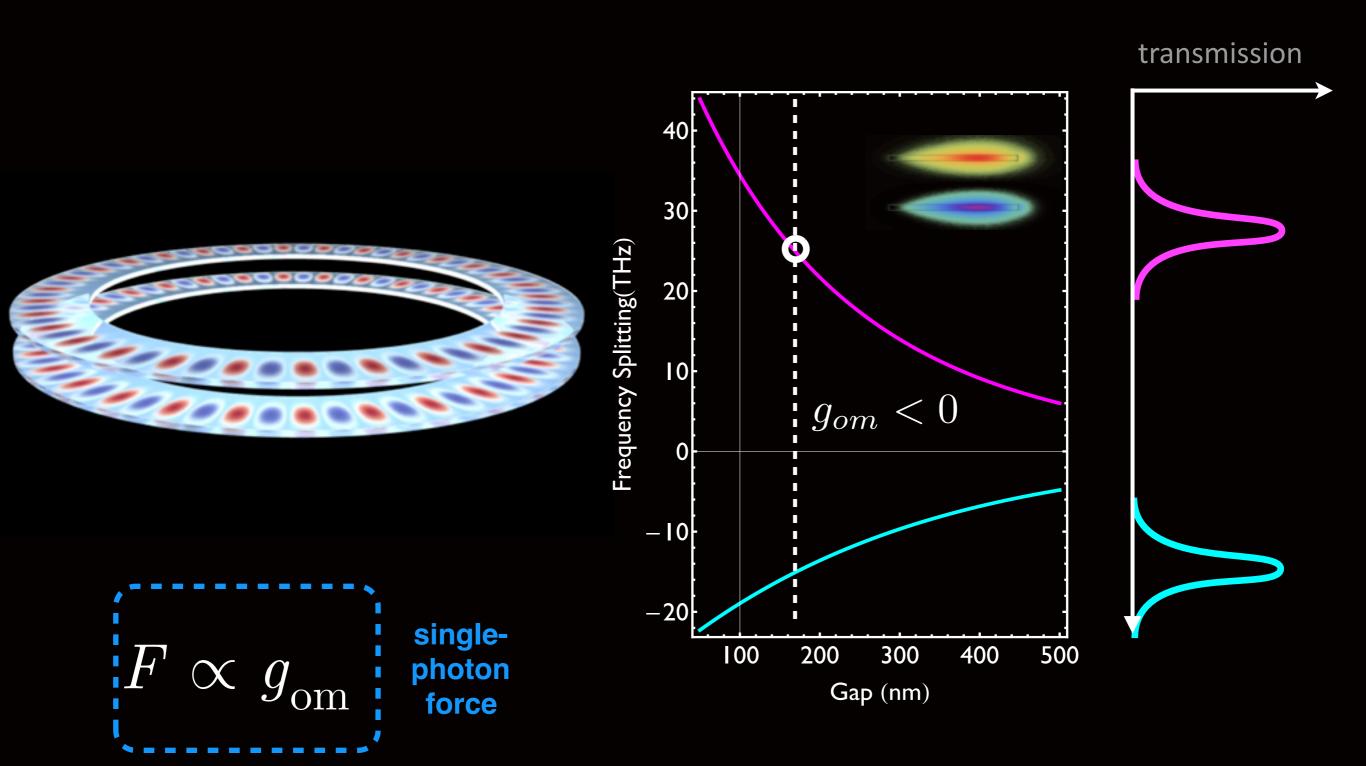




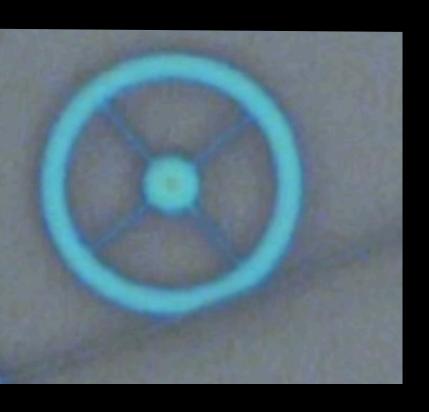


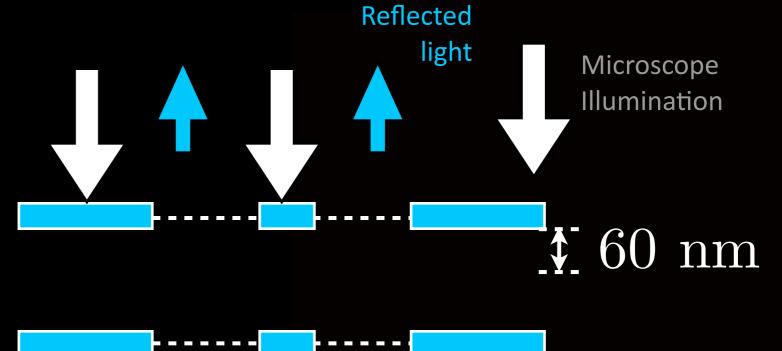
Wiederhecker et al, Nature 462 (2009) Wiederhecker et al, OpEx 19, 2782 (2011)

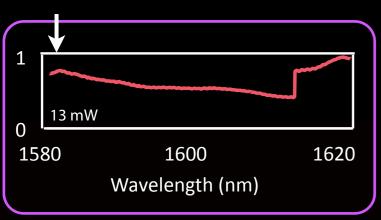




Wiederhecker et al, Nature 462 (2009) Wiederhecker et al, OpEx 19, 2782 (2011)

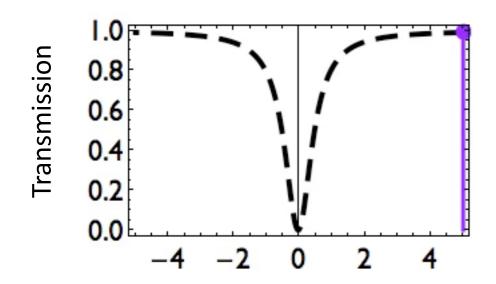






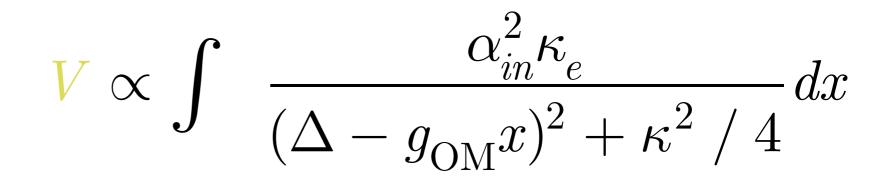
 $F_{\rm opt} \approx 50 \text{ nN}$

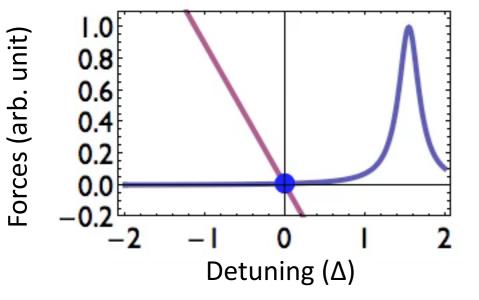
Static Bistability



Solve for displacement: cubic equation

$$\frac{m_{\text{eff}}\omega_0}{g_{\text{OM}}} \mathbf{x}_0 = \frac{\alpha_{in}^2 \kappa_e}{(\Delta - g_{\text{OM}} \mathbf{x}_0^2)^2 + \kappa^2 / 4}$$

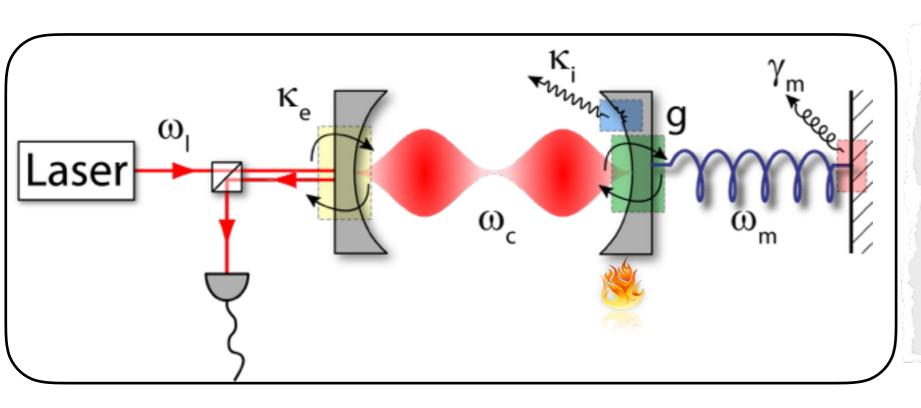




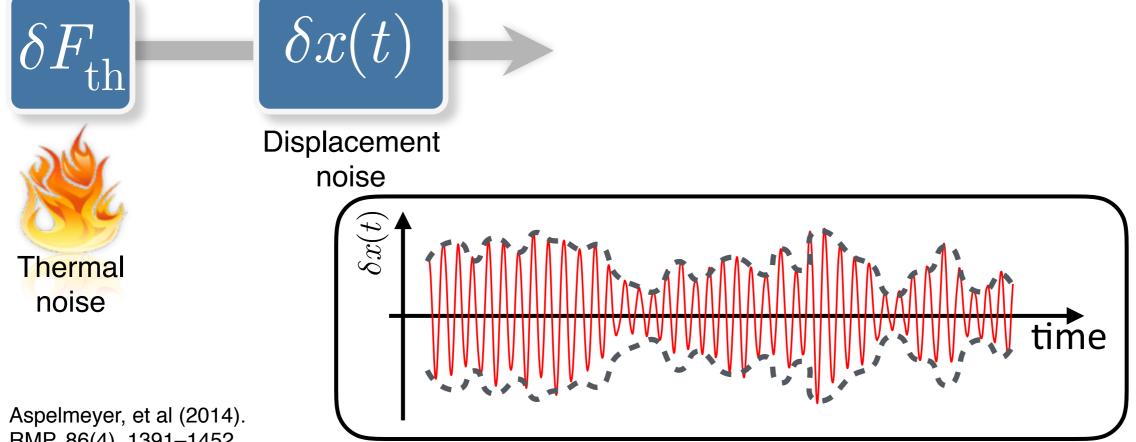
Outline

- ⋆ Optical and acoustic mode interaction
- ⋆ Optical force actuation
- * Dynamical back-action
- ⋆ Optomechanical clocks
- ⋆ Bullseye a case study
- ⋆ Outlook

Dynamical Back-action

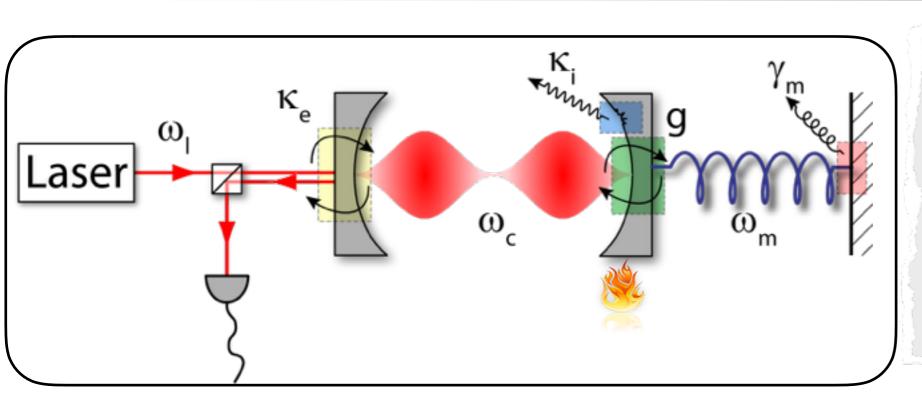


m = 100 pg $\Omega / 2\pi = 1 \text{ MHz}$ $\langle \delta x_T \rangle \approx 40 \text{ pm}$

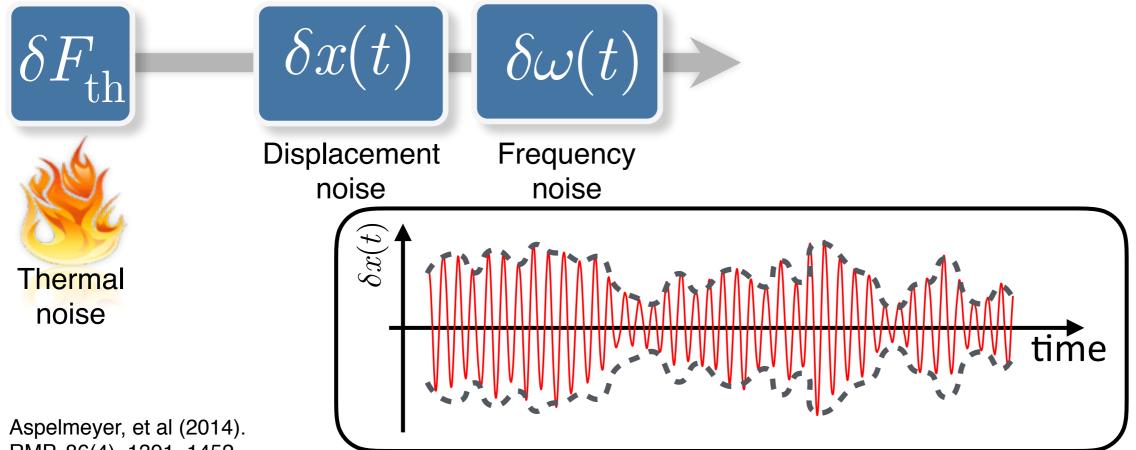


RMP, 86(4), 1391-1452.

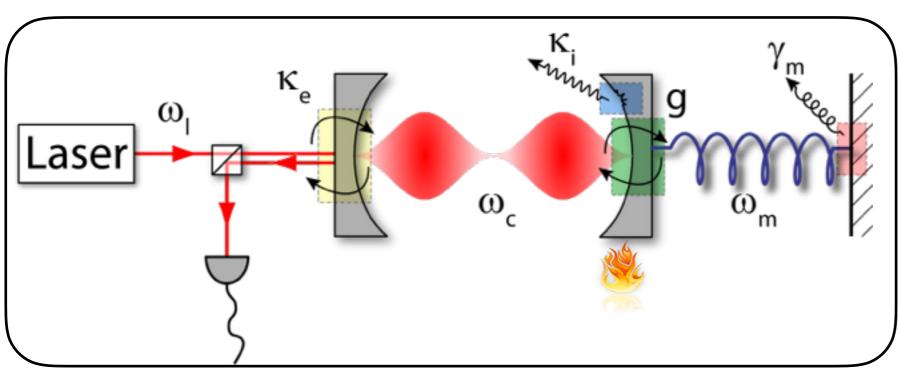
Dynamical Back-action



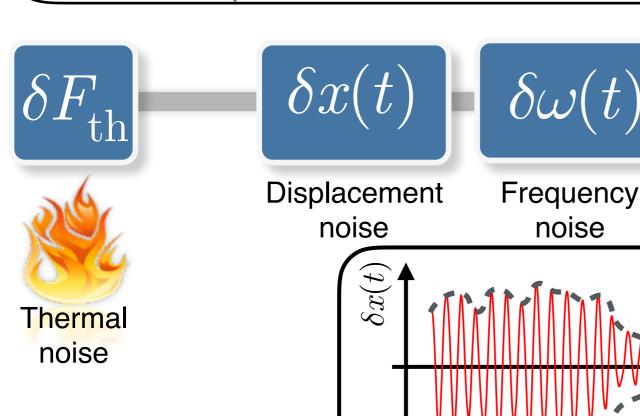
 $\langle \delta x_T \rangle \approx 40 \text{ pm}$ $g_{\rm om} \ / \ 2\pi \approx 10^4 \ {\rm GHz/pm}$ $\langle \delta \omega \rangle / 2\pi \approx 400 \text{ MHz}$



RMP, 86(4), 1391–1452.

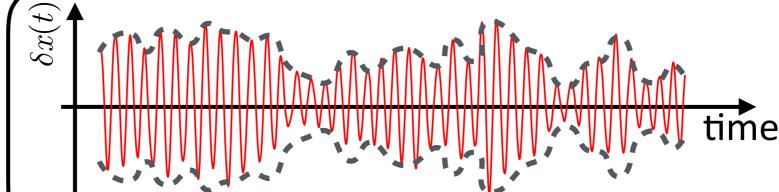


 $\left<\delta x_T\right> \approx 40~\mathrm{pm}$ $g_{\mathrm{om}} \ / \ 2\pi \approx 10^4~\mathrm{GHz/pm}$ $\left<\delta\omega\right> / \ 2\pi \approx 400~\mathrm{MHz}$

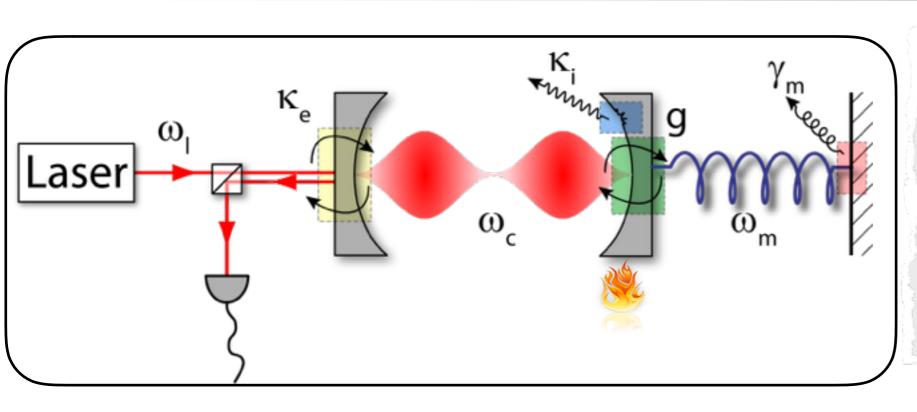


 $\left|\delta n(t\pm au)\right|$

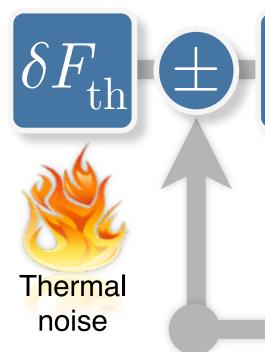




Aspelmeyer, et al (2014). RMP, 86(4), 1391–1452.

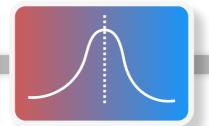


 $\left<\delta x_T\right> \approx 40~\mathrm{pm}$ $g_{\mathrm{om}} \ / \ 2\pi \approx 10^4~\mathrm{GHz/pm}$ $\left<\delta \omega\right> / \ 2\pi \approx 400~\mathrm{MHz}$



Displacement noise

Frequency noise

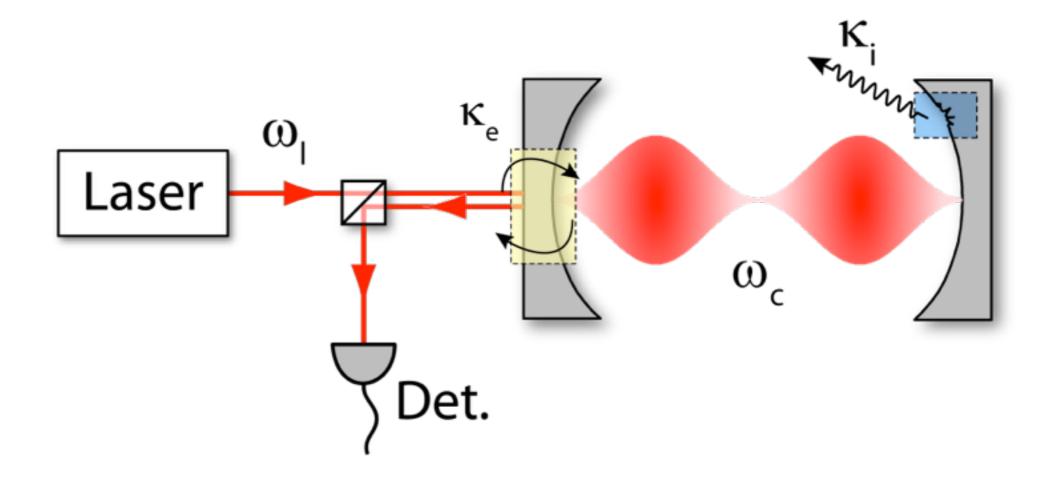


Cavity dispersion

Photon number noise

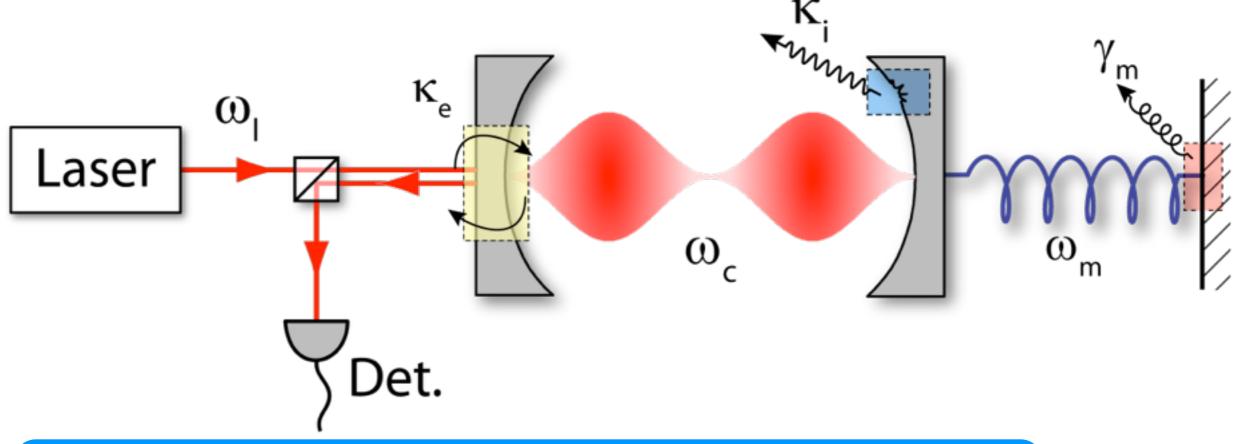
 $\delta F(t \pm \tau)$

Optical force noise



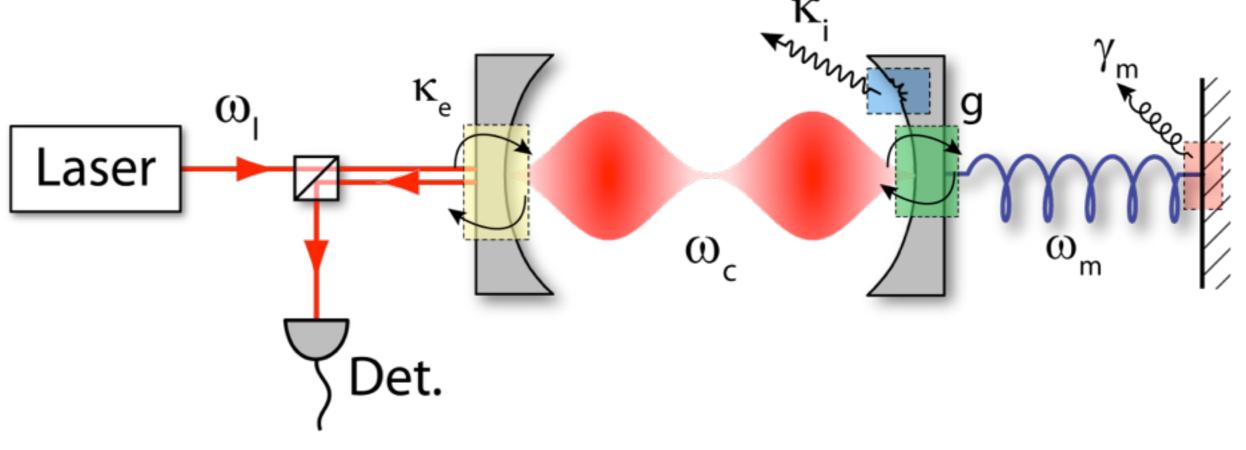
$$\dot{a}(t) = \mathrm{i}(\omega_l - \omega_c) a - \frac{\kappa}{2} a + \sqrt{\kappa_e} \alpha_{\mathrm{in}}$$

Optical Amplitude Equation



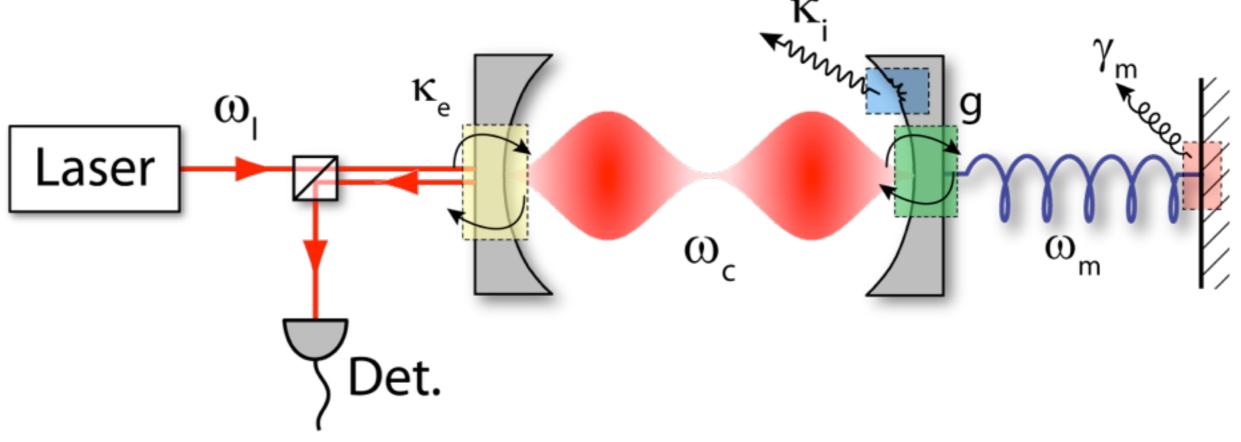
$$\dot{a}(t) = \left(\mathrm{i}(\omega_l - \omega_c) - \frac{\kappa}{2}\right) a + \sqrt{\kappa_e} \alpha_{\mathrm{in}}$$

$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{F_{\text{opt}}}{m}$$



$$\dot{a}(t) = \left(i(\omega_l - \omega_c(\mathbf{x})) - \frac{\kappa}{2}\right)a + \sqrt{\kappa_e}\alpha_{\rm in}$$

$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{F_{\text{opt}}(\mathbf{a})}{m}$$

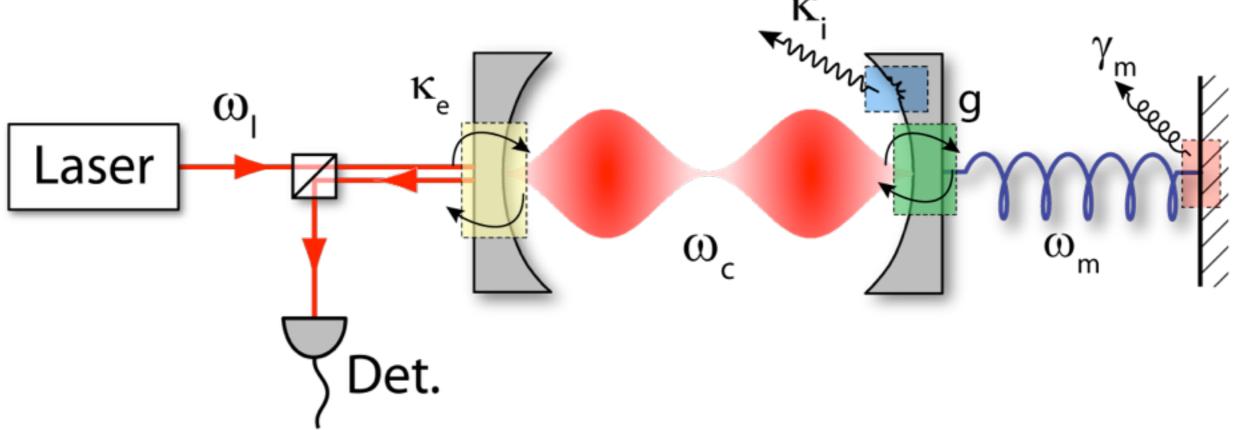


$$\dot{a}(t) = \left(i(\Delta + g_{\text{OM}}x(t)) - \frac{\kappa}{2}\right)a + \sqrt{\kappa_e}\alpha_{\text{in}}$$

$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{g_{\text{OM}}}{m\omega_0} |a|^2$$

$$\omega_c = \omega_o (1 - g_{\rm OM} x(t))$$

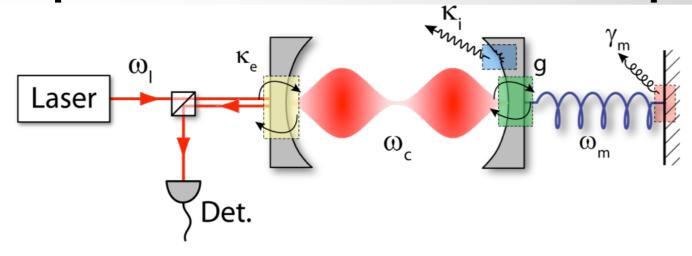
$$\Delta = \omega_l - \omega_o$$

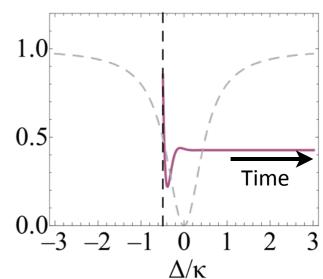


Coupled Equations

$$\dot{a}(t) = \left(\mathrm{i}\Delta - \frac{\kappa}{2}\right)a + \mathrm{i}g_{\mathrm{OM}}ax(t) + \sqrt{\kappa_e}\alpha_{\mathrm{in}}$$

$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{\left|a(t)\right|^2 g_{\text{OM}}}{\omega_0 m}$$





$$\dot{a}(t) = \left(i\Delta - \frac{\kappa}{2}\right)a + ig_{\mathrm{OM}}ax(t) + \sqrt{\kappa_e}\alpha_{\mathrm{in}}$$

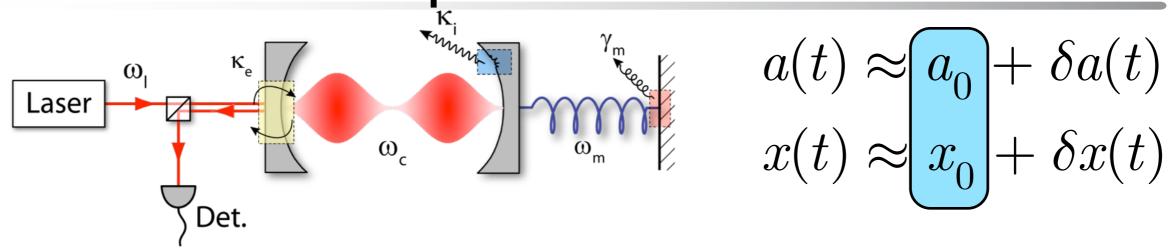
$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{g_{\text{OM}}}{\omega_0 m} |a(t)|^2$$

Linearized dynamics:

$$a(t) \approx a_0 + \delta a(t)$$

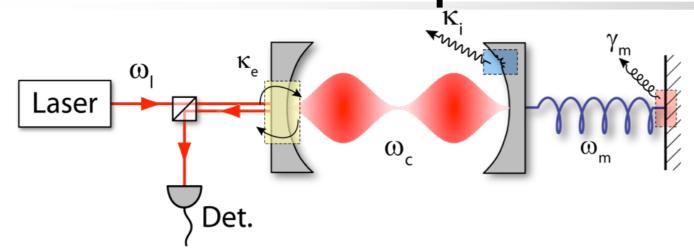
$$x(t) \approx x_0 + \delta x(t)$$

Zeroth order equation: static shift



The zeroth order solution is basically the exact static solution of the problem!

Zeroth order equation: static shift



$$a(t) \approx \boxed{a_0} + \delta a(t)$$
$$x(t) \approx \boxed{x_0} + \delta x(t)$$

$$\ddot{x} + \gamma_m \dot{x} + \omega_m^2 x = \frac{ng_{\text{OM}}}{m_{\text{eff}}} |a(t)|^2$$

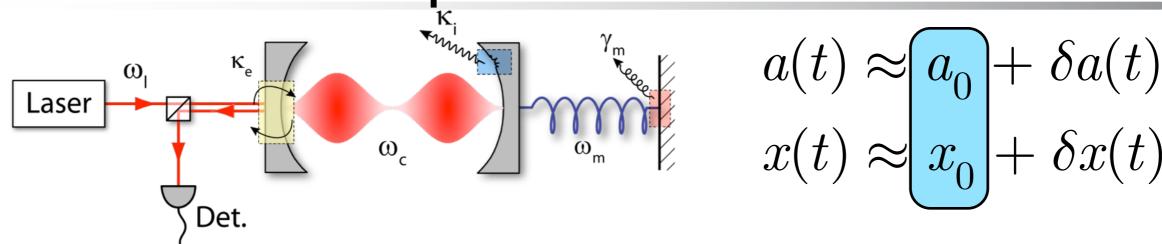
The zeroth order solution is basically the exact static solution of the problem!

Average number of photons

$$U \equiv \mid a_0 \mid^2 = \frac{\alpha_{in}^2 \kappa_e}{\Delta'^2 + \kappa^2 / 4}$$

$$x_0 = \frac{g_{OM}}{\omega_0 m_{\text{eff}}} U$$

Zeroth order equation: static shift



Average number of photons

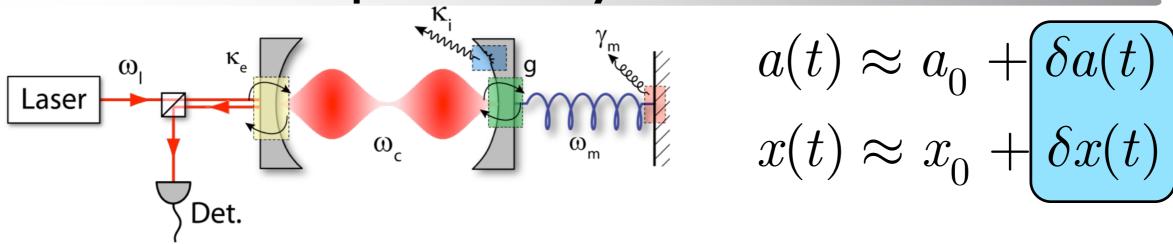
$$U \equiv \mid a_0 \mid^2 = \frac{\alpha_{in}^2 \kappa_e}{\Delta'^2 + \kappa^2 / 4}$$

$$x_0 = \frac{g_{OM}}{\omega_0 m_{\text{eff}}} U$$

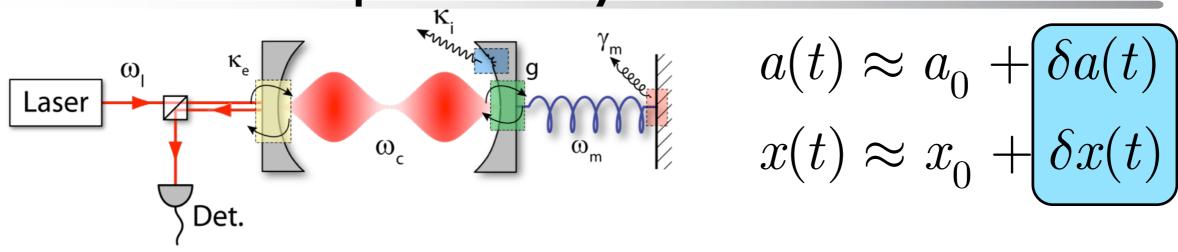
Not so easy buddy!

The detuning (Δ) is a function of position (x)!

$$\Delta' = \Delta - g_{\rm OM} x_0$$

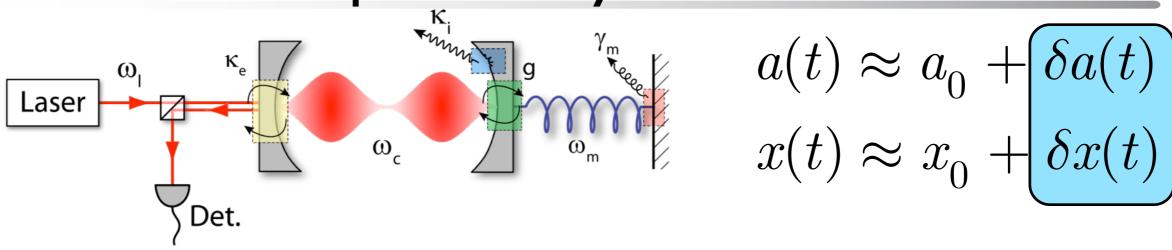


$$F(t) \propto \mid a_0 + \delta a \mid^2 = \frac{g_{\text{OM}}}{\omega_0} (a_0^2 + \underbrace{a_0 \delta a^* + a_0^* \delta a}_{\delta F(t)} + \delta a^2)$$



$$F(t) \propto \mid a_0 + \delta a \mid^2 = \frac{g_{\text{OM}}}{\omega_0} (a_0^2 + \underbrace{a_0 \delta a^* + a_0^* \delta a}_{\delta F(t)} + \delta a^2)$$

$$\delta \ddot{x} = -\Omega^2 \delta x - \gamma \delta \dot{x} - \frac{g_{OM}}{\omega_0 m_{\text{eff}}} \left(a_0 \delta a^* + a_0^* \delta a \right)$$



$$F(t) \propto \mid a_0 + \delta a \mid^2 = \frac{g_{\text{OM}}}{\omega_0} (a_0^2 + \underbrace{a_0 \delta a^* + a_0^* \delta a}_{\delta F(t)} + \delta a^2)$$

$$\delta \ddot{x} = -\Omega^2 \delta x - \gamma \delta \dot{x} - \frac{g_{OM}}{\omega_0 m_{\text{eff}}} \left(a_0 \delta a^* + a_0^* \delta a \right)$$

$$\delta \ddot{x} = -\Omega^2 \delta x - \gamma \delta \dot{x} + \delta F(t) / m_{\text{eff}}$$

$$\delta \ddot{x} = -\Omega^2 \delta x - \gamma \delta \dot{x} + \delta F(t)$$

$$\delta \dot{a} = (i\Delta' - \frac{\kappa}{2})\delta a - ig_{OM}a_0\delta x$$

Fourier
$$\widetilde{f}[\omega] = \int\limits_{-\infty}^{\infty} f(t)e^{i\omega t} \ dt$$

$$\begin{cases} m_{\rm eff}(\Omega^2 - \omega^2 + i\gamma\omega)\delta\tilde{x}[\omega] = \delta\tilde{F}[\omega] \\ \delta\tilde{a}(\omega) = \frac{-ig_{\rm OM}a_0}{-\omega - (\mathrm{i}\Delta - \frac{\kappa}{2})} \delta\tilde{x}(\omega) \end{cases}$$

$$\delta \tilde{a}(\omega) = \frac{-ig_{\mathrm{OM}}a_0}{-\omega - (\mathrm{i}\Delta - \frac{\kappa}{2})} \delta \tilde{x}(\omega)$$

$$m_{\rm eff}(\Omega^2 - \omega^2 + i\gamma\omega)\delta\tilde{x}[\omega] = \delta\tilde{F}[\omega]$$

$$\delta \tilde{F}[\omega] = \delta \tilde{x} \frac{g_{\text{OM}}^2 U}{\omega_0} \left[\frac{1}{(\Delta' - \omega) - i\kappa / 2} + \frac{1}{(\Delta' + \omega) + i\kappa / 2} \right]$$

$$\equiv \Sigma(\omega)$$

$$\delta \tilde{F}[\omega] = \delta \tilde{x} \frac{g_{\text{OM}}^2 U}{\omega_0} \left[\frac{1}{(\Delta' - \omega) - i\kappa / 2} + \frac{1}{(\Delta' + \omega) + i\kappa / 2} \right]$$

$$\equiv \Sigma(\omega)$$

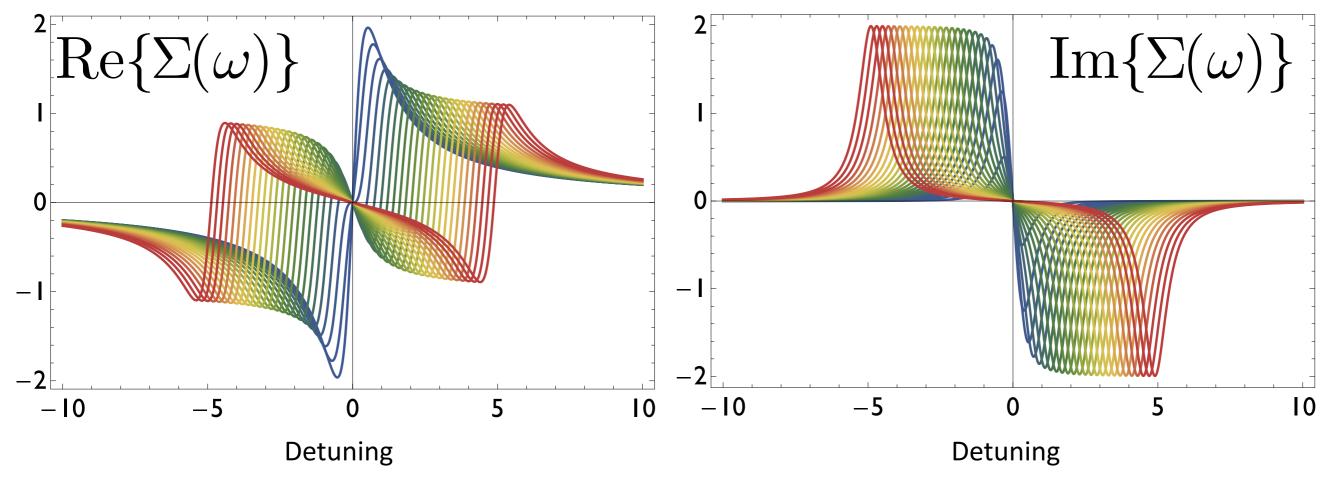
$$\begin{array}{l} \boxed{m_{\rm eff}(\Omega^2-\omega^2+i\gamma\omega)}\delta\tilde{x}[\omega] = \boxed{2g^2m_{\rm eff}\Omega\Sigma(\omega)}\delta\tilde{x}[\omega] \\ \equiv \chi_{xx}^{-1}(\omega) & g \equiv (g_{\rm OM}x_{\rm zpf})\sqrt{n_c} \end{array}$$

$$g_0 \hat{a}^{\dagger} \hat{a} (\hat{b} + \hat{b}^{\dagger}) \mapsto g_0 \alpha (\delta \hat{a} + \delta \hat{a}^{\dagger}) (\hat{b} + \hat{b}^{\dagger})$$

9 bilinear interaction tunable coupling!

$$\delta \tilde{F}[\omega] = \delta \tilde{x} \frac{g_{\text{OM}}^2 U}{\omega_0} \left[\frac{1}{(\Delta' - \omega) - i\kappa / 2} + \frac{1}{(\Delta' + \omega) + i\kappa / 2} \right]$$

$$\equiv \Sigma(\omega)$$



Optical damping

Optical spring effect

$$\ddot{x} + (\Gamma_m + \Gamma_{\text{opt}})\dot{x} + (\Omega_m + \delta\Omega_{\text{opt}})^2 x = 0$$

$$\ddot{x} + (\Gamma_m + \Gamma_{\text{opt}})\dot{x} + (\Omega_m + \delta\Omega_{\text{opt}})^2 x = 0$$

Optical damping

$$\Gamma_{
m opt} = 4g^2 n_c \left(rac{\kappa}{\kappa^2 + 4(\Delta + \Omega_m)^2} - rac{\kappa}{\kappa^2 + 4(\Delta - \Omega_m)^2}
ight)$$

Optical spring effect

$$egin{aligned} \delta\Omega_{\mathrm{opt}} &= 4g^2 n_c \left(rac{\Delta - \Omega_{_m}}{\kappa^2 + 4(\Delta + \Omega_{_m})^2} - rac{\Delta + \Omega_{_m}}{\kappa^2 + 4(\Delta - \Omega_{_m})^2}
ight) \end{aligned}$$

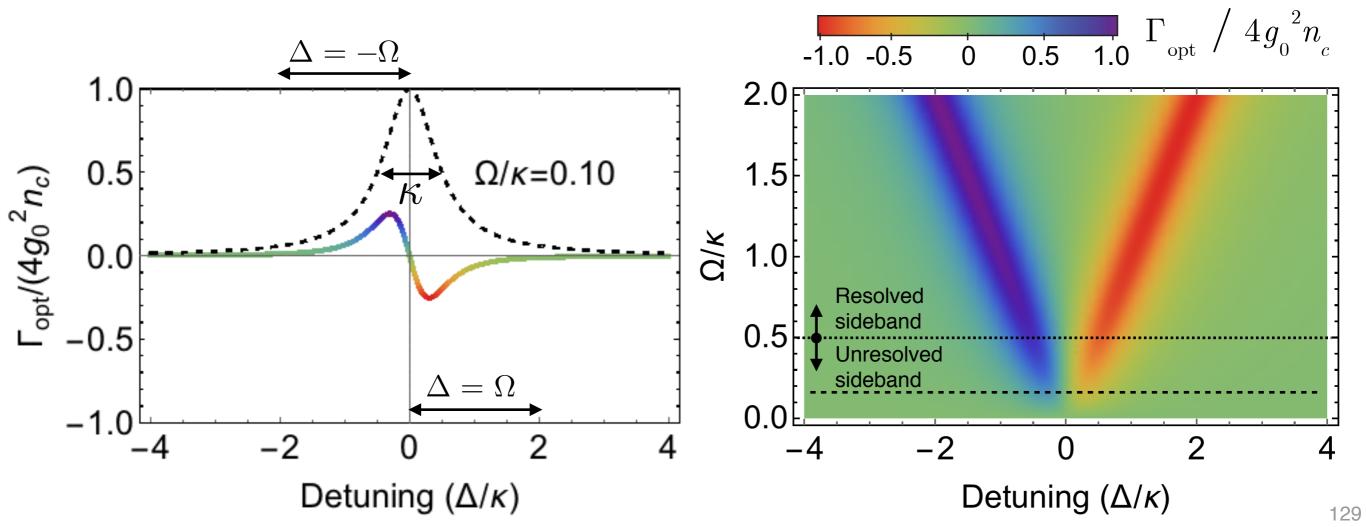
 $g = g_{\rm om} x_{\rm zpf}$ Optomechanical coupling rate

 $x_{
m zpf}$ Zero-point fluctuation

 $n_{
m c}$ Intracavity photon number

$$\lim_{\rm eff} \Gamma_{\rm eff} = (\Gamma_m + \Gamma_{\rm opt})$$





Cooperativity

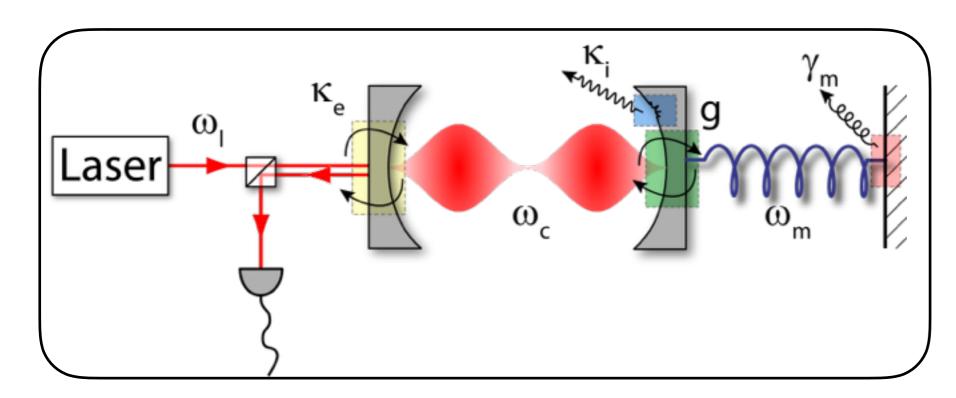


Figure of merit: cooperativity $(\Gamma_{\text{opt}} = \pm \Gamma_m)$

$$C = \frac{4g^2 n_c}{\kappa \Gamma_m}$$

$$g = g_{\rm om} x_{\rm zpf}$$

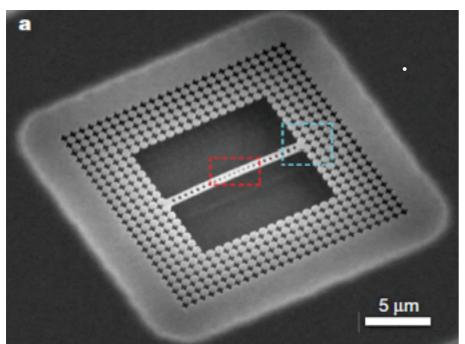
 $n_{
m c}$ Intracavity photon number

 κ Optical mode linewidth

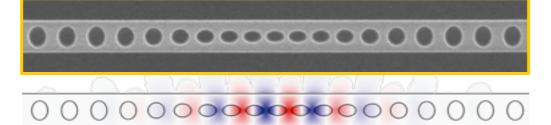
 Γ_m Mechanical linewidth

Real world devices

Non-linear optics and mechanical Optical Memories and Switches



Confined photonic crystal optical Mode



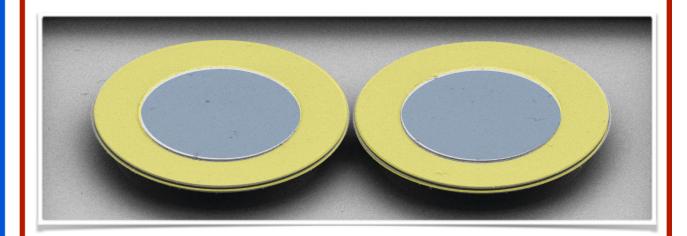
Mechanical breathing mode

4 GHz

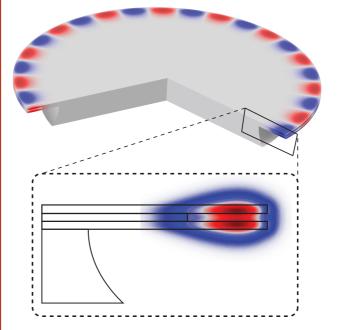
Alegre et. al, Nature **472**, 69 (2011)

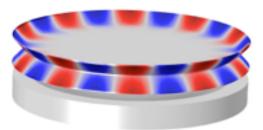
J. Chan et. al, Nature 478, 89 (2011)

Coupled Optomechanical Oscillators



Whispering Gallery
Optical mode





Anti-symmetric mechanical mode

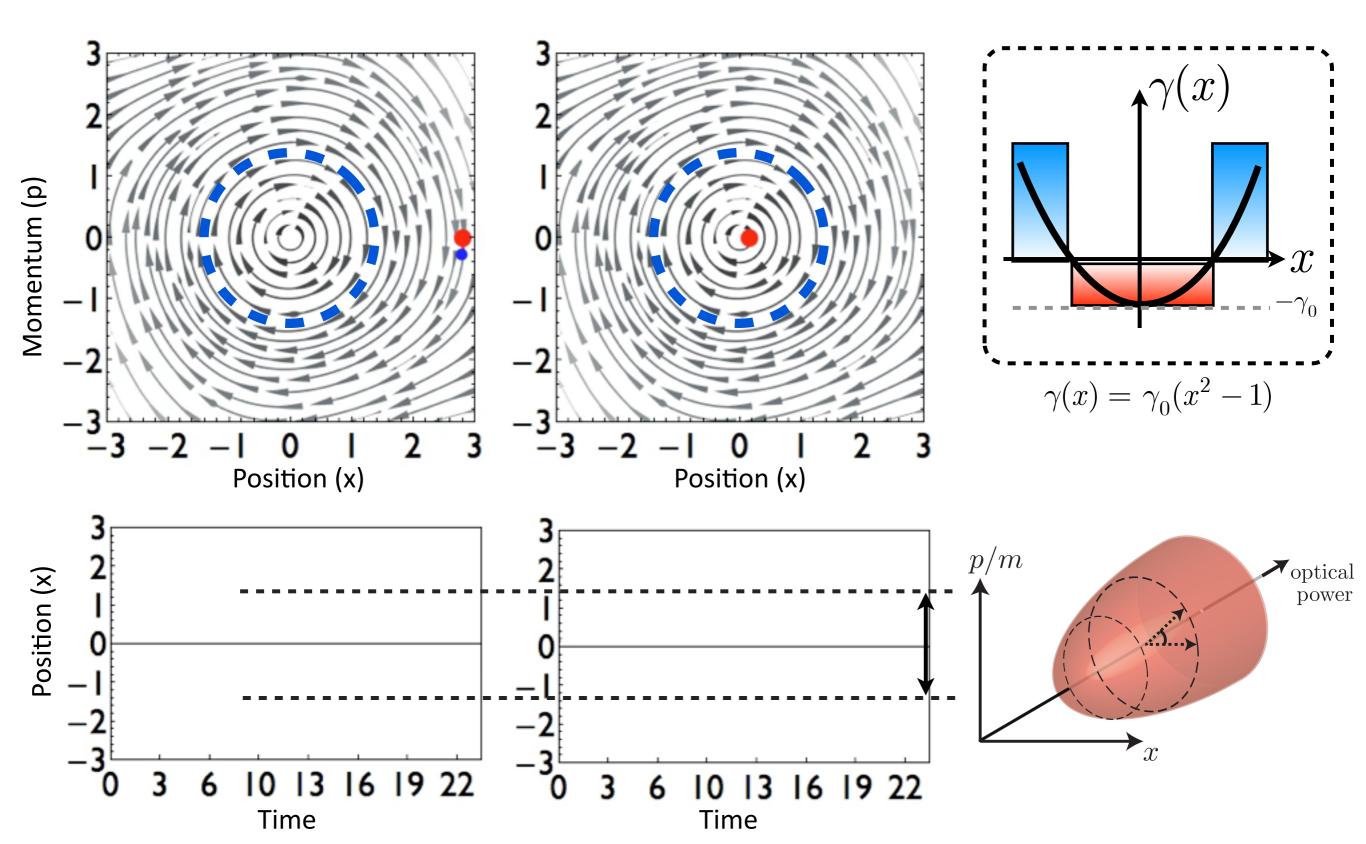
50 MHz

M. Zhang, G. S. Wiederhecker et al, PRL 109, 233906 (2012)

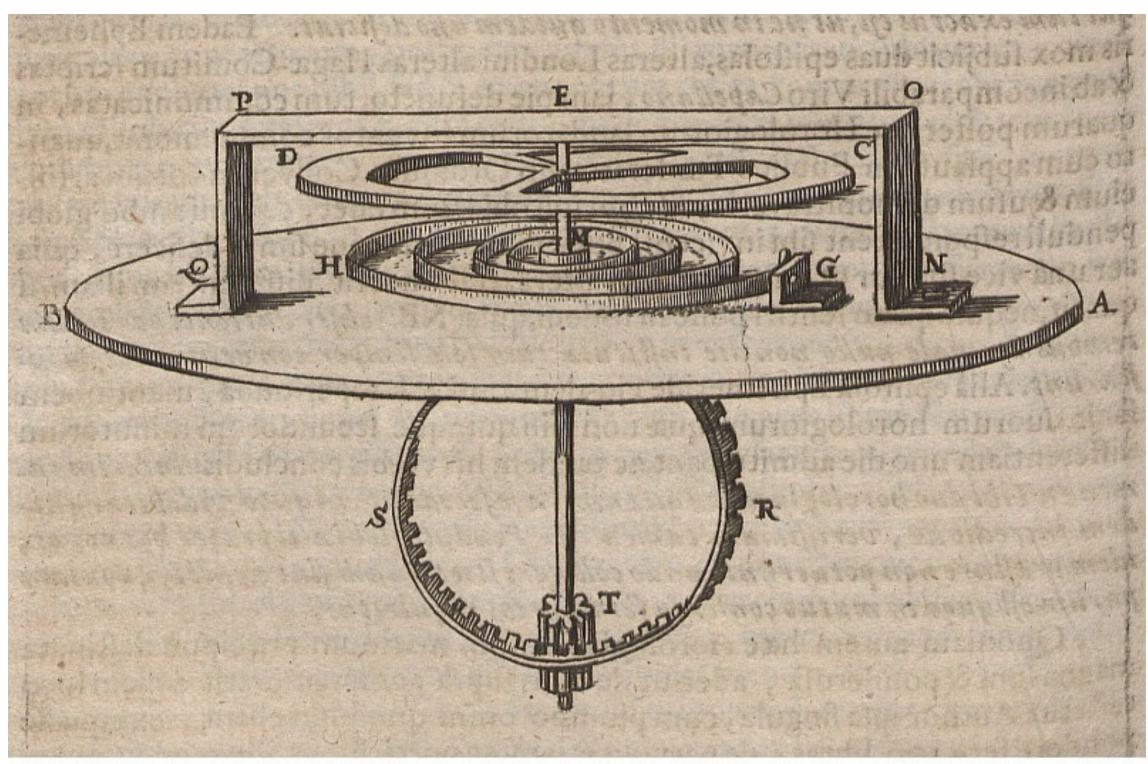
Outline

- ⋆ Optical and acoustic mode interaction
- ⋆ Optical force actuation
- ⋆ Dynamical back-action
- ⋆ Optomechanical clocks
- ⋆ Bullseye a case study
- ⋆ Outlook

Self-sustaining oscillators

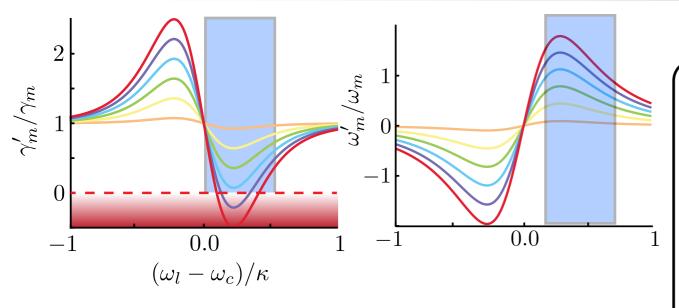


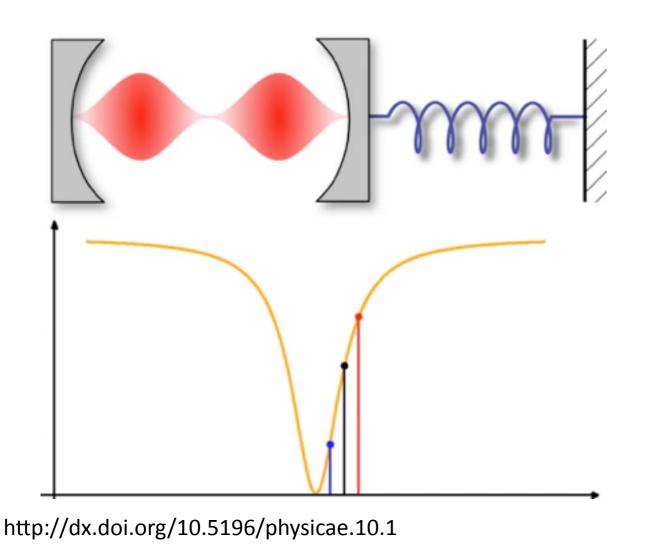
Building clocks

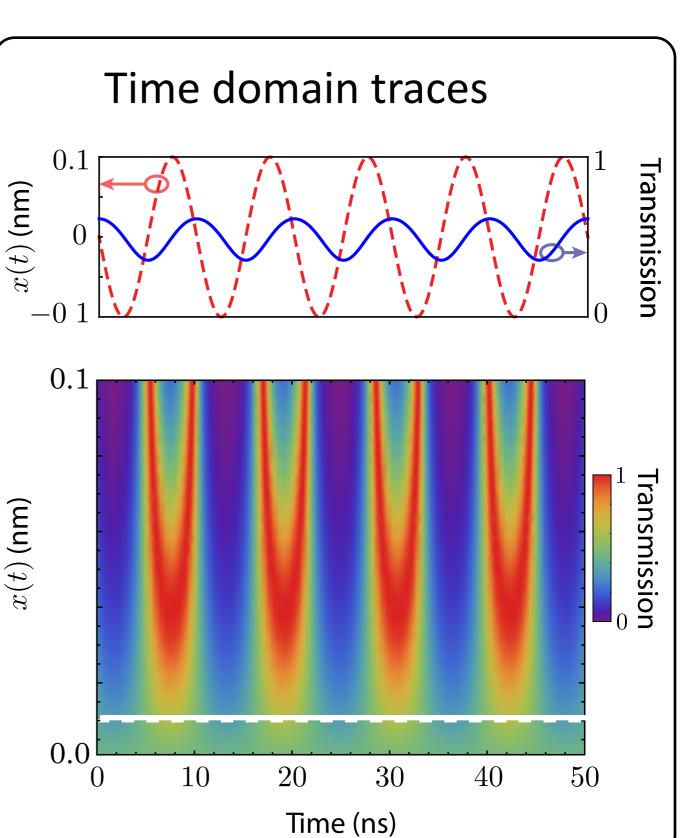


Quelle: Deutsche Fotothek

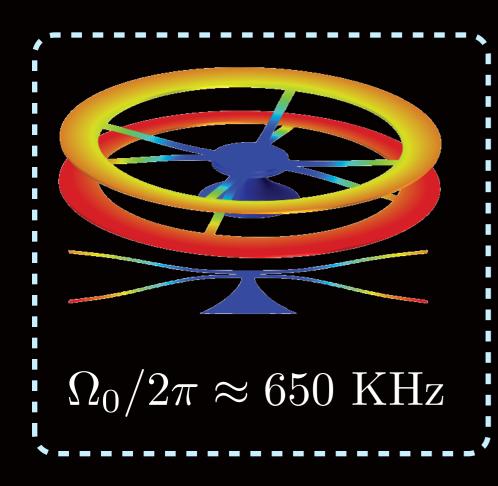
Optical Spring Effect, Cooling & Heating





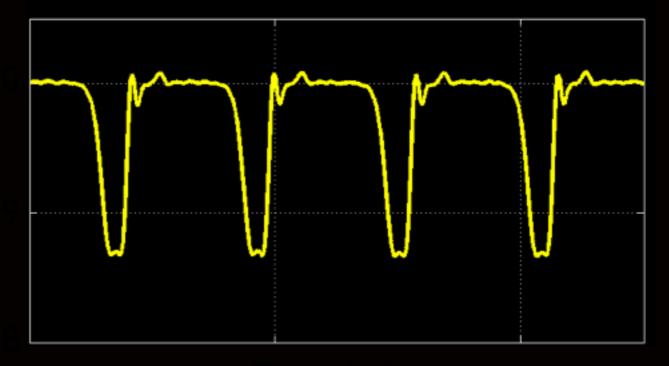


Limit cycle oscillations at the Lab.

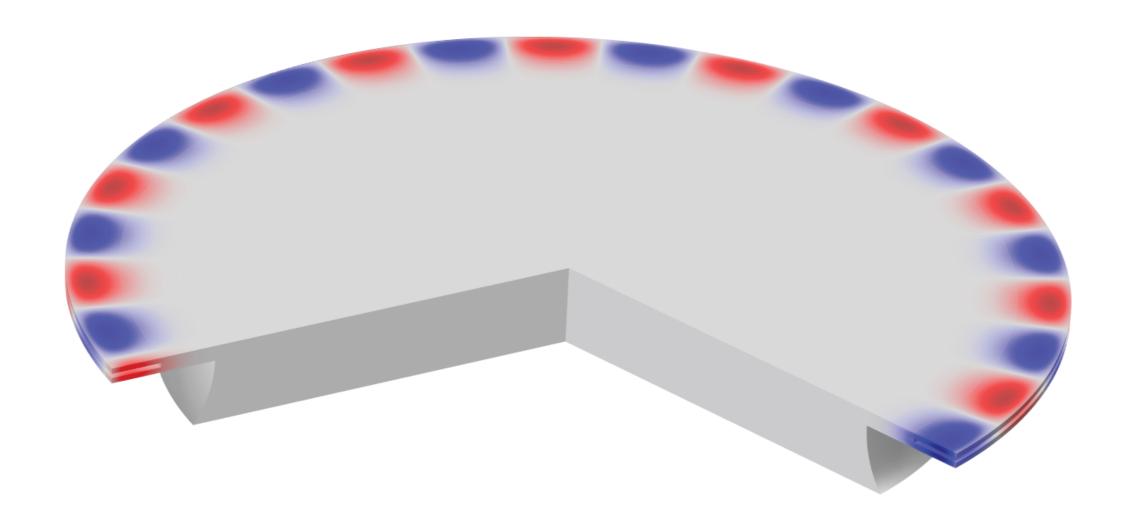


Relative RF Power (dB)

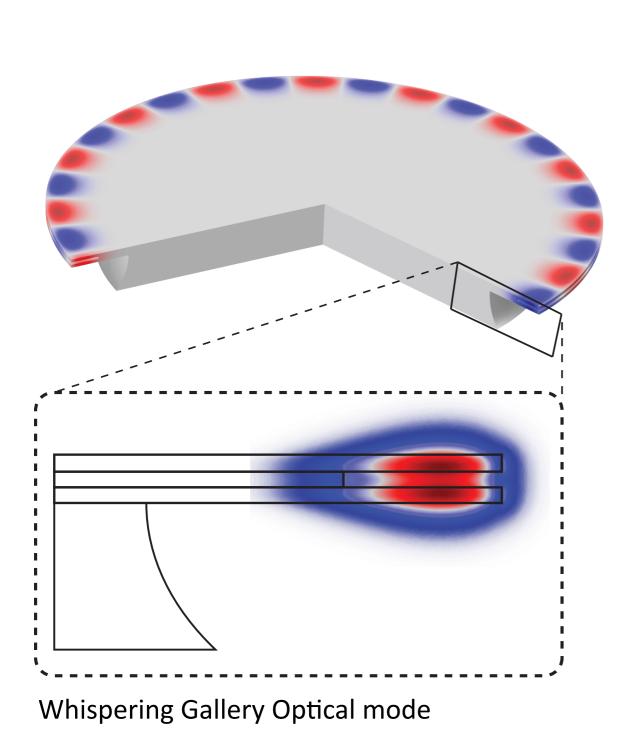
0 0.5 1.0 1.5 2.0 Frequency (GHz)



Double-disk Optomechanical Cavity

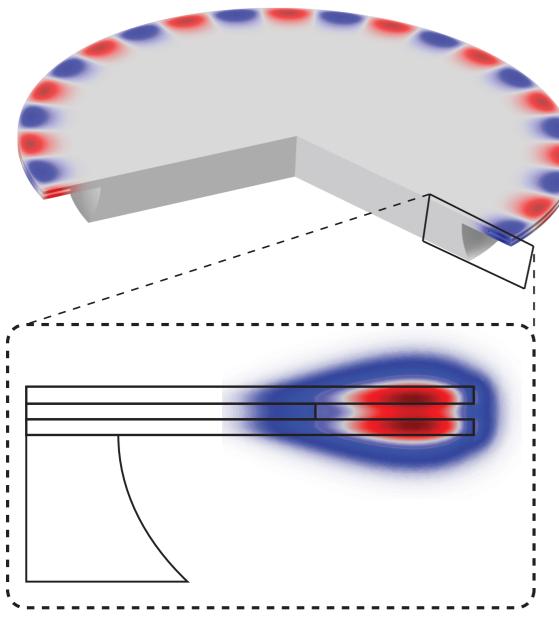


Single Optomechanical Cavity

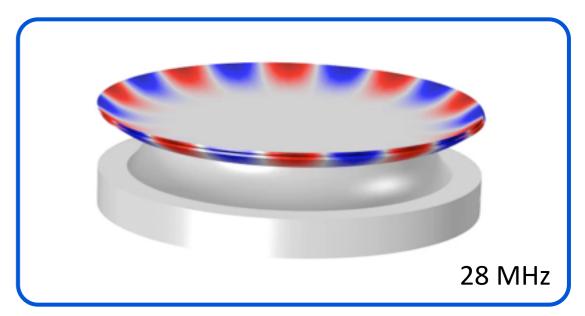


 u_b SiO₂ Si₃N₄ **Mechanical Modes** 200 MHz 50 MHz 28 MHz

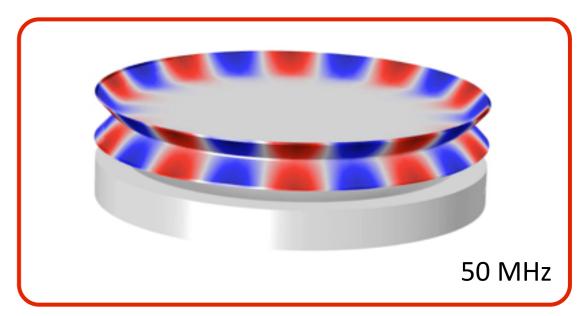
Double-disk Optomechanical Cavity



Whispering Gallery Optical mode

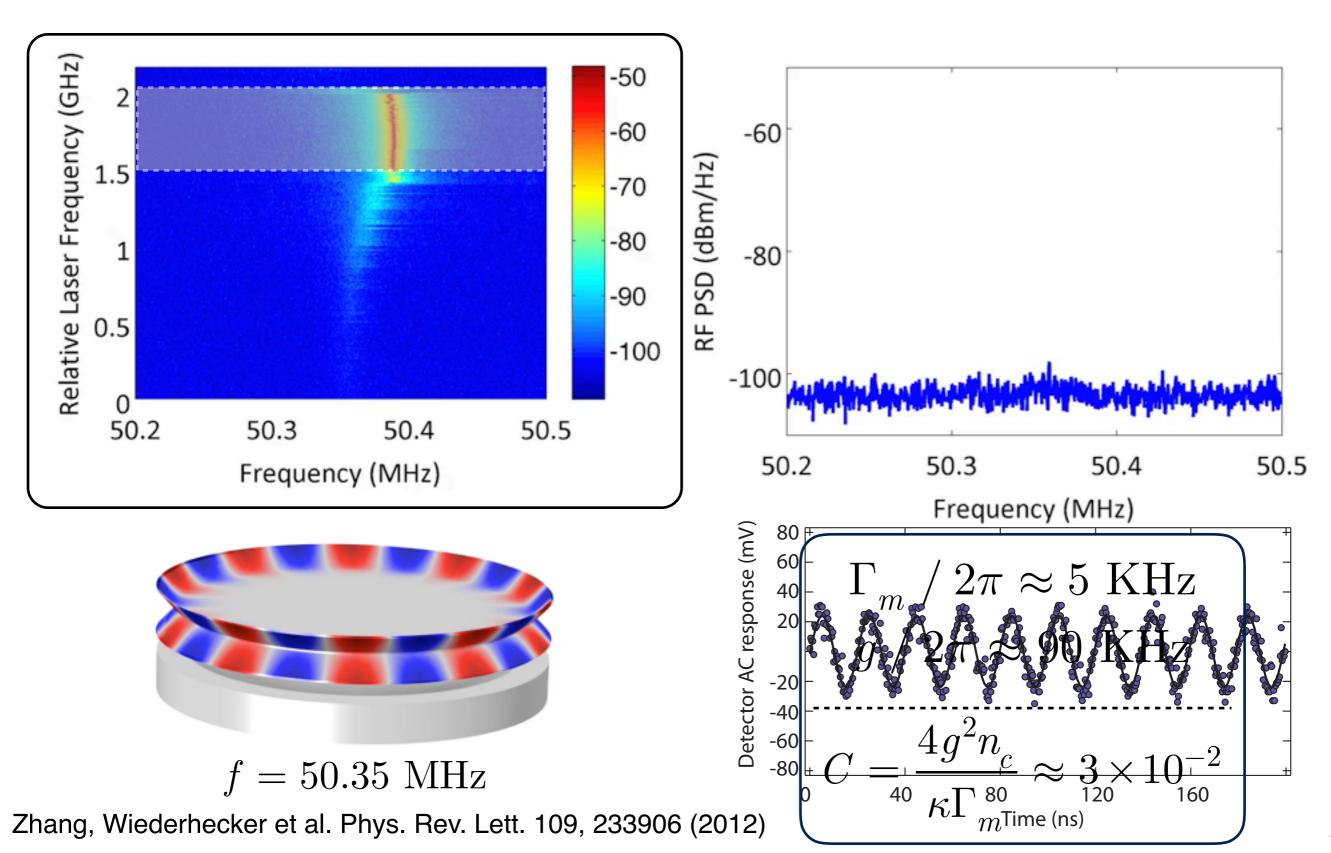


Symmetric mechanical mode

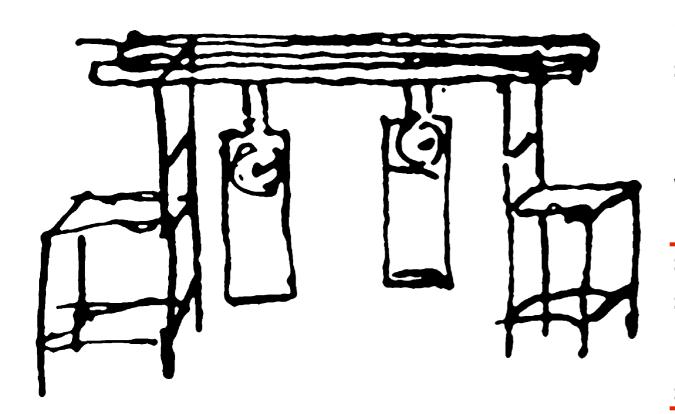


Anti-symmetric mechanical mode

Double-disk Limit cycle



Synchronization of Oscillators

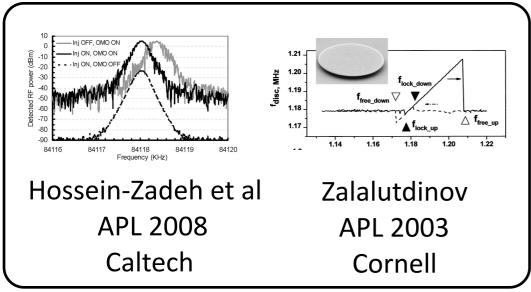


"It is quite worth noting that when we suspended two clocks so constructed from two hooks imbedded in the same wooden beam, the motions of each pendulum in opposite swings were so much in agreement that they never receded the least bit from each other and the sound of each was always heard simultaneously..."

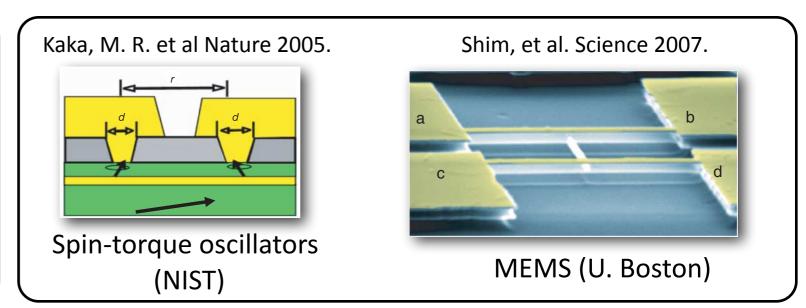
"Further, if this agreement was disturbed by some interference, it reestablished itself in a short time."

Christiaan Huygens, 26 February 1665.

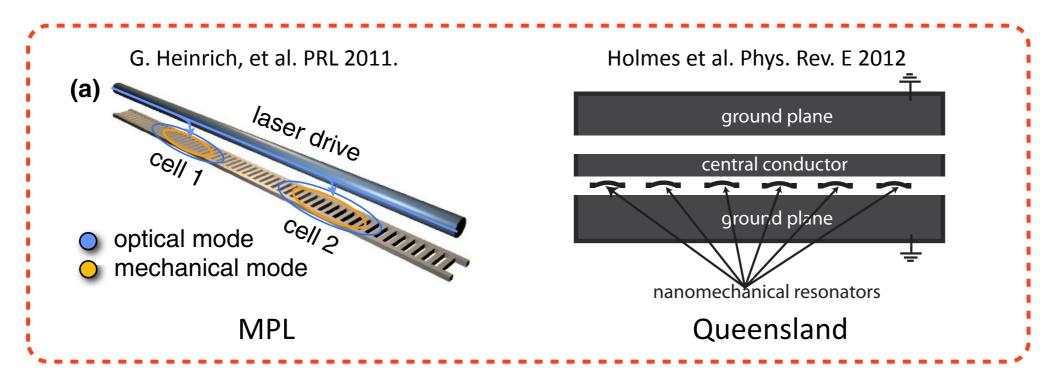
Synchronization at the nanoscale



Entrainment by external force

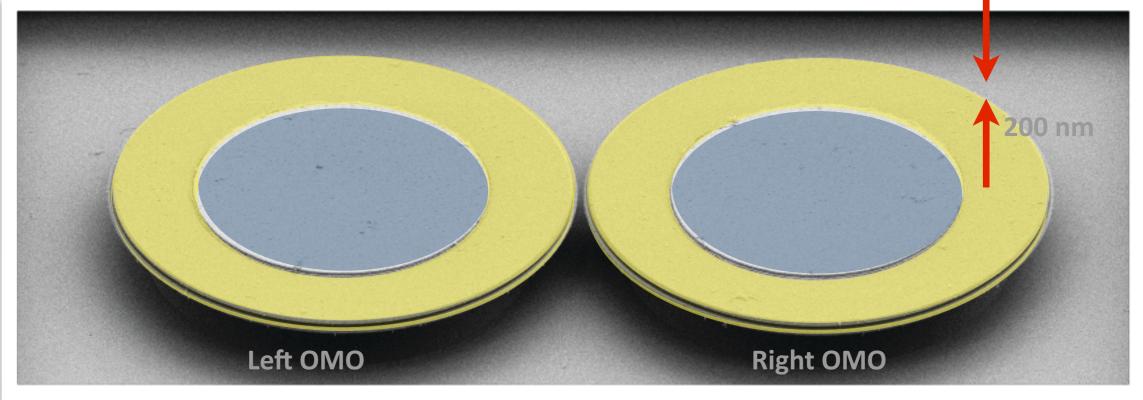


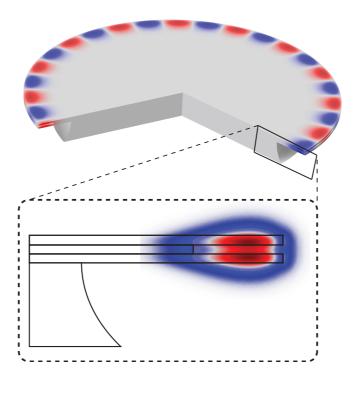
Mutual synchronization



Theory: Mutual synchronization with Nanomechanical oscillators

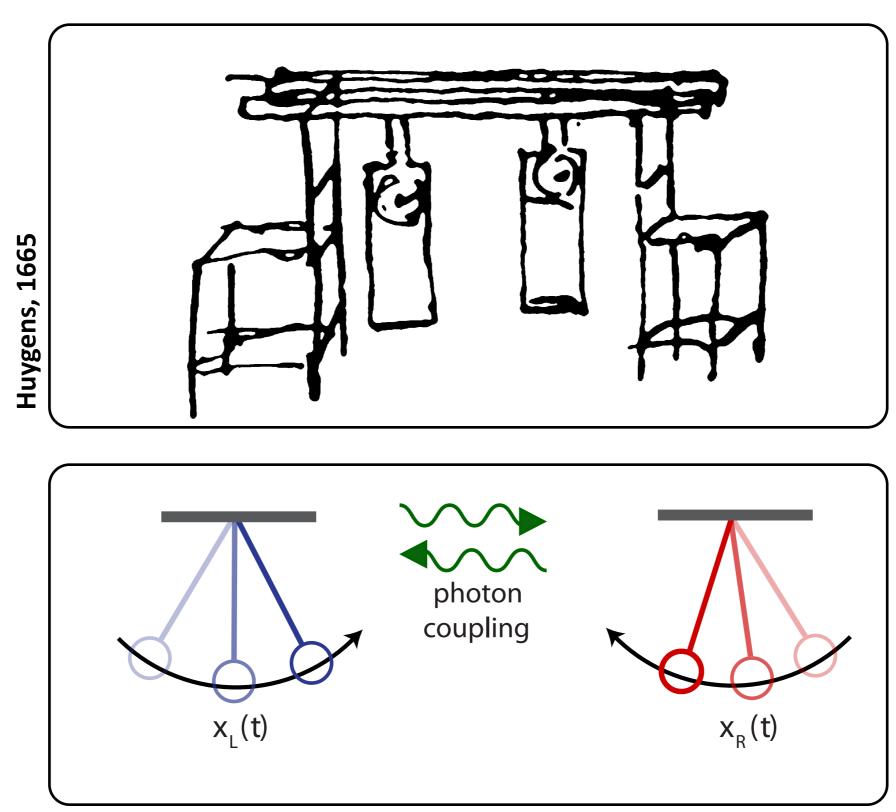
Coupled Optomechanical Oscillators



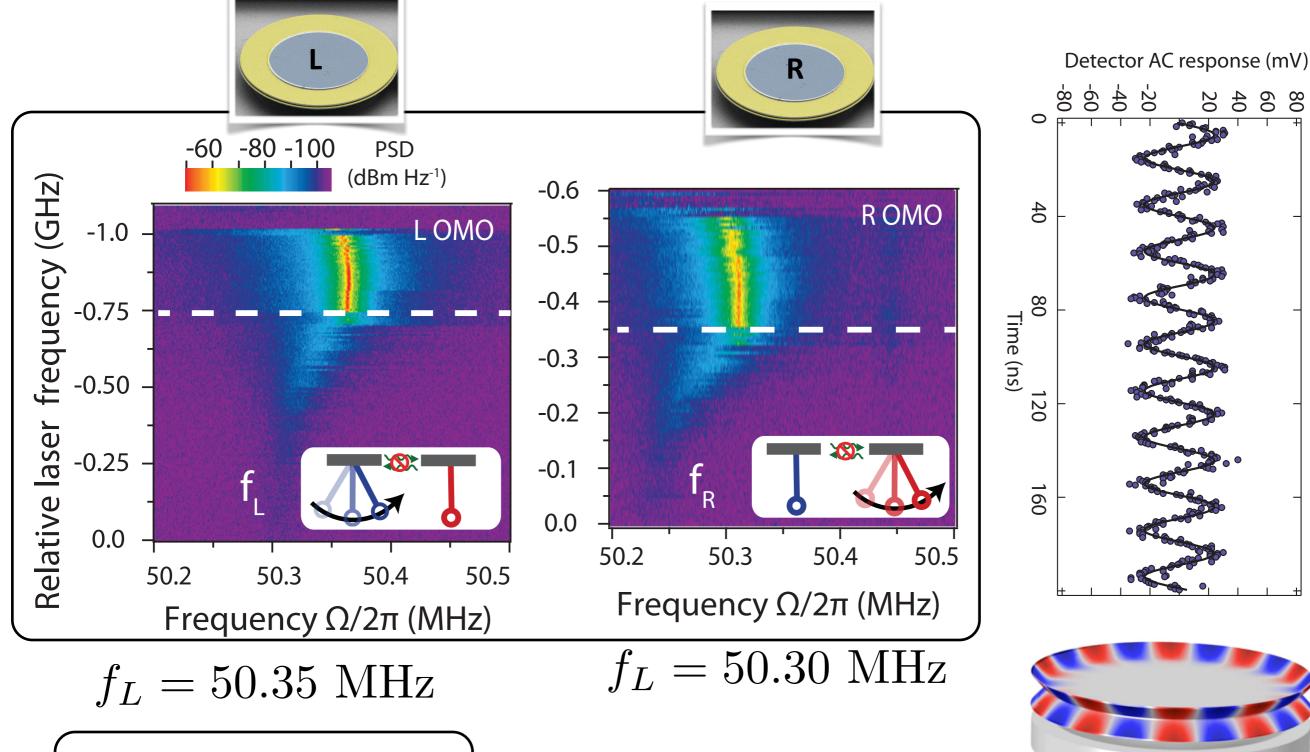


Zhang, Wiederhecker et al. Phys. Rev. Lett. 109, 233906 (2012)

Synchronization of Oscillators



Individual Optomechanical Oscillations

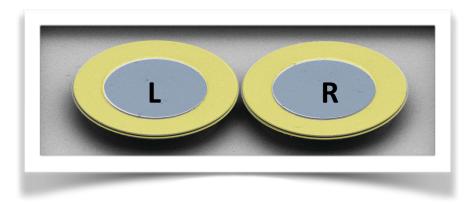


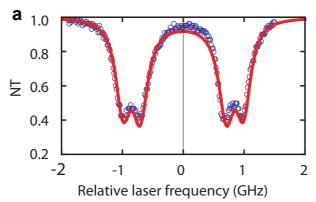
50 MHz mechanical mode

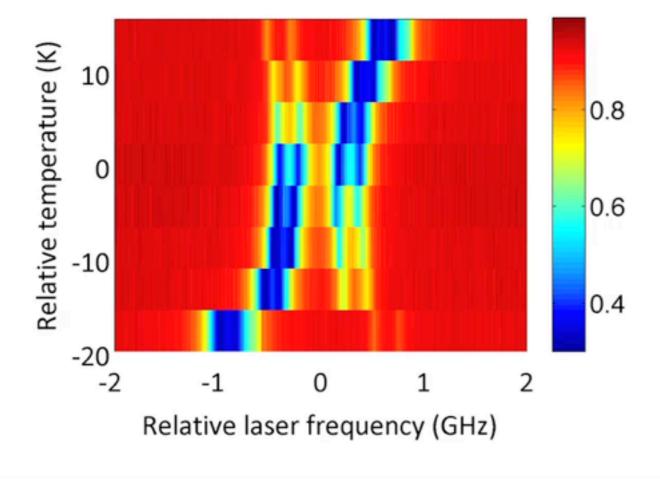
Zhang, Wiederhecker et al. Phys. Rev. Lett. 109, 233906 (2012)

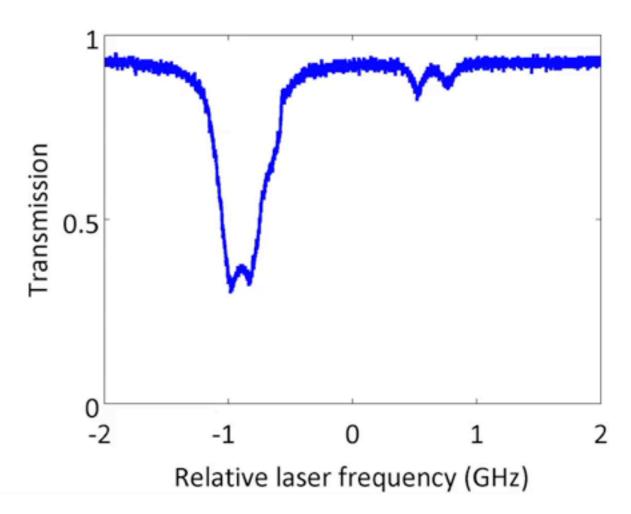
 $\delta f \approx 50 \text{ KHz}$

Tuning the Optical Coupling

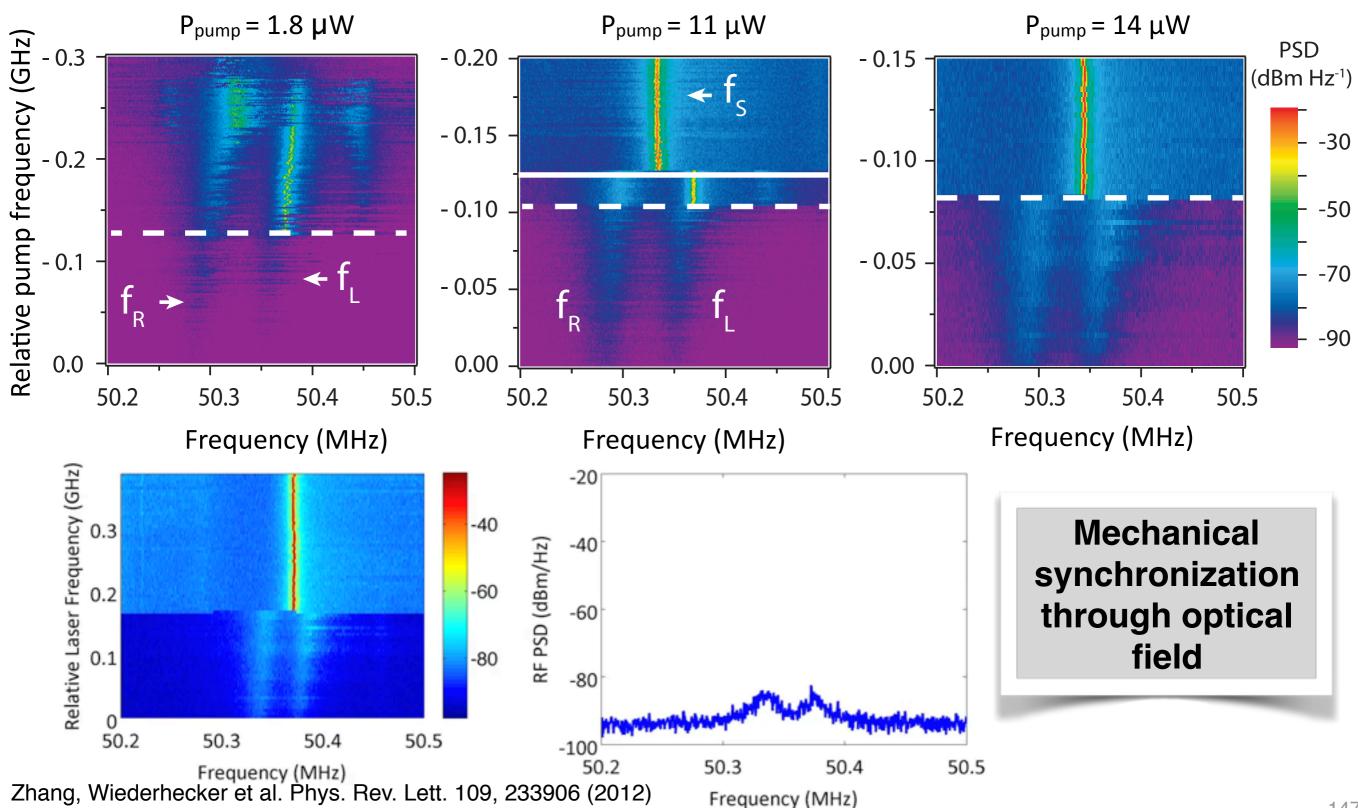




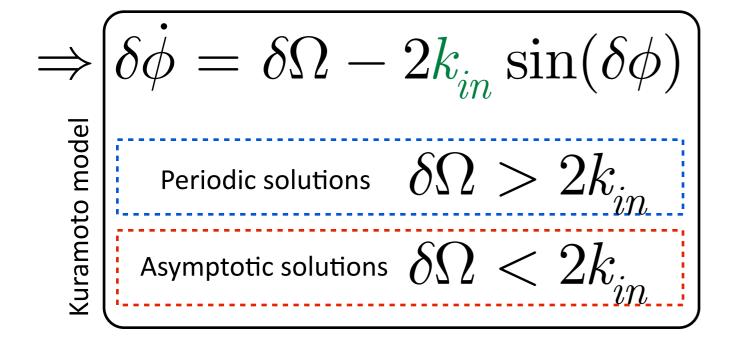


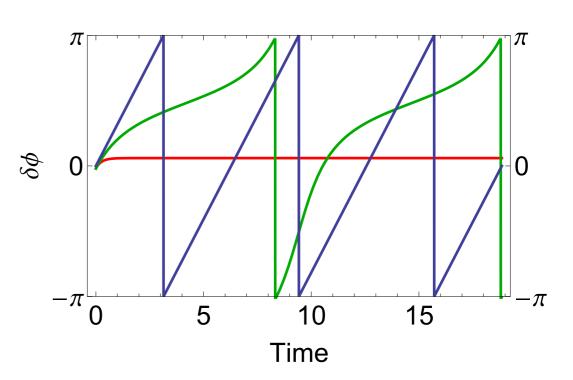


Synchronization



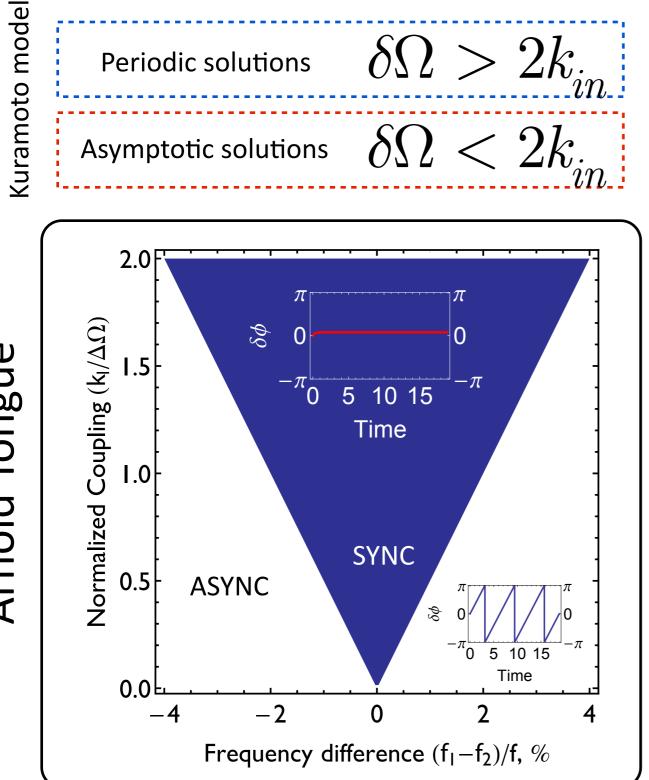
$$\ddot{x}_1 + \gamma(n_p, \Delta) \dot{x}_1 + \Omega^2(n_p, \Delta) x_1 = -k_{\rm in} x_2 + k_{\rm quad} \dot{x}_2$$
 Optiomechanical damping
$$\ddot{x}_2 + \gamma(n_p, \Delta) \dot{x}_2 + \Omega^2(n_p, \Delta) x_2 = -k_{\rm in} x_1 + k_{\rm quad} \dot{x}_1$$
 Optiomechanical damping Coptical Spring Linearized coupling





Arnold Tongue

Optically-induced mechanical coupling

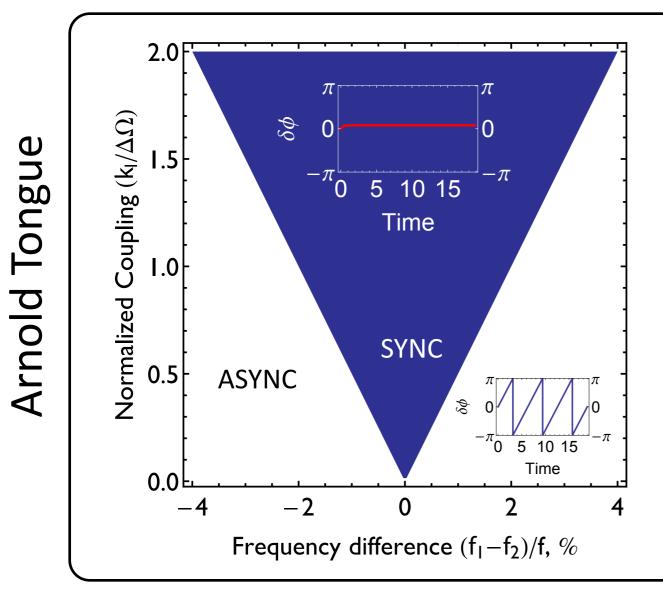


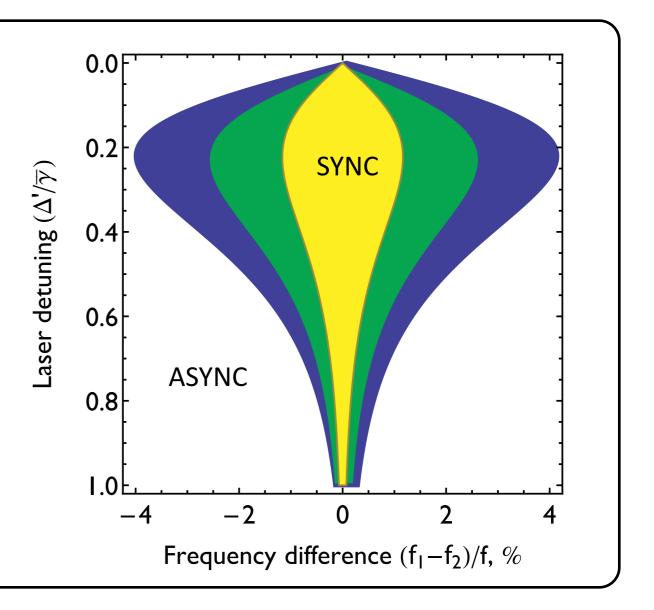
Kuramoto model $\frac{\delta\Omega>2k_{in}}{\delta\Omega<2k_{in}} \quad k_{in}$ Periodic solutions $\propto n_p \frac{1}{((\kappa/2)^2 + \Delta^2)^2}$ Asymptotic solutions 2.0 0.0 Normalized Coupling $(k_I/\Delta\Omega)$ $\phi \varphi$ 0.2 **Arnold Tongue SYNC** Laser detuning $(\Delta'/\overline{\gamma})$ 5 10 15 Time 0.4 1.0 0.6 **SYNC ASYNC** 0.5 **ASYNC** 8.0 5 10 15 Time 0.0 -2-2 0 0 2 Frequency difference $(f_1-f_2)/f$, % Frequency difference $(f_1-f_2)/f$, %

Kuramoto model $\frac{\delta\Omega>2k_{in}}{\delta\Omega<2k_{in}} \quad k_{in}$ Periodic solutions $\propto n_p \frac{1}{((\kappa / 2)^2 + \Delta^2)^2}$ Asymptotic solutions 2.0 0.0 Normalized Coupling $(k_I/\Delta\Omega)$ $\phi \varphi$ 0.2 **Arnold Tongue SYNC** Laser detuning $(\Delta'/\overline{\gamma})$ 5 10 15 Time 0.4 1.0 0.6 **SYNC ASYNC** 0.5 **ASYNC** 8.0 5 10 15 Time 0.0 -2-20 0 2 Frequency difference $(f_1-f_2)/f$, % Frequency difference $(f_1-f_2)/f$, %

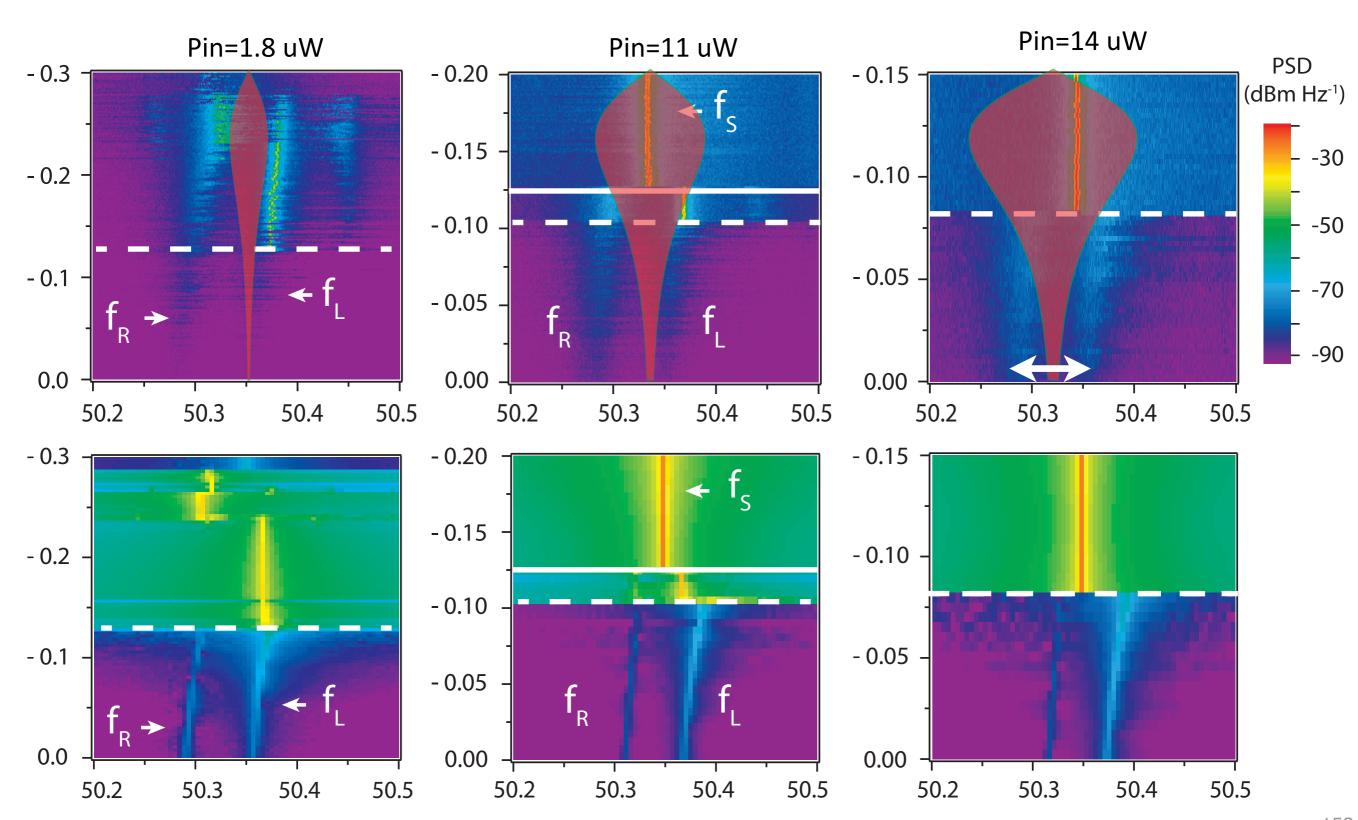
Kuramoto model $\begin{array}{ccc} \delta\Omega > 2k_{in} & k_{in} \\ \delta\Omega < 2k_{in} & \end{array}$ Periodic solutions Asymptotic solutions

 $\propto n_p \frac{1}{((\kappa / 2)^2 + \Delta^2)^2}$

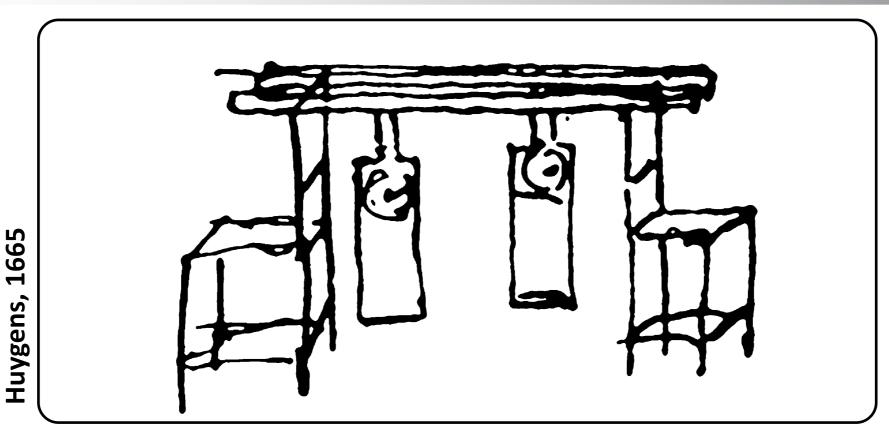


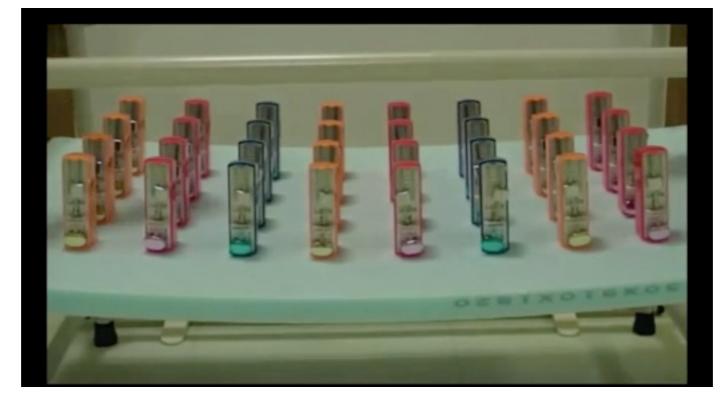


Synchronization

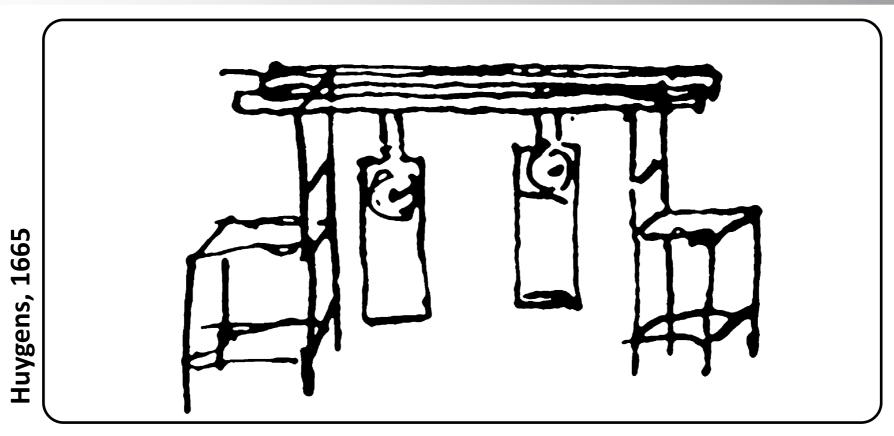


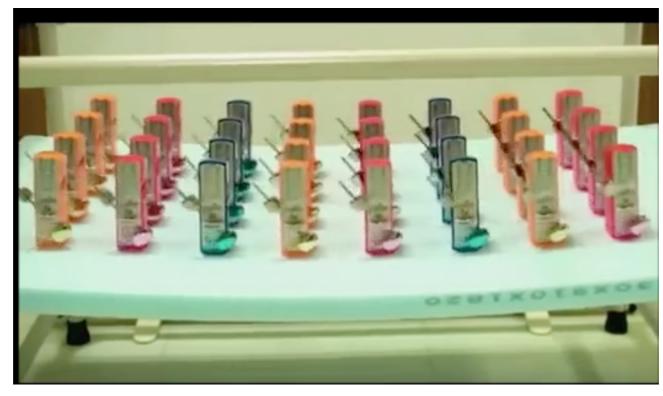
Synchronization of Oscillators



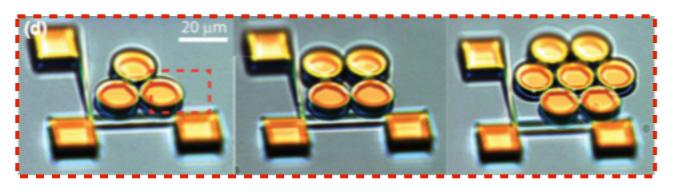


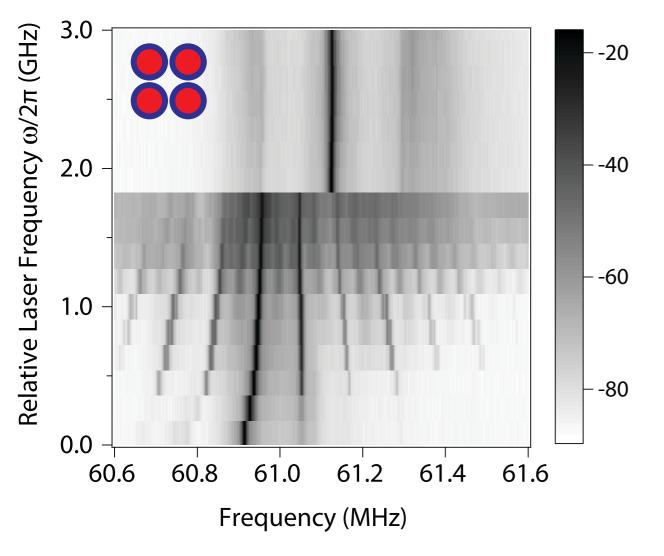
Synchronization of Oscillators

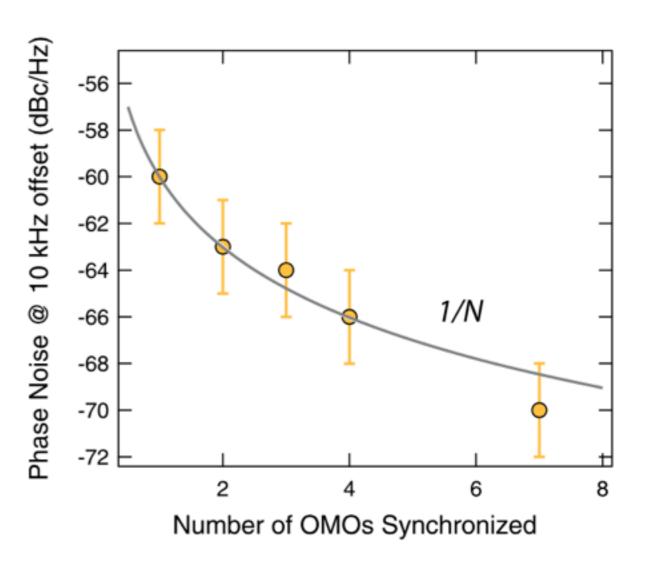




Array Synchronization

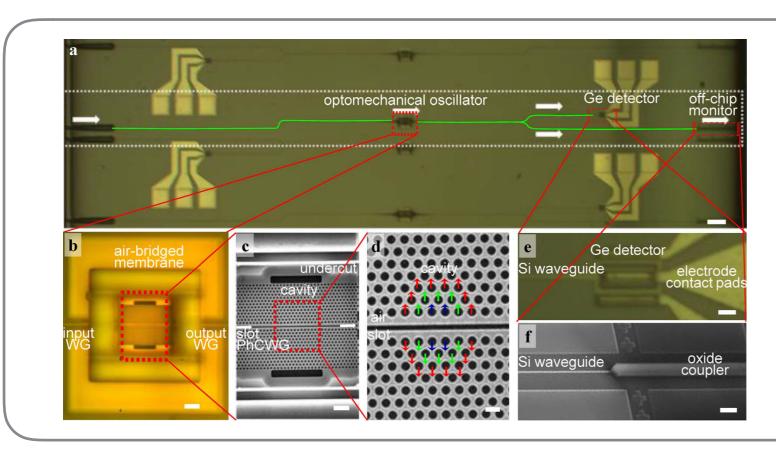






Zhang, M., et al (2015). PRL, 115(16), 163902. Vahala, K. J. (2008). Physical Review A, 78(2), 023832.

Technological viewpoint: Si Nanophotonics Building Blocks

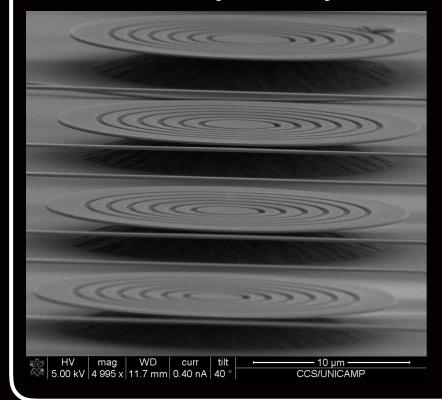


Integrated optomechanical oscillator chipset

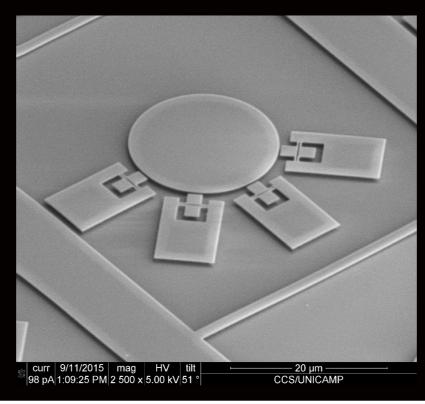
Chee Wei Wong et. al SCIENTIFIC REPORTS 4 : 6842 (2014)

Candidates for OM arrays

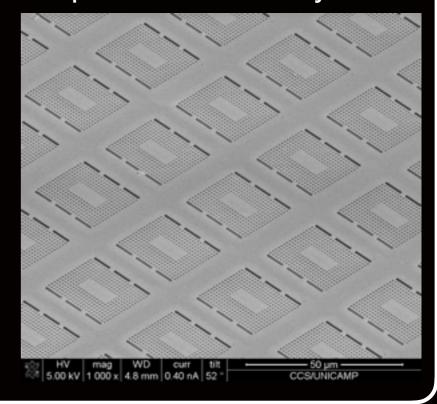
Bulls' eye cavity



Paddle resonators



Optomechanical crystals

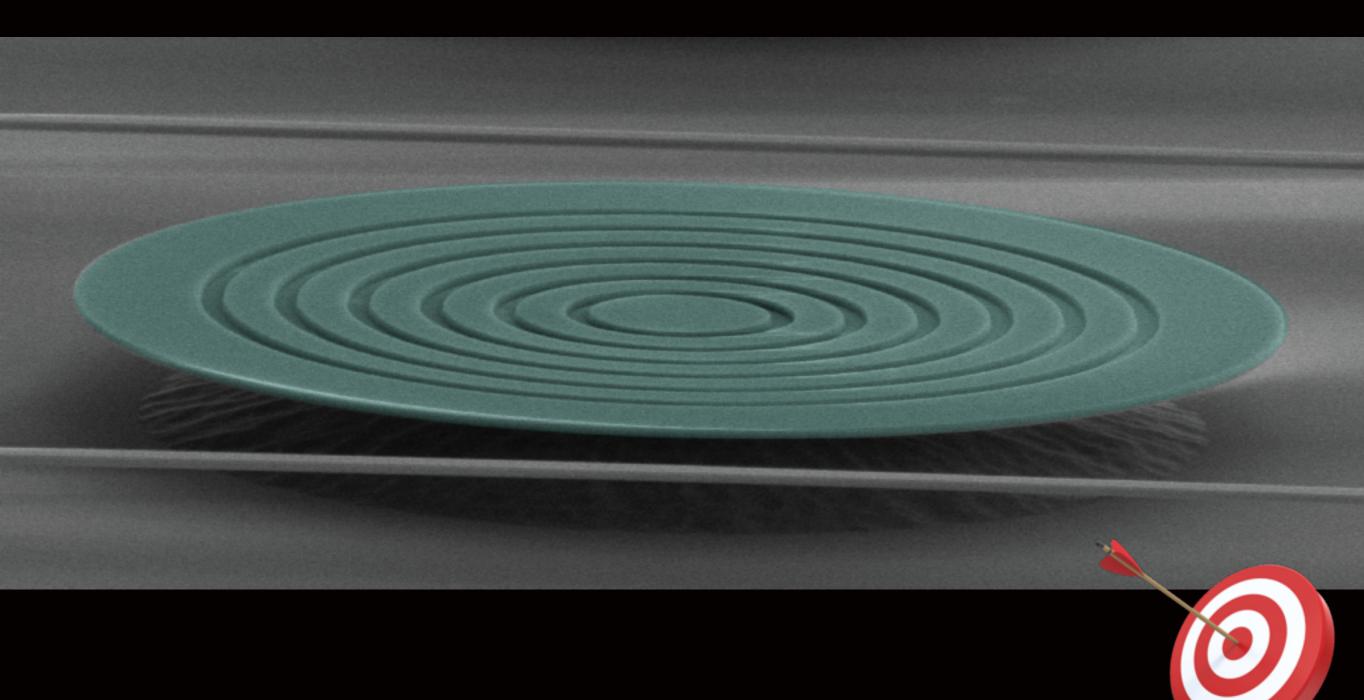


Benevides, et al. CLEO 2016 Luiz, et al CLEO 2106 Santos, F. G., et al. arXiv:1605.06318

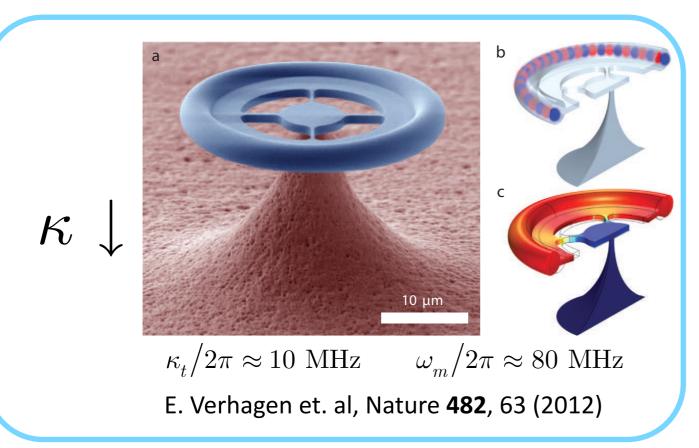
Outline

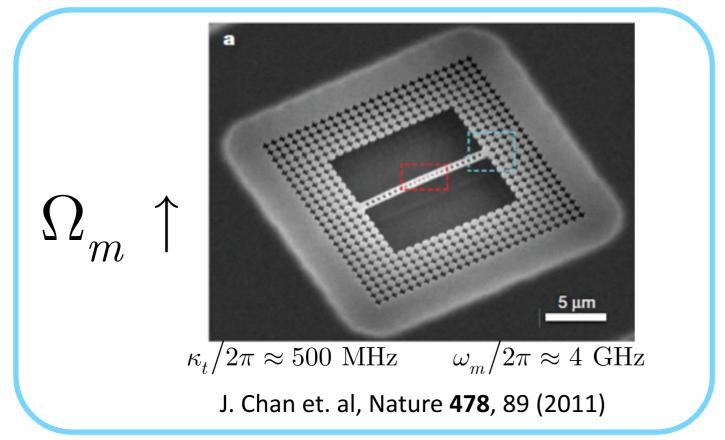
- ⋆ Optical and acoustic mode interaction
- ⋆ Optical force actuation
- ⋆ Dynamical back-action
- ⋆ Optomechanical clocks
- ⋆ Bullseye a case study
- ⋆ Outlook

Bullseye

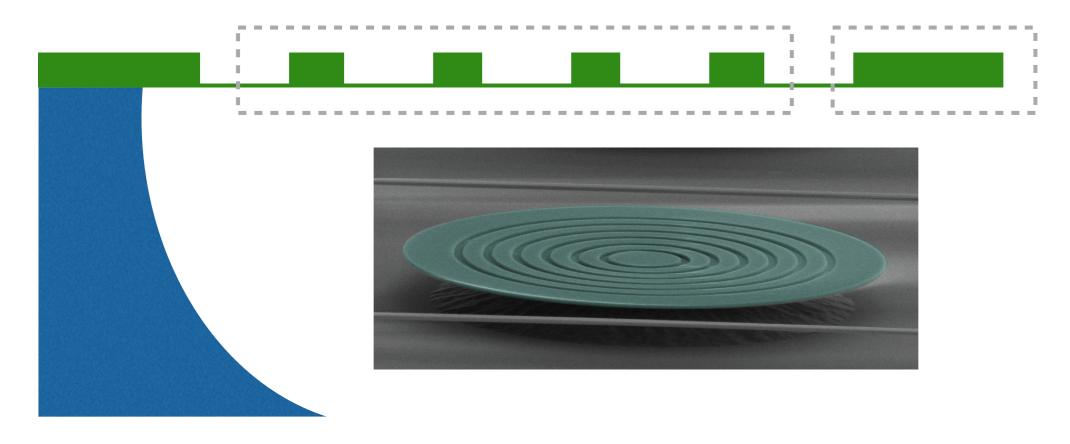


A new system for cavity optomechanics

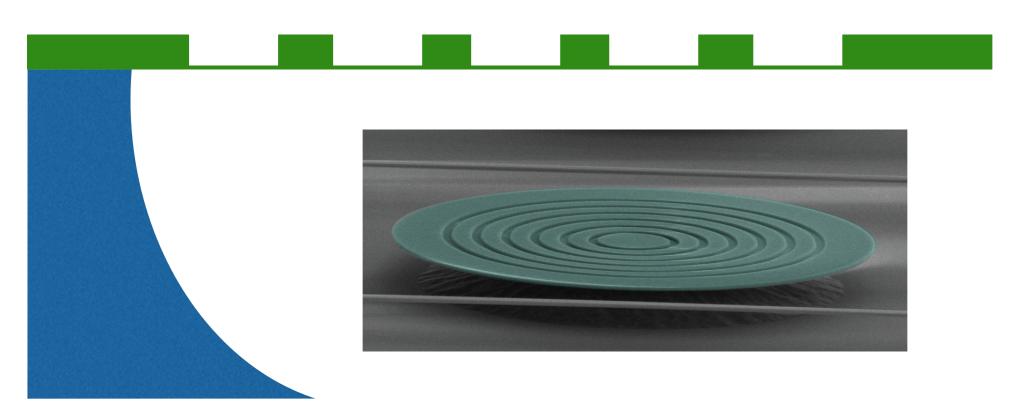




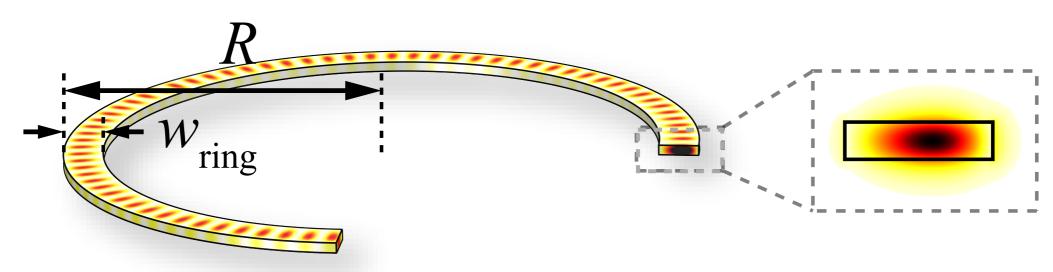
Optical Design



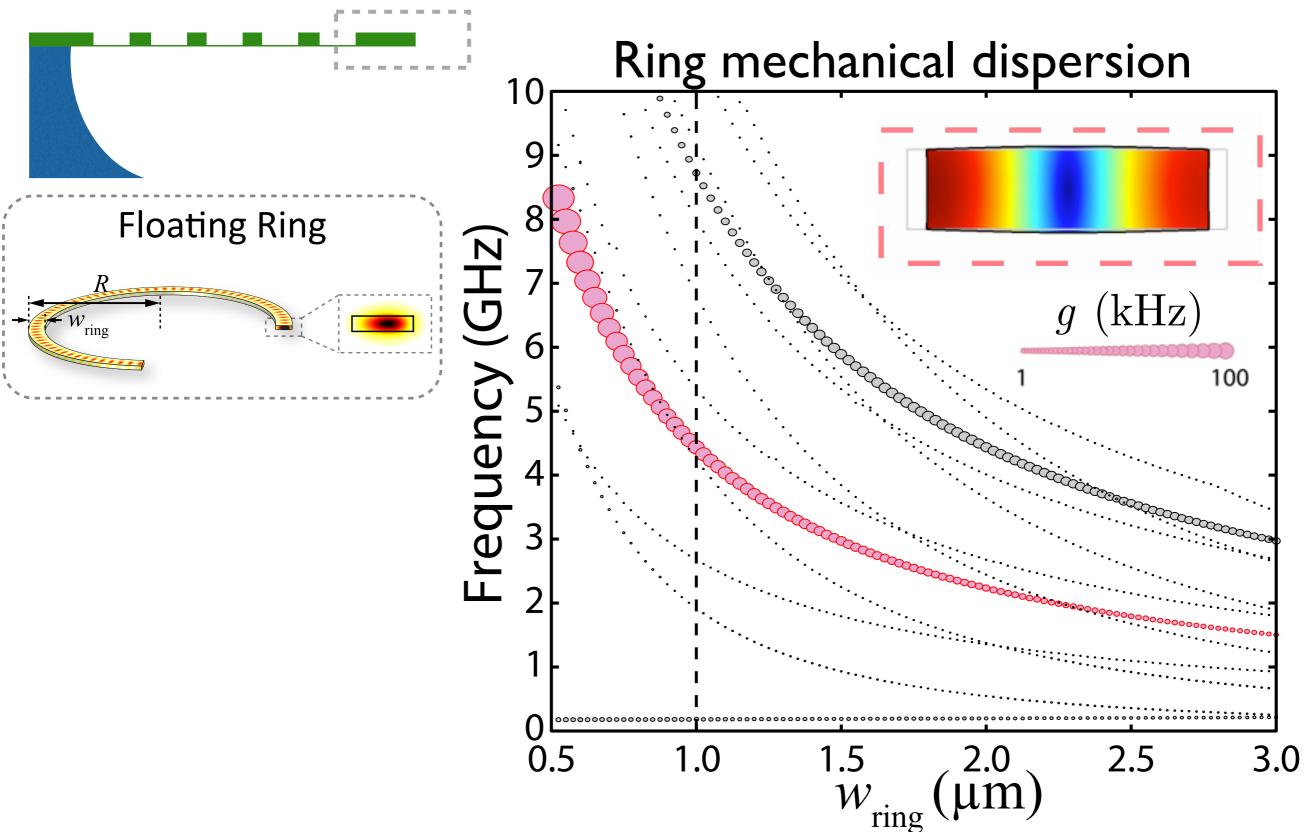
Optical Design



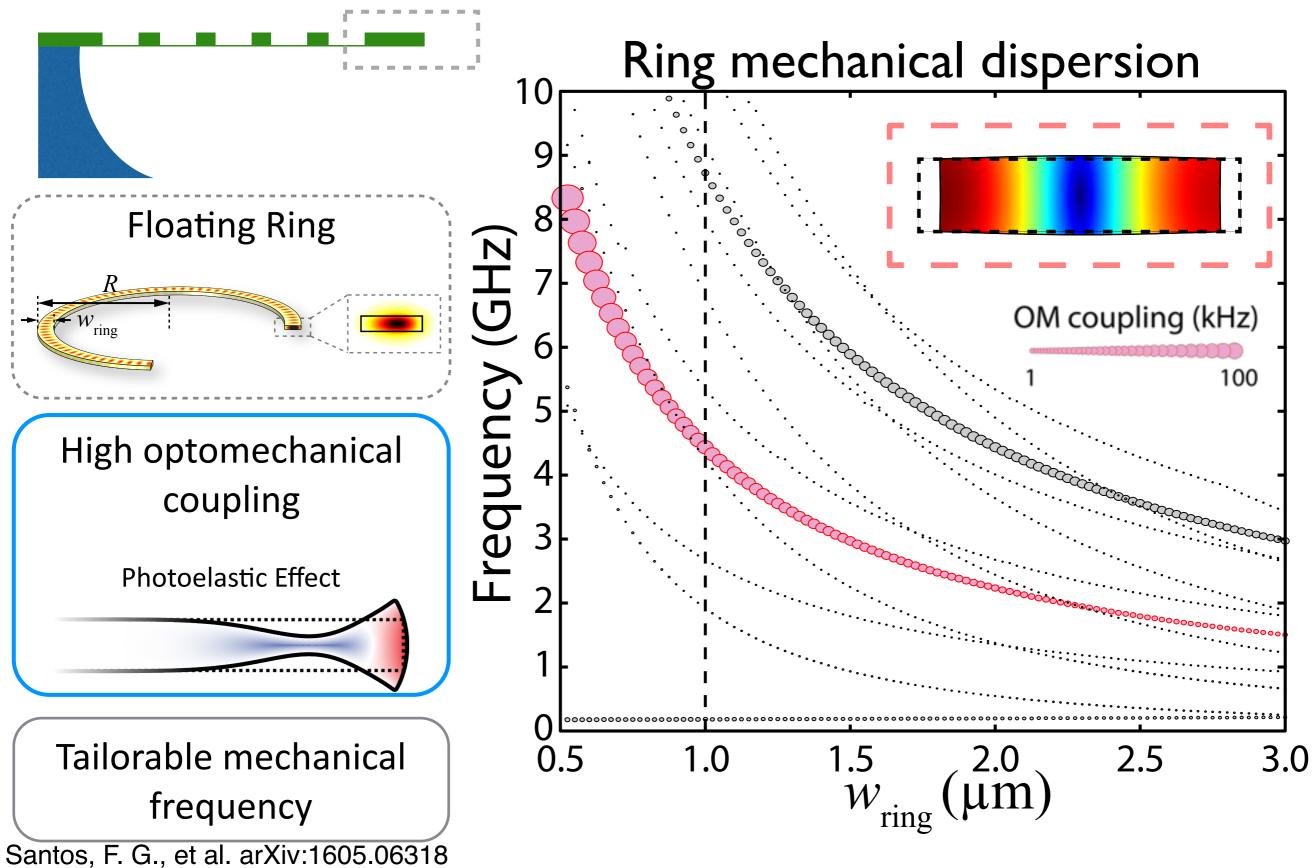
Floating ring resonator

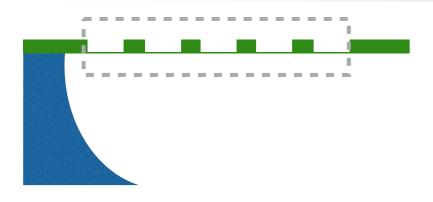


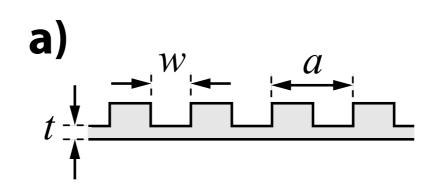
Mechanical Design

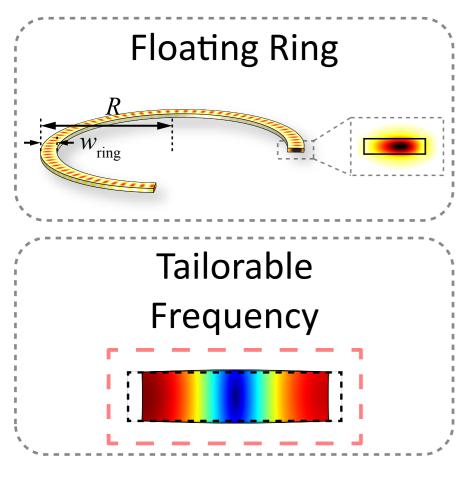


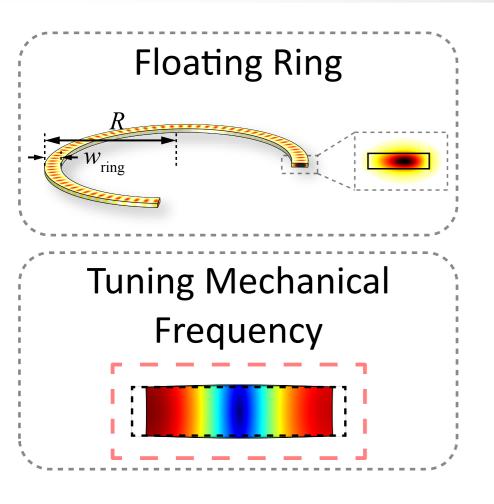
Mechanical Design

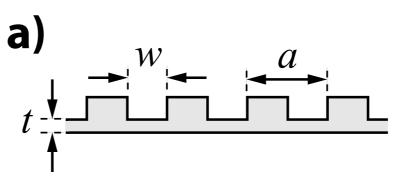


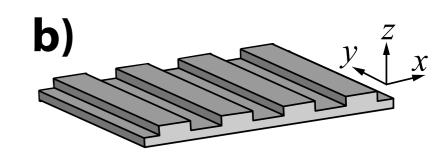


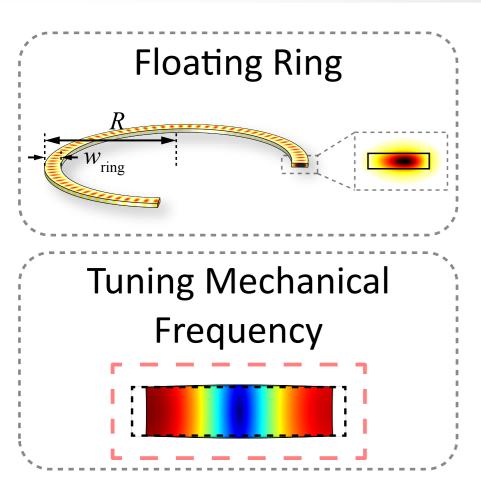


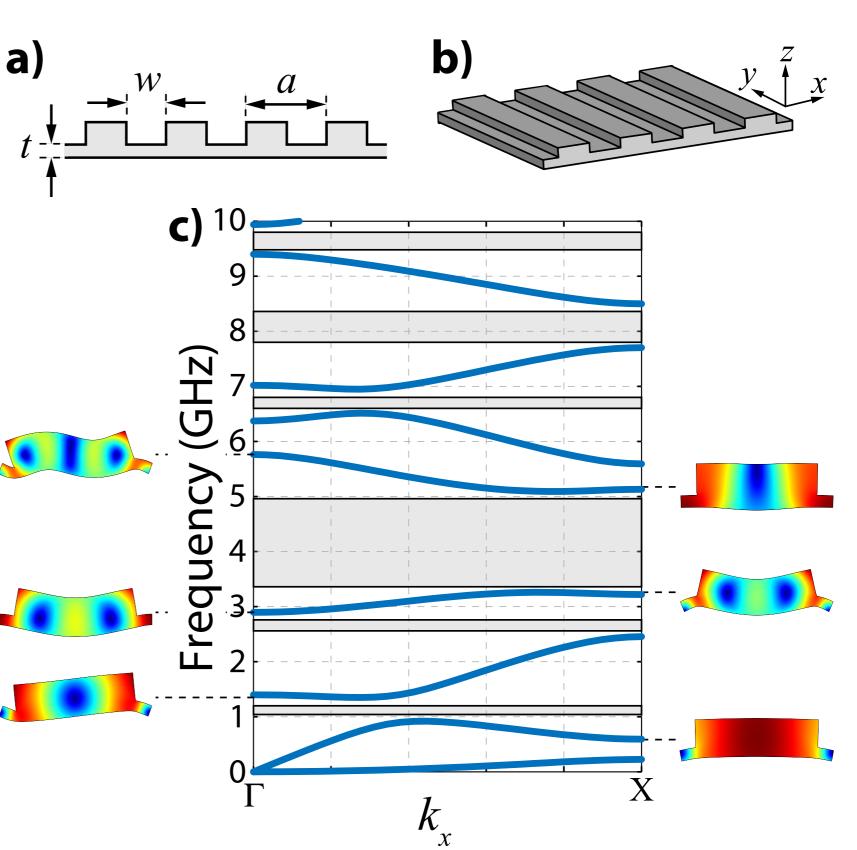


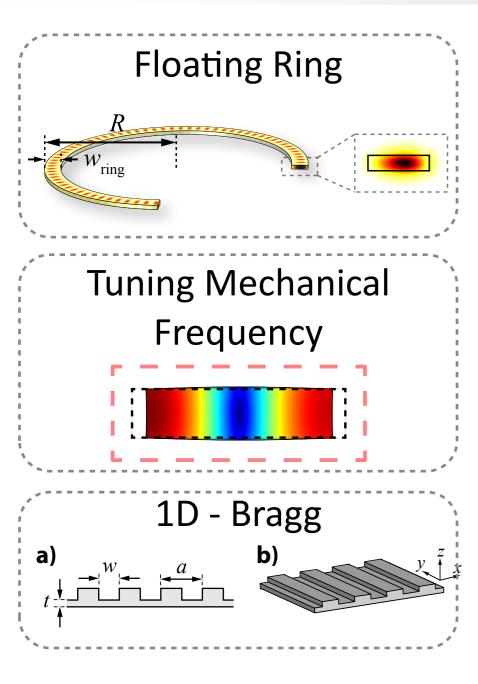


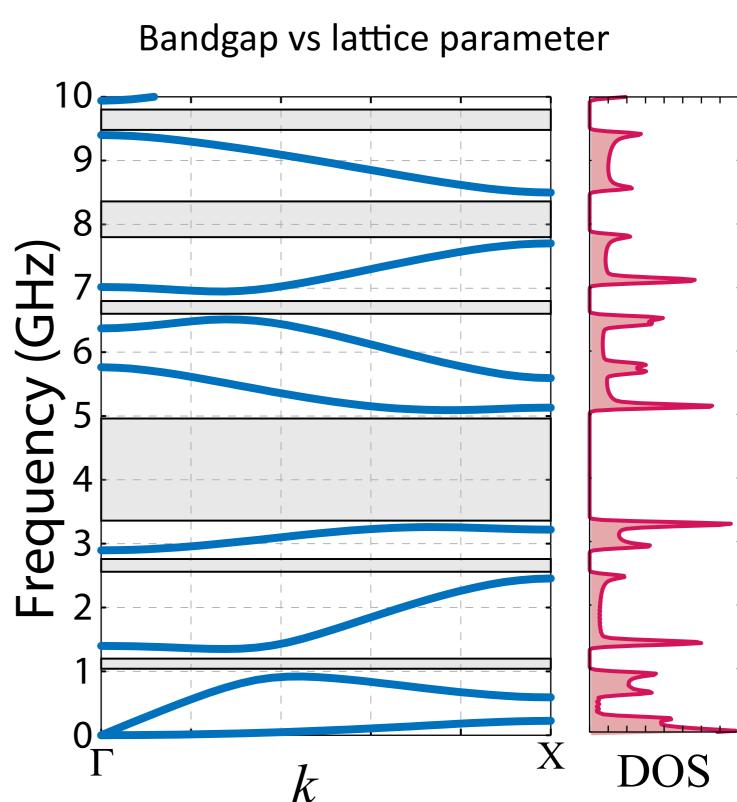




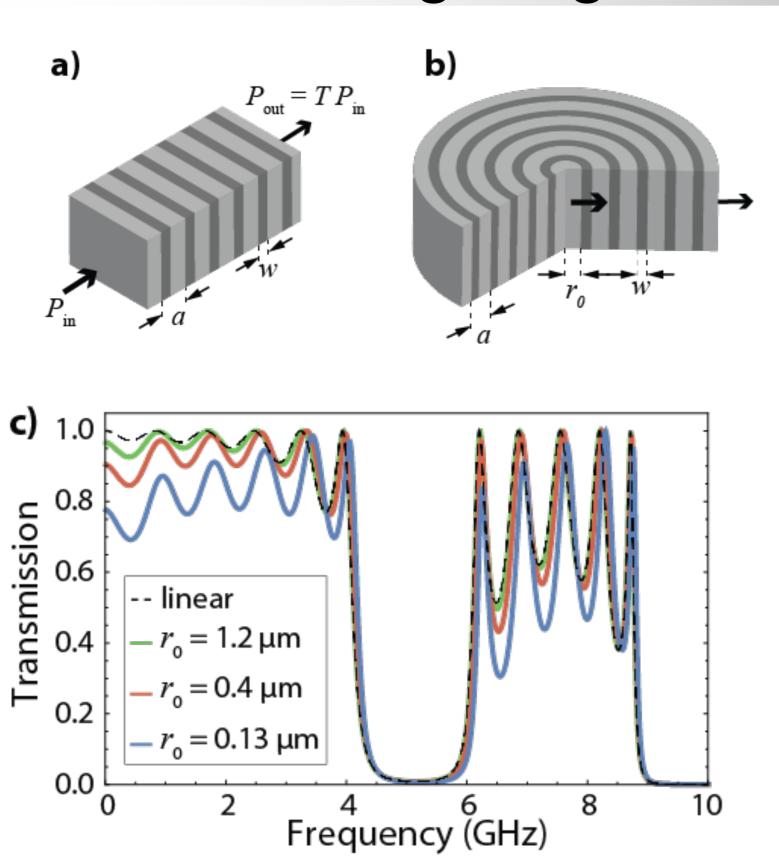


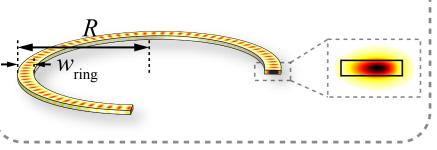




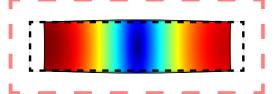


Acoustic linear grating?

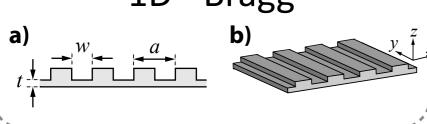




Tuning Mechanical Frequency



1D - Bragg

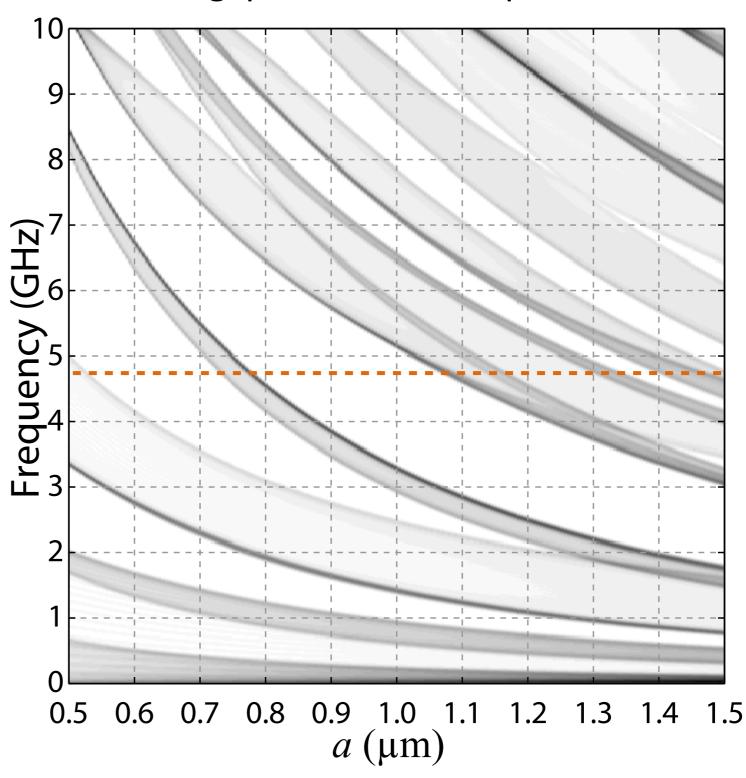


$$v_{\rm ac} = 9600 \text{ m/s}$$

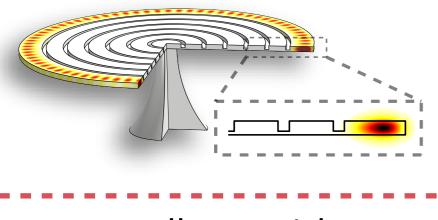
 $w_{\rm ring} = 1 \,\mu\text{m}$

$$f_{\rm ac} = \frac{v_{\rm ac}}{2w_{\rm ring}} \approx 4.8 \text{ GHz}$$

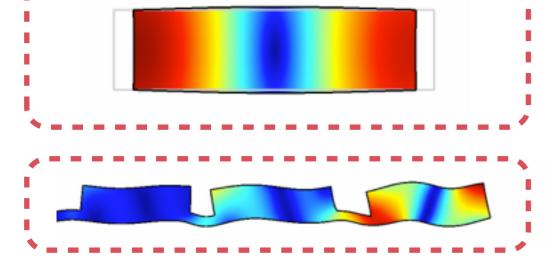
Bandgap DOS vs lattice parameter



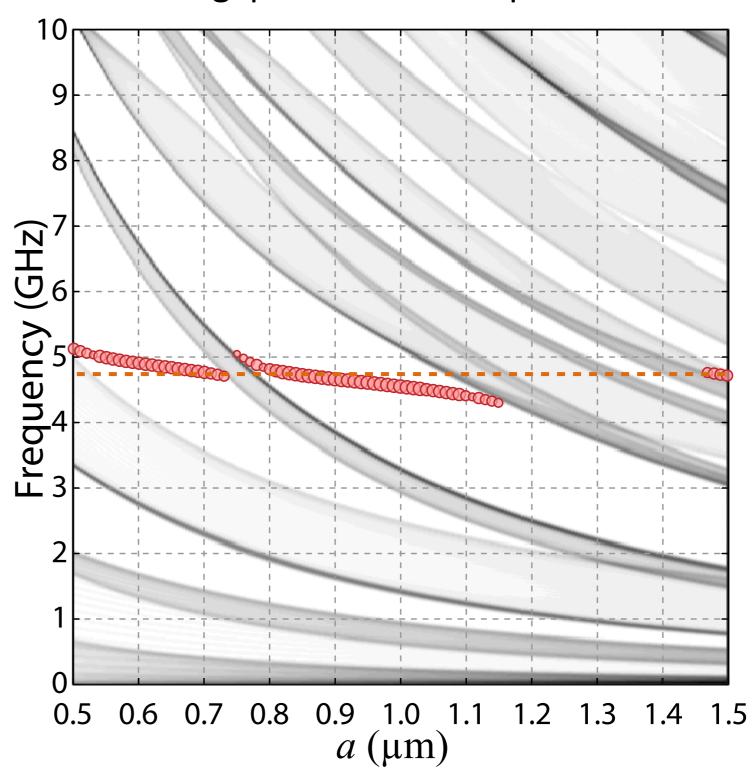
Bullseye Disk



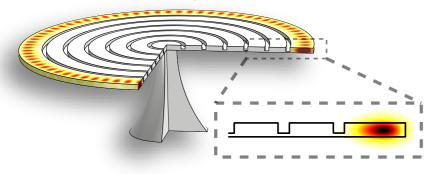
Bullseye Disk

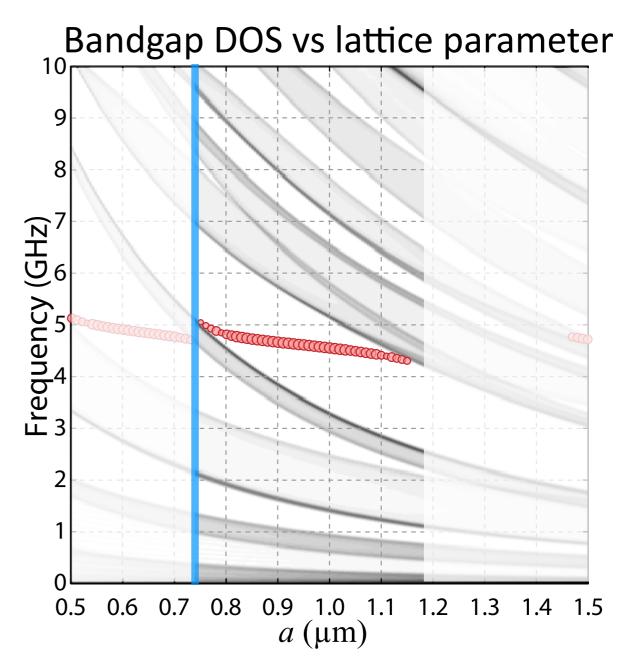


Bandgap DOS vs lattice parameter

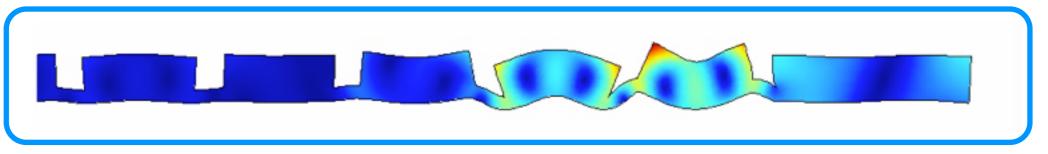


Bullseye Disk





Simulated mode profile

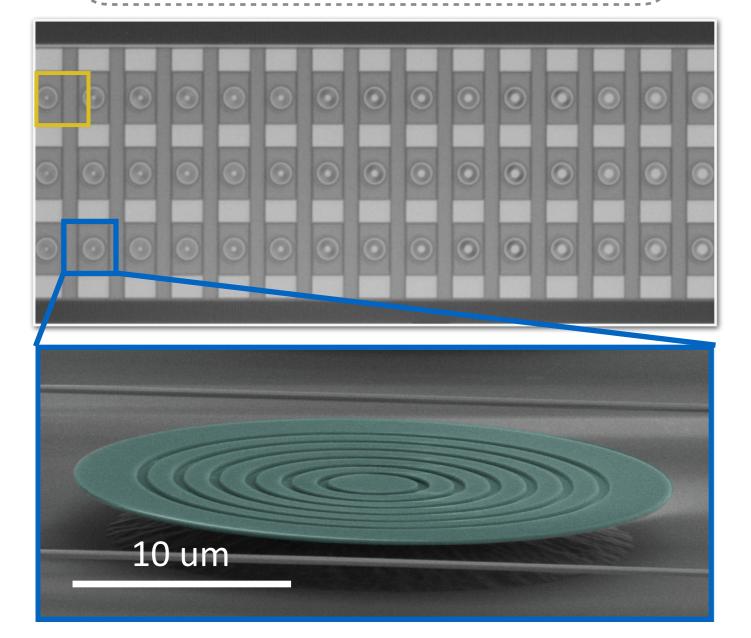


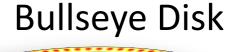
Bullseye fab: foundry based

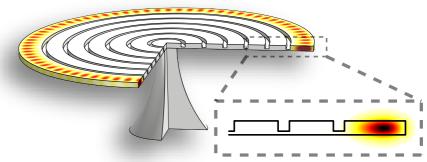
Integrated and scalable production

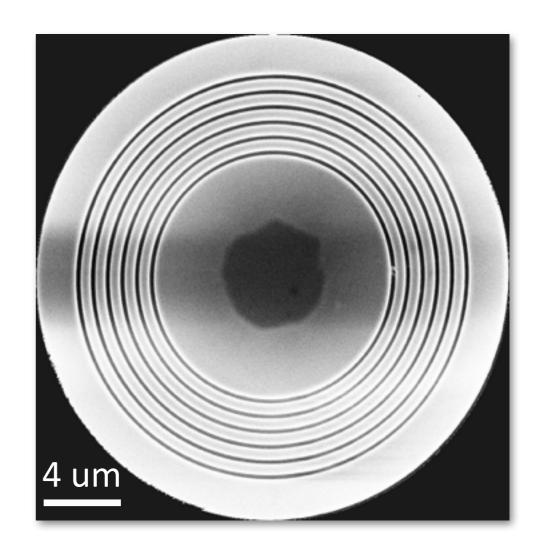
EUROPRACTICE

Passive SiPhotonics imec-ePIXfab

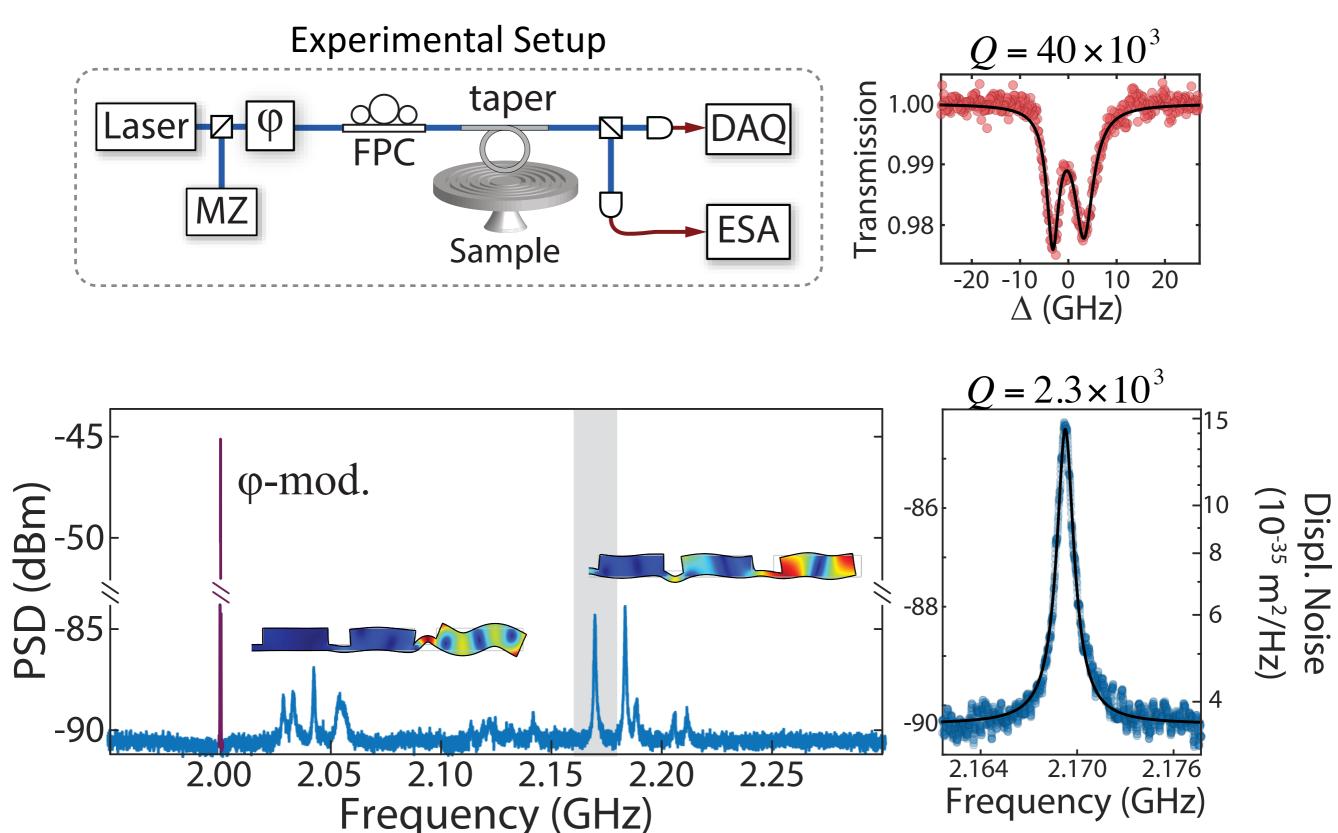






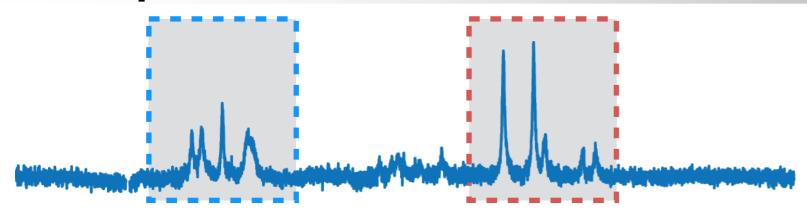


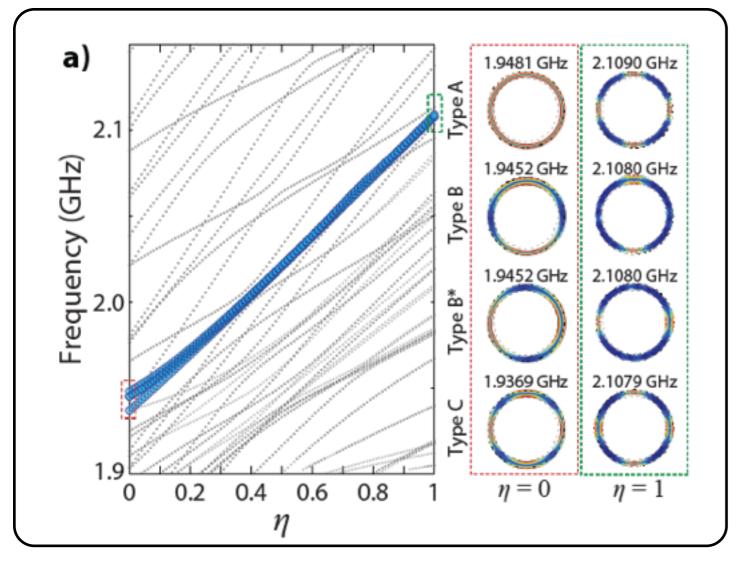
Mechanical mode testing



Santos, F. G., et al. arXiv:1605.06318

Multi-peak structure

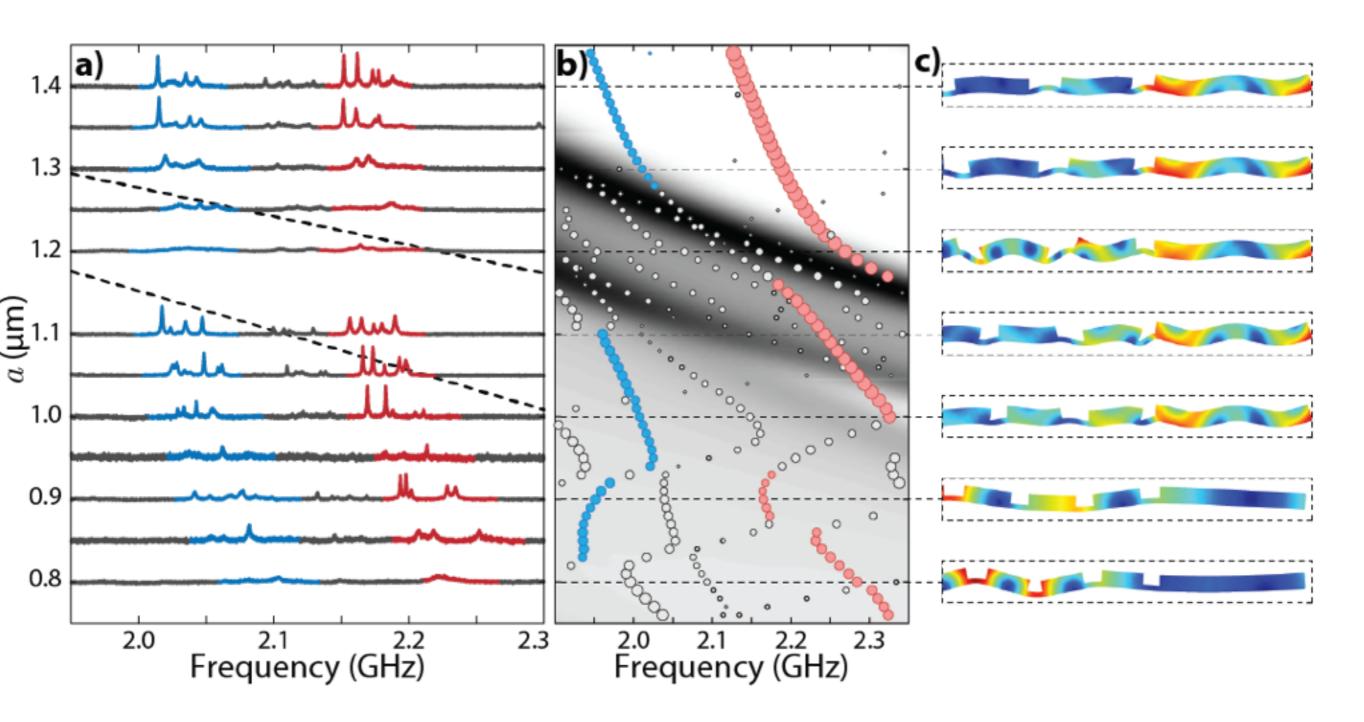




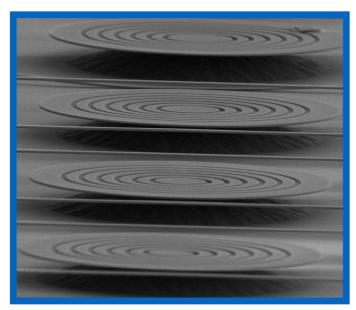
Si Anisotropy

Santos, F. G., et al. arXiv:1605.06318

Mechanical mode testing



Perspective on Bull's eye arrays



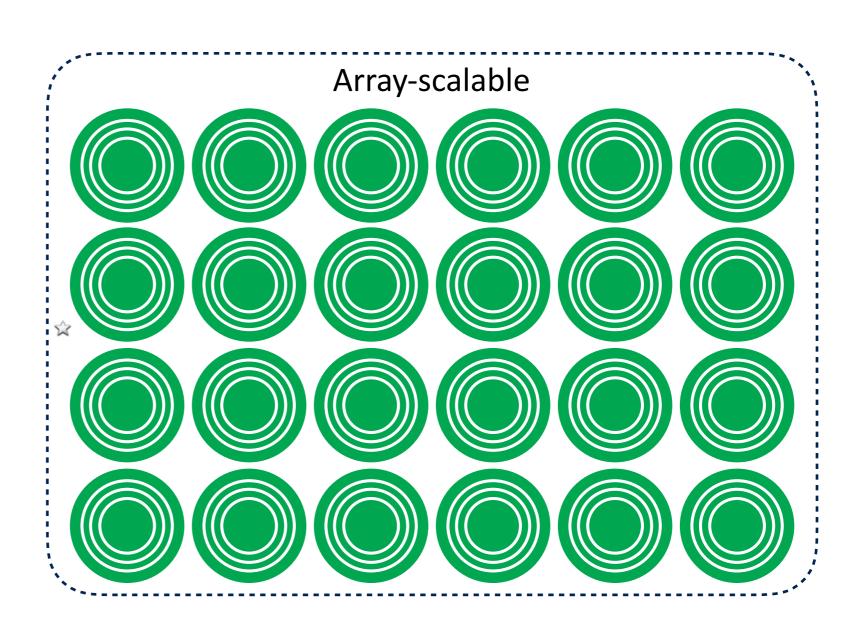
Foundry based sample

Independent confinement control

Mechanical: radial gratting

Optical: total internal reflection

- ☆ Array-scalable
- Design flexible to different materials



Outlook

Florian Marquardt, 2014

Outlook

Linear Optomechanics

- Displacement detection
- Optical Spring
- Cooling & Amplification
- Two-tone drive: "Optomechanically induced transparency"
- Ground state cooling
- State transfer, pulsed operation
- Wavelength conversion
- Radiation Pressure Shot Noise
- Squeezing of Light
- Squeezing of Mechanics
- Light-Mechanics Entanglement
- Accelerometers
- Single-quadrature detection, Wigner density
- Optomechanics with an active medium
- Measure gravity or other small forces
- Mechanics-Mechanics entanglement
- Pulsed measurement
- Quantum Feedback
- Rotational Optomechanics

Multimode

- Mechanical information processing
- Bandstructure in arrays
- Synchronization/patterns in arrays
- Transport & pulses in arrays

Nonlinear Optomechanics

- Self-induced mechanical oscillations
- Attractor diagram?
- Synchronization of oscillations
- Chaos

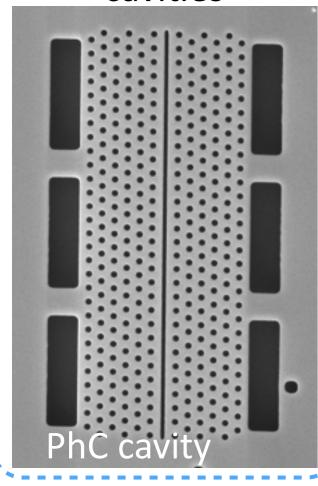
O White: yet unknown challenges/goals

Nonlinear Quantum Optomechanics

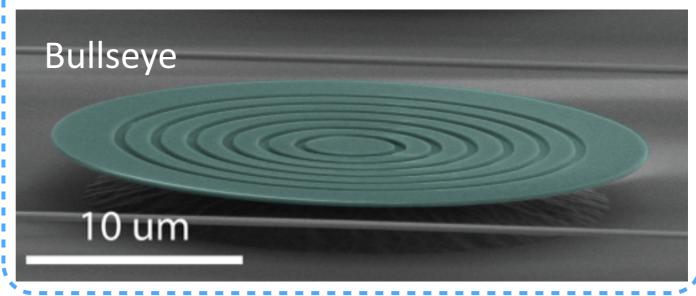
- QND Phonon number detection
- Phonon shot noise
- Photon blockade
- Optomechanical "which-way" experiment
- Nonclassical mechanical q. states
- Nonlinear OMIT
- Noncl. via Conditional Detection
- Single-photon sources
- Coupling to other two-level systems
- Optomechanical Matter-Wave Interferometry

Outlook

High Q crystal cavities

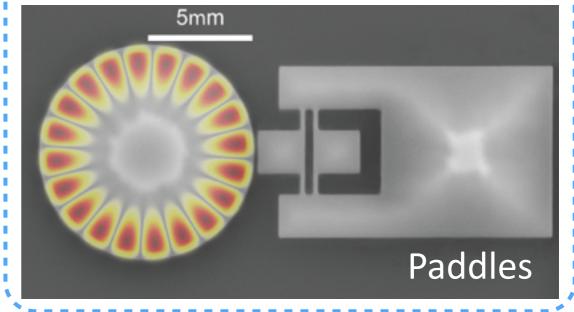


Large optomechanical coupling on disk-like structure



Third harmonic generation & Frequency combs

Suppression of mechanical radiation loss



Students

Felipe Santos

Rodrigo Benevides

Yovanny Espinel

Débora Princepe

Gustavo Luiz

Mário Machado

Lais Fujii

Guilherme Rezende

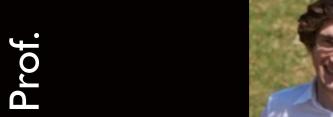
Jorge Henrique

Carlos Gois

Staf

Antônio Von Zuben

Celso Ramos



Thiago Alegre

Newton Frateschi

Gustavo Wiederhecker

