http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ
Routa, Arpan; Pandeyb, Praful; Oliveira, Eliezer Fernando; da Silva Autreto, Pedro Alves; Gumastea, Anurag; Singha, Amit; Galvao, Douglas Soares; Aroraa, Amit; Tiwary, Chandra Sekhar
Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction Journal Article
Em: Polymer, vol. 169, pp. 148-153, 2019.
@article{Routa2019,
title = {Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction},
author = {Arpan Routa and Praful Pandeyb and Eliezer Fernando Oliveira and Pedro Alves da Silva Autreto and Anurag Gumastea and Amit Singha and Douglas Soares Galvao and Amit Aroraa and Chandra Sekhar Tiwary},
year = {2019},
date = {2019-02-23},
journal = {Polymer},
volume = {169},
pages = {148-153},
abstract = {Joining different parts is one of a crucial component of designing/engineering of materials. The current energy, low efficiency weight automotive and aerospace components commonly consist of different class of materials, such as metal, polymer, and ceramics, etc. Joining these components remains a challenge. Here, we demonstrate joining of metal (aluminum) and polymer (PP) using mechanical friction. The detailed characterisation demonstrates that atomically locked interfaces are formed in such joining without the presence of any chemical bond at the interfaces. The waterproof and strong interface is formed in such process. Fully atomistic molecular dynamics simulations were also carried out to provide further insights on these mechanisms.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Gautam, Chandkiram; Chakravarty, Dibyendu; Woellner, Cristiano F.; Mishra, Vijay Kumar; Ahamad, Naseer; Gautam, Amarendra; Ozden, Sehmus; Jose, Sujin; Biradar, Santosh Kumar; Vajtai, Robert; Trivedi, Ritu; Tiwary, Chandra Sekhar; Galvao, Douglas S.; Ajayan, P. M.
Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications Journal Article
Em: ACS Omega, vol. 3, não 6, pp. 6013–6021, 2018.
@article{Gautam2018,
title = {Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications},
author = {Chandkiram Gautam and Dibyendu Chakravarty and Cristiano F. Woellner and Vijay Kumar Mishra and Naseer Ahamad and Amarendra Gautam and Sehmus Ozden and Sujin Jose and Santosh Kumar Biradar and Robert Vajtai and Ritu Trivedi and Chandra Sekhar Tiwary and Douglas S. Galvao and P.M. Ajayan},
url = {https://pubs.acs.org/doi/abs/10.1021/acsomega.8b00707},
doi = {10.1021/acsomega.8b00707},
year = {2018},
date = {2018-06-05},
journal = {ACS Omega},
volume = {3},
number = {6},
pages = {6013–6021},
abstract = {Recent advances and demands in biomedical applications drive a large amount of research to synthesize easily scalable low-density, high-strength, and wear-resistant biomaterials. The chemical inertness with low density combined with high strength makes h-BN one of the promising materials for such application. In this work, three-dimensional hexagonal boron nitride (h-BN) interconnected with boron trioxide (B2O3) was prepared by easily scalable and energy efficient spark plasma sintering (SPS) process. The composite structure shows significant densification (1.6–1.9 g/cm3) and high surface area (0.97–14.5 m2/g) at an extremely low SPS temperature of 250 °C. A high compressive strength of 291 MPa with a reasonably good wear resistance was obtained for the composite structure. The formation of strong covalent bonds between h-BN and B2O3 was formulated and established by molecular dynamics simulation. The composite showed significant effect on cell viability/proliferation. It shows a high mineralized nodule formation over the control, which suggests its use as a possible osteogenic agent in bone formation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Owuor, Peter; Chaudhary, Varun; Woellner, Cristiano F; Ramanujan, R V; Stender, Anthony S; Soto, Matias; Ozden, Sehmus; Barrera, Enrique; Vajtai, Robert; Galvao, Douglas; Lou, Jun; Sharma, V; Ajayan, Pulickel M
High Stiffness Polymer Composite with Tunable Transparency Journal Article
Em: Materials Today, vol. 21, não 5, pp. 475-482, 2018.
@article{Owuor2018,
title = {High Stiffness Polymer Composite with Tunable Transparency},
author = {Peter Owuor and Varun Chaudhary and Cristiano F Woellner and R V Ramanujan and Anthony S Stender and Matias Soto and Sehmus Ozden and Enrique Barrera and Robert Vajtai and Douglas Galvao and Jun Lou and V Sharma and Pulickel M Ajayan
},
url = {https://www.sciencedirect.com/science/article/pii/S1369702117306867},
doi = {10.1016/j.mattod.2017.12.004},
year = {2018},
date = {2018-01-12},
journal = {Materials Today},
volume = {21},
number = {5},
pages = {475-482},
abstract = {Biological materials are multifunctional performing more than one function in a perfect synergy. These materials are built from fairly simple and limited components at ambient conditions. Such judicious designs have proven elusive for synthetic materials. Here, we demonstrate a multifunctional phase change (pc) composite from simple building blocks, which exhibits high stiffness and optical transmittance control. We show an increase of more than one order of magnitude in stiffness when we embed paraffin wax spheres into an elastomer matrix, polydimethylsiloxane (PDMS) in a dynamic compression test. High stiffness is mainly influenced by presence of microcrystals within the wax. We further show fast temperature-controlled optical switching of the composite for an unlimited number of cycles without any noticeable mechanical degradation. Through experimental and finite element method, we show high energy absorption capability of pc-composite. Based on these properties, the pc- composite could be used as an effective coating on glasses for cars and windows. This simple approach to multi-functionality is exciting and could pave way for designs of other multifunctional materials at the macro-scale.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M, Ajayan Pulickel; Woellner, Cristiano F; Owuor, Peter S; Trigueiro, Joao P C; Machado, Leonardo D; Silva, Wellington M; Kosolwattana, Suppanat; Jaques, Ygor M; Silva, Carlos J R; Pedrotti, Jairo; Tiwary, Chandra S; Chipara, Alin C; Galvao, Douglas; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G.
Hybrid 2D Nanostructures for Mechanical Reinforcement and Thermal Conductivity Enhancement in Polymer Composite Journal Article
Em: Composites Science and Technology, vol. 159, não 5, pp. 103-110, 2018.
@article{M2018,
title = {Hybrid 2D Nanostructures for Mechanical Reinforcement and Thermal Conductivity Enhancement in Polymer Composite},
author = {Ajayan Pulickel M and Cristiano F Woellner and Peter S Owuor and Joao P C Trigueiro and Leonardo D Machado and Wellington M Silva and Suppanat Kosolwattana and Ygor M Jaques and Carlos J R Silva and Jairo Pedrotti and Chandra S Tiwary and Alin C Chipara and Douglas Galvao and Nitin Chopra and Ihab N Odeh and Glaura G. Silva
},
doi = {https://doi.org/10.1016/j.compscitech.2018.01.032},
year = {2018},
date = {2018-01-01},
journal = {Composites Science and Technology},
volume = {159},
number = {5},
pages = {103-110},
abstract = {Hexagonal boron nitride (h-BN), graphene oxide (GO) and hybrid (GO/h-BN) nanosheets were employed as fillers in order to enhance the physical properties of the polymer matrix. Composites based in epoxy and these two-dimensional (2D) nanofillers were produced with different wt% and their microstructure, mechanical and thermal properties were investigated. Increases up to 140% in tensile strength, 177% in ultimate strain and 32% in elastic modulus were observed for the hybrid GO/h-BN composite with 0.5 wt% content. The hybrid nanofiller also contributed to the increase up to 142% on thermal conductivity with respect to the pure epoxy for GO/h-BN composite with 2.0 wt% content. Molecular dynamic simulation was used to predict the behavior of possible stacking arrangements between h-BN and GO nanosheets tensioned by normal and shear forces. The results showed that the hybrid GO/h-BN combination can prevent the re-stacking process of exfoliated layers, demonstrating the synergism between these nanostructures with the final effect of better dispersion in the composite material. The excellent thermal and mechanical performance of these hybrid composites en- gineered by the combination of different types of the 2D inorganic nanoparticles make them multifunctional candidates for advanced materials applications.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2019

Routa, Arpan; Pandeyb, Praful; Oliveira, Eliezer Fernando; da Silva Autreto, Pedro Alves; Gumastea, Anurag; Singha, Amit; Galvao, Douglas Soares; Aroraa, Amit; Tiwary, Chandra Sekhar
Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction Journal Article
Em: Polymer, vol. 169, pp. 148-153, 2019.
Resumo | BibTeX | Tags: Composites, Metal, Molecular Dynamics, Polymers
@article{Routa2019,
title = {Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction},
author = {Arpan Routa and Praful Pandeyb and Eliezer Fernando Oliveira and Pedro Alves da Silva Autreto and Anurag Gumastea and Amit Singha and Douglas Soares Galvao and Amit Aroraa and Chandra Sekhar Tiwary},
year = {2019},
date = {2019-02-23},
journal = {Polymer},
volume = {169},
pages = {148-153},
abstract = {Joining different parts is one of a crucial component of designing/engineering of materials. The current energy, low efficiency weight automotive and aerospace components commonly consist of different class of materials, such as metal, polymer, and ceramics, etc. Joining these components remains a challenge. Here, we demonstrate joining of metal (aluminum) and polymer (PP) using mechanical friction. The detailed characterisation demonstrates that atomically locked interfaces are formed in such joining without the presence of any chemical bond at the interfaces. The waterproof and strong interface is formed in such process. Fully atomistic molecular dynamics simulations were also carried out to provide further insights on these mechanisms.},
keywords = {Composites, Metal, Molecular Dynamics, Polymers},
pubstate = {published},
tppubtype = {article}
}
2018

Gautam, Chandkiram; Chakravarty, Dibyendu; Woellner, Cristiano F.; Mishra, Vijay Kumar; Ahamad, Naseer; Gautam, Amarendra; Ozden, Sehmus; Jose, Sujin; Biradar, Santosh Kumar; Vajtai, Robert; Trivedi, Ritu; Tiwary, Chandra Sekhar; Galvao, Douglas S.; Ajayan, P. M.
Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications Journal Article
Em: ACS Omega, vol. 3, não 6, pp. 6013–6021, 2018.
Resumo | Links | BibTeX | Tags: BN, Composites, Molecular Dynamics, sintering
@article{Gautam2018,
title = {Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications},
author = {Chandkiram Gautam and Dibyendu Chakravarty and Cristiano F. Woellner and Vijay Kumar Mishra and Naseer Ahamad and Amarendra Gautam and Sehmus Ozden and Sujin Jose and Santosh Kumar Biradar and Robert Vajtai and Ritu Trivedi and Chandra Sekhar Tiwary and Douglas S. Galvao and P.M. Ajayan},
url = {https://pubs.acs.org/doi/abs/10.1021/acsomega.8b00707},
doi = {10.1021/acsomega.8b00707},
year = {2018},
date = {2018-06-05},
journal = {ACS Omega},
volume = {3},
number = {6},
pages = {6013–6021},
abstract = {Recent advances and demands in biomedical applications drive a large amount of research to synthesize easily scalable low-density, high-strength, and wear-resistant biomaterials. The chemical inertness with low density combined with high strength makes h-BN one of the promising materials for such application. In this work, three-dimensional hexagonal boron nitride (h-BN) interconnected with boron trioxide (B2O3) was prepared by easily scalable and energy efficient spark plasma sintering (SPS) process. The composite structure shows significant densification (1.6–1.9 g/cm3) and high surface area (0.97–14.5 m2/g) at an extremely low SPS temperature of 250 °C. A high compressive strength of 291 MPa with a reasonably good wear resistance was obtained for the composite structure. The formation of strong covalent bonds between h-BN and B2O3 was formulated and established by molecular dynamics simulation. The composite showed significant effect on cell viability/proliferation. It shows a high mineralized nodule formation over the control, which suggests its use as a possible osteogenic agent in bone formation.},
keywords = {BN, Composites, Molecular Dynamics, sintering},
pubstate = {published},
tppubtype = {article}
}

Owuor, Peter; Chaudhary, Varun; Woellner, Cristiano F; Ramanujan, R V; Stender, Anthony S; Soto, Matias; Ozden, Sehmus; Barrera, Enrique; Vajtai, Robert; Galvao, Douglas; Lou, Jun; Sharma, V; Ajayan, Pulickel M
High Stiffness Polymer Composite with Tunable Transparency Journal Article
Em: Materials Today, vol. 21, não 5, pp. 475-482, 2018.
Resumo | Links | BibTeX | Tags: Composites, Polymer
@article{Owuor2018,
title = {High Stiffness Polymer Composite with Tunable Transparency},
author = {Peter Owuor and Varun Chaudhary and Cristiano F Woellner and R V Ramanujan and Anthony S Stender and Matias Soto and Sehmus Ozden and Enrique Barrera and Robert Vajtai and Douglas Galvao and Jun Lou and V Sharma and Pulickel M Ajayan
},
url = {https://www.sciencedirect.com/science/article/pii/S1369702117306867},
doi = {10.1016/j.mattod.2017.12.004},
year = {2018},
date = {2018-01-12},
journal = {Materials Today},
volume = {21},
number = {5},
pages = {475-482},
abstract = {Biological materials are multifunctional performing more than one function in a perfect synergy. These materials are built from fairly simple and limited components at ambient conditions. Such judicious designs have proven elusive for synthetic materials. Here, we demonstrate a multifunctional phase change (pc) composite from simple building blocks, which exhibits high stiffness and optical transmittance control. We show an increase of more than one order of magnitude in stiffness when we embed paraffin wax spheres into an elastomer matrix, polydimethylsiloxane (PDMS) in a dynamic compression test. High stiffness is mainly influenced by presence of microcrystals within the wax. We further show fast temperature-controlled optical switching of the composite for an unlimited number of cycles without any noticeable mechanical degradation. Through experimental and finite element method, we show high energy absorption capability of pc-composite. Based on these properties, the pc- composite could be used as an effective coating on glasses for cars and windows. This simple approach to multi-functionality is exciting and could pave way for designs of other multifunctional materials at the macro-scale.},
keywords = {Composites, Polymer},
pubstate = {published},
tppubtype = {article}
}

M, Ajayan Pulickel; Woellner, Cristiano F; Owuor, Peter S; Trigueiro, Joao P C; Machado, Leonardo D; Silva, Wellington M; Kosolwattana, Suppanat; Jaques, Ygor M; Silva, Carlos J R; Pedrotti, Jairo; Tiwary, Chandra S; Chipara, Alin C; Galvao, Douglas; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G.
Hybrid 2D Nanostructures for Mechanical Reinforcement and Thermal Conductivity Enhancement in Polymer Composite Journal Article
Em: Composites Science and Technology, vol. 159, não 5, pp. 103-110, 2018.
Resumo | Links | BibTeX | Tags: Composites, Molecular Dynamics
@article{M2018,
title = {Hybrid 2D Nanostructures for Mechanical Reinforcement and Thermal Conductivity Enhancement in Polymer Composite},
author = {Ajayan Pulickel M and Cristiano F Woellner and Peter S Owuor and Joao P C Trigueiro and Leonardo D Machado and Wellington M Silva and Suppanat Kosolwattana and Ygor M Jaques and Carlos J R Silva and Jairo Pedrotti and Chandra S Tiwary and Alin C Chipara and Douglas Galvao and Nitin Chopra and Ihab N Odeh and Glaura G. Silva
},
doi = {https://doi.org/10.1016/j.compscitech.2018.01.032},
year = {2018},
date = {2018-01-01},
journal = {Composites Science and Technology},
volume = {159},
number = {5},
pages = {103-110},
abstract = {Hexagonal boron nitride (h-BN), graphene oxide (GO) and hybrid (GO/h-BN) nanosheets were employed as fillers in order to enhance the physical properties of the polymer matrix. Composites based in epoxy and these two-dimensional (2D) nanofillers were produced with different wt% and their microstructure, mechanical and thermal properties were investigated. Increases up to 140% in tensile strength, 177% in ultimate strain and 32% in elastic modulus were observed for the hybrid GO/h-BN composite with 0.5 wt% content. The hybrid nanofiller also contributed to the increase up to 142% on thermal conductivity with respect to the pure epoxy for GO/h-BN composite with 2.0 wt% content. Molecular dynamic simulation was used to predict the behavior of possible stacking arrangements between h-BN and GO nanosheets tensioned by normal and shear forces. The results showed that the hybrid GO/h-BN combination can prevent the re-stacking process of exfoliated layers, demonstrating the synergism between these nanostructures with the final effect of better dispersion in the composite material. The excellent thermal and mechanical performance of these hybrid composites en- gineered by the combination of different types of the 2D inorganic nanoparticles make them multifunctional candidates for advanced materials applications.},
keywords = {Composites, Molecular Dynamics},
pubstate = {published},
tppubtype = {article}
}