http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ
1.
Leonardo D Machado Cristiano F Woellner, Pedro AS Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Proceedings
vol. 1737, não mrsf14-1737-u18-21, 2015, (MRS Proceedings, 1737, mrsf14-1737-u18-21).
@proceedings{Woellner2015b,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F Woellner, Leonardo D Machado, Pedro AS Autreto, José A Freire, Douglas S Galvão},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9707375&fileId=S1946427415005023},
doi = {10.1557/opl.2015.502},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
number = {mrsf14-1737-u18-21},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.
},
note = {MRS Proceedings, 1737, mrsf14-1737-u18-21},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.
2015
1.

Leonardo D Machado Cristiano F Woellner, Pedro AS Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Proceedings
vol. 1737, não mrsf14-1737-u18-21, 2015, (MRS Proceedings, 1737, mrsf14-1737-u18-21).
Resumo | Links | BibTeX | Tags: Conducting Polymers, Monte Carlo, Solar Cells
@proceedings{Woellner2015b,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F Woellner, Leonardo D Machado, Pedro AS Autreto, José A Freire, Douglas S Galvão},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9707375&fileId=S1946427415005023},
doi = {10.1557/opl.2015.502},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
number = {mrsf14-1737-u18-21},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.
},
note = {MRS Proceedings, 1737, mrsf14-1737-u18-21},
keywords = {Conducting Polymers, Monte Carlo, Solar Cells},
pubstate = {published},
tppubtype = {proceedings}
}
In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.