http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ
Coluci, VR; dos Santos, RPB; Galvao, DS
Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes Journal Article
Em: Journal of Nanoscience and Nanotechnology, vol. 10, não 7, pp. 4378–4383, 2010.
@article{coluci2010topologically,
title = {Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes},
author = {Coluci, VR and dos Santos, RPB and Galvao, DS},
url = {http://www.ingentaconnect.com/content/asp/jnn/2010/00000010/00000007/art00040},
year = {2010},
date = {2010-01-01},
journal = {Journal of Nanoscience and Nanotechnology},
volume = {10},
number = {7},
pages = {4378--4383},
publisher = {American Scientific Publishers},
abstract = {We propose and theoretically investigated a new class of topologically closed macromolecules built using single walled carbon nanotubes. These macromolecules are based on the fullerene architecture. Classical molecular dynamics simulations were used to predict their stability, thermal, vibrational, and mechanical properties. These macromolecules, named 'super'-fullerenes, present high porosity, low density (∼1 g/cm3), and high surface area (≅2500 m2/g). Our results predict gas phase specific heat of about 0.4 Jg−1K−1 at room temperature and high flexibility under compressive strains. These properties make these hypothetical macromolecules good candidates for gas storage material and biomolecular sieves.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, Vitor R; Pugno, Nicola M; Dantas, Socrates O; Galvao, Douglas S; Jorio, Ado
Atomistic simulations of the mechanical properties of'super'carbon nanotubes Journal Article
Em: Nanotechnology, vol. 18, não 33, pp. 335702, 2007.
@article{coluci2007atomistic,
title = {Atomistic simulations of the mechanical properties of'super'carbon nanotubes},
author = {Coluci, Vitor R and Pugno, Nicola M and Dantas, Socrates O and Galvao, Douglas S and Jorio, Ado},
url = {http://iopscience.iop.org/0957-4484/18/33/335702
},
year = {2007},
date = {2007-01-01},
journal = {Nanotechnology},
volume = {18},
number = {33},
pages = {335702},
publisher = {IOP Publishing},
abstract = {The mechanical properties of the so-called 'super' carbon nanotubes (STs) are investigated using classical molecular dynamics simulations. The STs are built from single-walled carbon nanotubes (SWCNTs) connected by Y-like junctions forming an ordered carbon nanotube network that is then rolled into a seamless cylinder. We observed that the ST behaviour under tensile tests is similar to the one presented by fishing nets. This interesting behaviour provides a way to vary the accessible channels to the inner parts of STs by applying an external mechanical load. The Young's modulus is dependent on the ST chirality and it inversely varies with the ST radius. Smaller reduction of breaking strain values due to temperature increase is predicted for zigzag STs compared to SWCNTs. The results show that, for STs with radius ~5 nm, the junctions between the constituent SWCNTs play an important role in the fracture process. The Young's modulus and tensile strength were estimated for hierarchical higher-order STs using scaling laws related to the ST fractal dimension. The obtained mechanical properties suggest that STs may be used in the development of new porous, flexible, and high-strength materials.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, VR; Dantas, SO; Jorio, A; Galvao, DS
Electronic and Mechanical Properties of Super Carbon Nanotube Networks Proceedings
Warrendale, Pa.; Materials Research Society; 1999, vol. 963, 2007.
@proceedings{coluci2007electronic,
title = {Electronic and Mechanical Properties of Super Carbon Nanotube Networks},
author = {Coluci, VR and Dantas, SO and Jorio, A and Galvao, DS},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8026810&fulltextType=RA&fileId=S1946427400054014},
year = {2007},
date = {2007-01-01},
journal = {MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS},
volume = {963},
pages = {1},
publisher = {Warrendale, Pa.; Materials Research Society; 1999},
abstract = {Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Coluci, VR; Dantas, SO; Jorio, A; Galvao, DS
Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations Journal Article
Em: Physical Review B, vol. 75, não 7, pp. 075417, 2007.
@article{coluci2007mechanical,
title = {Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations},
author = {Coluci, VR and Dantas, SO and Jorio, A and Galvao, DS},
url = {http://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.075417},
year = {2007},
date = {2007-01-01},
journal = {Physical Review B},
volume = {75},
number = {7},
pages = {075417},
publisher = {APS},
abstract = {We report a theoretical investigation of the mechanical properties of idealized networks formed by single-walled carbon nanotubes showing crossbar and hexagonal architectures. The study was performed by using molecular mechanics calculations and impact dynamics simulations based on bond-order empirical potential. The studied networks were predicted to have elasticity modulus of ∼10–100GPa and bulk modulus of ∼10GPa. The results show a transition from high to moderate flexibility during the deformation stages. This behavior was associated with the existence of two deformation mechanisms presented by the network related to the nanotube stretching and junction bending processes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Pugno, Nicola; Coluci, V; Galvao, DS
Nanotube-or graphene-based nanoarmors Book Chapter
Em: Computational & Experimental Analysis of Damaged Materials, pp. 145-154 , 2007.
@inbook{pugno2007nanotube,
title = {Nanotube-or graphene-based nanoarmors},
author = {Pugno, Nicola and Coluci, V and Galvao, DS},
url = {http://www.ing.unitn.it/~pugno/NP_PDF/IV/5-COLUCI07.pdf},
year = {2007},
date = {2007-01-01},
booktitle = {Computational & Experimental Analysis of Damaged Materials},
pages = {145-154 },
abstract = { In this paper, nanoimpacts on hexagonal or
crossbar nanotube networks as well as on graphene
sheets are investigated by elasticity and finite
kinematics or impact molecular dynamic simulations.
A transition from bending to stretching by increasing
the impact kinetic energy of the nanoprojectile is
clearly observed. The analysis suggests that the
investigated nanotextures are ideal for designing
futuristic nanoarmors. },
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
crossbar nanotube networks as well as on graphene
sheets are investigated by elasticity and finite
kinematics or impact molecular dynamic simulations.
A transition from bending to stretching by increasing
the impact kinetic energy of the nanoprojectile is
clearly observed. The analysis suggests that the
investigated nanotextures are ideal for designing
futuristic nanoarmors.
Coluci, Vitor R; Dantas, Socrates O; Jorio, Ado; Galvao, Douglas S.
Electronic and Mechanical Properties of Super Carbon Nanotube Networks Proceedings
Cambridge University Press, vol. 963, 2006.
@proceedings{coluci2006electronic,
title = {Electronic and Mechanical Properties of Super Carbon Nanotube Networks},
author = {Coluci, Vitor R and Dantas, Socrates O and Jorio, Ado and Galvao, Douglas S.},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8026810&fileId=S1946427400054014},
year = {2006},
date = {2006-01-01},
journal = {MRS Proceedings},
volume = {963},
pages = {0963--Q15},
publisher = {Cambridge University Press},
abstract = {Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Coluci, Vitor R; Galvao, Douglas S; Jorio, A
Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes Journal Article
Em: Nanotechnology, vol. 17, não 3, pp. 617, 2006.
@article{coluci2006geometric,
title = {Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes},
author = {Coluci, Vitor R and Galvao, Douglas S and Jorio, A},
url = {http://iopscience.iop.org/0957-4484/17/3/001},
year = {2006},
date = {2006-01-01},
journal = {Nanotechnology},
volume = {17},
number = {3},
pages = {617},
publisher = {IoP Publishing},
abstract = {Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2010

Coluci, VR; dos Santos, RPB; Galvao, DS
Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes Journal Article
Em: Journal of Nanoscience and Nanotechnology, vol. 10, não 7, pp. 4378–4383, 2010.
Resumo | Links | BibTeX | Tags: Fullerenes, New Structures, Super Carbons, Super Fullerenes
@article{coluci2010topologically,
title = {Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes},
author = {Coluci, VR and dos Santos, RPB and Galvao, DS},
url = {http://www.ingentaconnect.com/content/asp/jnn/2010/00000010/00000007/art00040},
year = {2010},
date = {2010-01-01},
journal = {Journal of Nanoscience and Nanotechnology},
volume = {10},
number = {7},
pages = {4378--4383},
publisher = {American Scientific Publishers},
abstract = {We propose and theoretically investigated a new class of topologically closed macromolecules built using single walled carbon nanotubes. These macromolecules are based on the fullerene architecture. Classical molecular dynamics simulations were used to predict their stability, thermal, vibrational, and mechanical properties. These macromolecules, named 'super'-fullerenes, present high porosity, low density (∼1 g/cm3), and high surface area (≅2500 m2/g). Our results predict gas phase specific heat of about 0.4 Jg−1K−1 at room temperature and high flexibility under compressive strains. These properties make these hypothetical macromolecules good candidates for gas storage material and biomolecular sieves.},
keywords = {Fullerenes, New Structures, Super Carbons, Super Fullerenes},
pubstate = {published},
tppubtype = {article}
}
2007

Coluci, Vitor R; Pugno, Nicola M; Dantas, Socrates O; Galvao, Douglas S; Jorio, Ado
Atomistic simulations of the mechanical properties of'super'carbon nanotubes Journal Article
Em: Nanotechnology, vol. 18, não 33, pp. 335702, 2007.
Resumo | Links | BibTeX | Tags: Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons
@article{coluci2007atomistic,
title = {Atomistic simulations of the mechanical properties of'super'carbon nanotubes},
author = {Coluci, Vitor R and Pugno, Nicola M and Dantas, Socrates O and Galvao, Douglas S and Jorio, Ado},
url = {http://iopscience.iop.org/0957-4484/18/33/335702
},
year = {2007},
date = {2007-01-01},
journal = {Nanotechnology},
volume = {18},
number = {33},
pages = {335702},
publisher = {IOP Publishing},
abstract = {The mechanical properties of the so-called 'super' carbon nanotubes (STs) are investigated using classical molecular dynamics simulations. The STs are built from single-walled carbon nanotubes (SWCNTs) connected by Y-like junctions forming an ordered carbon nanotube network that is then rolled into a seamless cylinder. We observed that the ST behaviour under tensile tests is similar to the one presented by fishing nets. This interesting behaviour provides a way to vary the accessible channels to the inner parts of STs by applying an external mechanical load. The Young's modulus is dependent on the ST chirality and it inversely varies with the ST radius. Smaller reduction of breaking strain values due to temperature increase is predicted for zigzag STs compared to SWCNTs. The results show that, for STs with radius ~5 nm, the junctions between the constituent SWCNTs play an important role in the fracture process. The Young's modulus and tensile strength were estimated for hierarchical higher-order STs using scaling laws related to the ST fractal dimension. The obtained mechanical properties suggest that STs may be used in the development of new porous, flexible, and high-strength materials.},
keywords = {Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {article}
}

Coluci, VR; Dantas, SO; Jorio, A; Galvao, DS
Electronic and Mechanical Properties of Super Carbon Nanotube Networks Proceedings
Warrendale, Pa.; Materials Research Society; 1999, vol. 963, 2007.
Resumo | Links | BibTeX | Tags: Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons
@proceedings{coluci2007electronic,
title = {Electronic and Mechanical Properties of Super Carbon Nanotube Networks},
author = {Coluci, VR and Dantas, SO and Jorio, A and Galvao, DS},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8026810&fulltextType=RA&fileId=S1946427400054014},
year = {2007},
date = {2007-01-01},
journal = {MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS},
volume = {963},
pages = {1},
publisher = {Warrendale, Pa.; Materials Research Society; 1999},
abstract = {Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.},
keywords = {Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {proceedings}
}

Coluci, VR; Dantas, SO; Jorio, A; Galvao, DS
Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations Journal Article
Em: Physical Review B, vol. 75, não 7, pp. 075417, 2007.
Resumo | Links | BibTeX | Tags: Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons
@article{coluci2007mechanical,
title = {Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations},
author = {Coluci, VR and Dantas, SO and Jorio, A and Galvao, DS},
url = {http://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.075417},
year = {2007},
date = {2007-01-01},
journal = {Physical Review B},
volume = {75},
number = {7},
pages = {075417},
publisher = {APS},
abstract = {We report a theoretical investigation of the mechanical properties of idealized networks formed by single-walled carbon nanotubes showing crossbar and hexagonal architectures. The study was performed by using molecular mechanics calculations and impact dynamics simulations based on bond-order empirical potential. The studied networks were predicted to have elasticity modulus of ∼10–100GPa and bulk modulus of ∼10GPa. The results show a transition from high to moderate flexibility during the deformation stages. This behavior was associated with the existence of two deformation mechanisms presented by the network related to the nanotube stretching and junction bending processes.},
keywords = {Fracture, Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {article}
}

Pugno, Nicola; Coluci, V; Galvao, DS
Nanotube-or graphene-based nanoarmors Book Chapter
Em: Computational & Experimental Analysis of Damaged Materials, pp. 145-154 , 2007.
Resumo | Links | BibTeX | Tags: Elasticity, Mechanical Properties, Molecular Dynamics, Super Carbons
@inbook{pugno2007nanotube,
title = {Nanotube-or graphene-based nanoarmors},
author = {Pugno, Nicola and Coluci, V and Galvao, DS},
url = {http://www.ing.unitn.it/~pugno/NP_PDF/IV/5-COLUCI07.pdf},
year = {2007},
date = {2007-01-01},
booktitle = {Computational & Experimental Analysis of Damaged Materials},
pages = {145-154 },
abstract = { In this paper, nanoimpacts on hexagonal or
crossbar nanotube networks as well as on graphene
sheets are investigated by elasticity and finite
kinematics or impact molecular dynamic simulations.
A transition from bending to stretching by increasing
the impact kinetic energy of the nanoprojectile is
clearly observed. The analysis suggests that the
investigated nanotextures are ideal for designing
futuristic nanoarmors. },
keywords = {Elasticity, Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {inbook}
}
crossbar nanotube networks as well as on graphene
sheets are investigated by elasticity and finite
kinematics or impact molecular dynamic simulations.
A transition from bending to stretching by increasing
the impact kinetic energy of the nanoprojectile is
clearly observed. The analysis suggests that the
investigated nanotextures are ideal for designing
futuristic nanoarmors.
2006

Coluci, Vitor R; Dantas, Socrates O; Jorio, Ado; Galvao, Douglas S.
Electronic and Mechanical Properties of Super Carbon Nanotube Networks Proceedings
Cambridge University Press, vol. 963, 2006.
Resumo | Links | BibTeX | Tags: Mechanical Properties, Molecular Dynamics, Super Carbons
@proceedings{coluci2006electronic,
title = {Electronic and Mechanical Properties of Super Carbon Nanotube Networks},
author = {Coluci, Vitor R and Dantas, Socrates O and Jorio, Ado and Galvao, Douglas S.},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8026810&fileId=S1946427400054014},
year = {2006},
date = {2006-01-01},
journal = {MRS Proceedings},
volume = {963},
pages = {0963--Q15},
publisher = {Cambridge University Press},
abstract = {Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.},
keywords = {Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {proceedings}
}

Coluci, Vitor R; Galvao, Douglas S; Jorio, A
Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes Journal Article
Em: Nanotechnology, vol. 17, não 3, pp. 617, 2006.
Resumo | Links | BibTeX | Tags: DFT, Mechanical Properties, Molecular Dynamics, Super Carbons
@article{coluci2006geometric,
title = {Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes},
author = {Coluci, Vitor R and Galvao, Douglas S and Jorio, A},
url = {http://iopscience.iop.org/0957-4484/17/3/001},
year = {2006},
date = {2006-01-01},
journal = {Nanotechnology},
volume = {17},
number = {3},
pages = {617},
publisher = {IoP Publishing},
abstract = {Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.},
keywords = {DFT, Mechanical Properties, Molecular Dynamics, Super Carbons},
pubstate = {published},
tppubtype = {article}
}