Coluci, Vitor R; Galvao, Douglas S; Jorio, A
Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes Journal Article
In: Nanotechnology, vol. 17, no. 3, pp. 617, 2006.
@article{coluci2006geometric,
title = {Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes},
author = {Coluci, Vitor R and Galvao, Douglas S and Jorio, A},
url = {http://iopscience.iop.org/0957-4484/17/3/001},
year = {2006},
date = {2006-01-01},
journal = {Nanotechnology},
volume = {17},
number = {3},
pages = {617},
publisher = {IoP Publishing},
abstract = {Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bettini, Jefferson; Sato, Fernando; Coura, Pablo Zimmerman; Dantas, SO; Galvao, Douglas Soares; Ugarte, Daniel
Experimental realization of suspended atomic chains composed of different atomic species Journal Article
In: Nature Nanotechnology, vol. 1, no. 3, pp. 182–185, 2006.
@article{bettini2006experimental,
title = {Experimental realization of suspended atomic chains composed of different atomic species},
author = {Bettini, Jefferson and Sato, Fernando and Coura, Pablo Zimmerman and Dantas, SO and Galvao, Douglas Soares and Ugarte, Daniel},
url = {http://www.nature.com/nnano/journal/v1/n3/full/nnano.2006.132.html},
year = {2006},
date = {2006-01-01},
journal = {Nature Nanotechnology},
volume = {1},
number = {3},
pages = {182--185},
publisher = {Nature Publishing Group},
abstract = {Research into nanostructured materials frequently relates to pure substances. This contrasts with industrial applications, where chemical doping or alloying is often used to enhance the electrical or mechanical properties of materials1. However, the controlled preparation of doped nanomaterials has been much more difficult than expected because the increased surface-area-to-volume ratio can, for instance, lead to the expulsion of impurities (self-purification)2. For nanostructured alloys, the influence of growth methods and the atomic structure on self-purification is still open to investigation2, 3. Here, we explore, experimentally and with molecular dynamics simulations, to what extent alloying persists in the limit that a binary metal is mechanically stretched to a linear chain of atoms. Our results reveal a gradual evolution of the arrangement of the different atomic elements in the narrowest region of the chain, where impurities may be expelled to the surface or enclosed during elongation.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Braga, SF; Galvao, DS
Single wall carbon nanotubes polymerization under compression: An atomistic molecular dynamics study Journal Article
In: Chemical physics letters, vol. 419, no. 4, pp. 394–399, 2006.
@article{braga2006single,
title = {Single wall carbon nanotubes polymerization under compression: An atomistic molecular dynamics study},
author = {Braga, SF and Galvao, DS},
url = {http://www.sciencedirect.com/science/article/pii/S0009261405018592},
year = {2006},
date = {2006-01-01},
journal = {Chemical physics letters},
volume = {419},
number = {4},
pages = {394--399},
publisher = {Elsevier},
abstract = {Recently, it was reported experimental observations of crosslinking between carbon nanotubes (CNTs) under pressure. Similarly to CNT growth formation the details of these polymerization processes are still unclear. In this work, we report a molecular dynamics simulation of the polymerization of a bundle of single-wall carbon nanotubes under compression using Brenner reactive potentials. Our results show that for small tube diameters extensive crosslinking formation can occur. For larger tube diameter, we obtained the first theoretical evidences that scroll-like structures (recently experimentally obtained) can be formed from SWCNTs.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sato, F; Moreira, AS; Bettini, J; Coura, PZ; Dantas, SO; Ugarte, D; Galvao, DS
On the Formation of Copper Linear Atomic Suspended Chains Journal Article
In: arXiv preprint cond-mat/0602092, 2006.
@article{sato2006formation,
title = {On the Formation of Copper Linear Atomic Suspended Chains},
author = {Sato, F and Moreira, AS and Bettini, J and Coura, PZ and Dantas, SO and Ugarte, D and Galvao, DS},
url = {http://arxiv.org/abs/cond-mat/0602092},
year = {2006},
date = {2006-01-01},
journal = {arXiv preprint cond-mat/0602092},
abstract = {We report high resolution transmission electron microscopy and classical molecular dynamics simulation results of mechanically stretching copper nanowires conducting to linear atomic suspended chains (LACs) formation. In contrast with some previous experimental and theoretical work in literature that stated that the formation of LACs for copper should not exist our results showed the existence of LAC for the [111], [110], and [100] crystallographic directions, being thus the sequence of most probable occurence.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, Vitor R; Dantas, Socrates O; Jorio, Ado; Galvao, Douglas S.
Electronic and Mechanical Properties of Super Carbon Nanotube Networks Proceedings
Cambridge University Press, vol. 963, 2006.
@proceedings{coluci2006electronic,
title = {Electronic and Mechanical Properties of Super Carbon Nanotube Networks},
author = {Coluci, Vitor R and Dantas, Socrates O and Jorio, Ado and Galvao, Douglas S.},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8026810&fileId=S1946427400054014},
year = {2006},
date = {2006-01-01},
journal = {MRS Proceedings},
volume = {963},
pages = {0963--Q15},
publisher = {Cambridge University Press},
abstract = {Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Bettini, J; Sato, F; Coura, PZ; Dantas, SO; Galvao, DS; Ugarte, D
Nanowires and Suspended Atom Chains from Metal alloys Journal Article
In: arXiv preprint cond-mat/0601617, 2006.
@article{bettini2006nanowires,
title = {Nanowires and Suspended Atom Chains from Metal alloys},
author = {Bettini, J and Sato, F and Coura, PZ and Dantas, SO and Galvao, DS and Ugarte, D},
url = {http://arxiv.org/abs/cond-mat/0601617},
year = {2006},
date = {2006-01-01},
journal = {arXiv preprint cond-mat/0601617},
abstract = {We present a study of the elongation and rupture of gold-silver alloy nanowires. Atomistic details of the evolution were derived from time-resolved atomic resolution transmission electron microscopy and molecular dynamics simulations. The results show the occurrence of gold enrichment at the nanojunction region, leading to a gold-like structural behavior even for alloys with minor gold content. Our observations have also revealed the formation of mixed (Au and Ag) linear atomic chains.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Troche, KS; Coluci, VR; Rurali, R; Galvao, DS
Doping of zigzag carbon nanotubes through the encapsulation of small fullerenes Journal Article
In: arXiv preprint cond-mat/0607197, 2006.
@article{troche2006doping,
title = {Doping of zigzag carbon nanotubes through the encapsulation of small fullerenes},
author = {Troche, KS and Coluci, VR and Rurali, R and Galvao, DS},
url = {http://arxiv.org/abs/cond-mat/0607197},
year = {2006},
date = {2006-01-01},
journal = {arXiv preprint cond-mat/0607197},
abstract = {In this work we investigated the encapsulation of C20 and C30 fullerenes into semiconducting carbon nanotubes to study the possibility of bandgap engineering in such systems. Classical molecular dynamics simulations coupled to tight-binding calculations were used to determine the conformational and electronic properties of carbon nanotube supercells containing up to 12 fullerenes. We have observed that C20 fullerenes behave similarly to a p-type dopant while C30 ones work as n-type ones. For larger diameter nanotubes, where fullerene patterns start to differ from the linear arrangements (peapods), the doping features are preserved for both fullerenes, but local disorder plays an important role and significantly alters the electronic structure. The combined incorporation of both fullerene types (hybrid encapsulation) into the same nanotube leads to a behavior similar to that found in electronic junctions in Silicon-based electronic devices. These aspects can be exploited in the design of nanoelectronic devices using semiconducting carbon nanotubes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sato, F; Moreira, AS; Bettini, J; Coura, PZ; Dantas, SO; Ugarte, D; Galvao, DS
Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains Journal Article
In: Physical Review-Section B-Condensed Matter, vol. 74, no. 19, pp. 193401–193401, 2006.
@article{sato2006surface,
title = {Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains},
author = {Sato, F and Moreira, AS and Bettini, J and Coura, PZ and Dantas, SO and Ugarte, D and Galvao, DS},
url = {http://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.193401},
year = {2006},
date = {2006-01-01},
journal = {Physical Review-Section B-Condensed Matter},
volume = {74},
number = {19},
pages = {193401--193401},
publisher = {Woodbury, NY: published by the American Physical Society through the American Institute of Physics, c1998-},
abstract = {We report high-resolution transmission electron microscopy and molecular dynamics simulation results of mechanically stretching nanowires leading to linear atomic suspended chain (LAC) formation. In contrast with some previous experimental and theoretical works in the literature that stated that the formation of LAC’s for copper should be unlikely our results showed the existence of LAC’s for the [111], [110], and [100] crystallographic directions, being thus the sequence of most probable occurrence. Our results clearly indicate that temperture and pulling velocity, associated with internal stress, are fundamental aspects to determine LAC formation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Troche, Karla S; Coluci, Vitor R; Braga, Scheila F; Chinellato, David D; Sato, Fernando; Legoas, Sergio B; Rurali, Riccardo; Galvao, Douglas S
Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes Journal Article
In: Nano letters, vol. 5, no. 2, pp. 349–355, 2005.
@article{troche2005prediction,
title = {Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes},
author = {Troche, Karla S and Coluci, Vitor R and Braga, Scheila F and Chinellato, David D and Sato, Fernando and Legoas, Sergio B and Rurali, Riccardo and Galvao, Douglas S},
url = {http://pubs.acs.org/doi/abs/10.1021/nl047930r},
year = {2005},
date = {2005-01-01},
journal = {Nano letters},
volume = {5},
number = {2},
pages = {349--355},
publisher = {ACS Publications},
abstract = {arbon nanotube scrolls (CNSs) provide an interesting form of carbon that ideally consists of a single sheet of graphite that is spiral wrapped to form a nanotube. We here use molecular dynamics simulations to investigate CNS formation, stability, and the structural effects due to charge injection. CNS formation is seen to automatically occur when a critical overlap between sheet layers is achieved for the partially curled sheet. We find that charge injection causes unwinding of the CNSs, which might be important for the application of CNSs as nanomechanical
actuators.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
actuators.
Sato, F; Moreira, AS; Coura, PZ; Dantas, SO; Legoas, SB; Ugarte, D; Galvao, DS
Computer simulations of gold nanowire formation: the role of outlayer atoms Journal Article
In: Applied Physics A (invited paper), vol. 81, no. 8, pp. 1527–1531, 2005.
@article{sato2005computer,
title = {Computer simulations of gold nanowire formation: the role of outlayer atoms},
author = {Sato, F and Moreira, AS and Coura, PZ and Dantas, SO and Legoas, SB and Ugarte, D and Galvao, DS},
url = {http://link.springer.com/article/10.1007/s00339-005-3390-2},
year = {2005},
date = {2005-01-01},
journal = {Applied Physics A (invited paper)},
volume = {81},
number = {8},
pages = {1527--1531},
publisher = {Springer-Verlag},
abstract = {Metallic nanowires (NWs) have been the object of intense theoretical and experimental investigations in the last years. In this work we present and review a new methodology we developed to study NW formation from mechanical stretching. This methodology is based on tight-binding molecular dynamics techniques using second-moment approximations. This methodology had been proven to be very effective in the study of NWs, reliably reproducing the main experimentally observed structural features. We have also investigated the problem of determining from what regions the atoms composing the linear atomic chains come. Our results show that ∼90% of these atoms come from outmost external layers.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Legoas, SB; Rodrigues, V; Ugarte, D; Galvao, DS
Legoas et al. Reply Journal Article
In: Physical Review Letters, vol. 95, no. 16, pp. 169602, 2005.
@article{legoas2005legoas,
title = {Legoas et al. Reply},
author = {Legoas, SB and Rodrigues, V and Ugarte, D and Galvao, DS},
url = {http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.169602},
year = {2005},
date = {2005-01-01},
journal = {Physical Review Letters},
volume = {95},
number = {16},
pages = {169602},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, Vitor; Braga, Scheila F; Baughman, Ray H; Galvao, Douglas S
Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study Proceedings
Cambridge University Press, vol. 885, 2005.
@proceedings{coluci2005hydrogen,
title = {Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study},
author = {Coluci, Vitor and Braga, Scheila F and Baughman, Ray H and Galvao, Douglas S},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8012272&fileId=S1946427400039816},
year = {2005},
date = {2005-01-01},
journal = {MRS Proceedings},
volume = {885},
pages = {0885--A06},
publisher = {Cambridge University Press},
abstract = {We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Braga, Scheila F; Coluci, Vitor R; Legoas, Sergio B; Giro, Ronaldo; Galvao, Douglas S; Baughman, Ray H
Structure and dynamics of carbon nanoscrolls Journal Article
In: Nano Letters, vol. 4, no. 5, pp. 881–884, 2004.
@article{braga2004structure,
title = {Structure and dynamics of carbon nanoscrolls},
author = {Braga, Scheila F and Coluci, Vitor R and Legoas, Sergio B and Giro, Ronaldo and Galvao, Douglas S and Baughman, Ray H},
url = {http://pubs.acs.org/doi/abs/10.1021/nl0497272},
year = {2004},
date = {2004-01-01},
journal = {Nano Letters},
volume = {4},
number = {5},
pages = {881--884},
publisher = {American Chemical Society},
abstract = {Carbon nanotube scrolls (CNSs) provide an interesting form of carbon that ideally consists of a single sheet of graphite that is spiral wrapped
to form a nanotube. We here use molecular dynamics simulations to investigate CNS formation, stability, and the structural effects due to
charge injection. CNS formation is seen to automatically occur when a critical overlap between sheet layers is achieved for the partially curled
sheet. We find that charge injection causes unwinding of the CNSs, which might be important for the application of CNSs as nanomechanical
actuators},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
to form a nanotube. We here use molecular dynamics simulations to investigate CNS formation, stability, and the structural effects due to
charge injection. CNS formation is seen to automatically occur when a critical overlap between sheet layers is achieved for the partially curled
sheet. We find that charge injection causes unwinding of the CNSs, which might be important for the application of CNSs as nanomechanical
actuators
Legoas, SB; Coluci, VR; Braga, SF; Coura, PZ; Dantas, SO; Galvao, DS
Gigahertz nanomechanical oscillators based on carbon nanotubes Journal Article
In: Nanotechnology, vol. 15, no. 4, pp. S184, 2004.
@article{legoas2004gigahertz,
title = {Gigahertz nanomechanical oscillators based on carbon nanotubes},
author = {Legoas, SB and Coluci, VR and Braga, SF and Coura, PZ and Dantas, SO and Galvao, DS},
url = {http://iopscience.iop.org/0957-4484/15/4/012},
year = {2004},
date = {2004-01-01},
journal = {Nanotechnology},
volume = {15},
number = {4},
pages = {S184},
publisher = {IOP Publishing},
abstract = {We report molecular dynamics studies of carbon nanotubes as mechanical gigahertz oscillators. Our results show that different oscillatory regimes exist but that sustained oscillations are possible only when the radii difference values of the inner and outer tubes are {sim }3.4~AA . Frequencies as large as 87 GHz were obtained. Calculated force and frequency values are in good agreement with estimated data from recent experimental investigations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Gonzalez, JC; Rodrigues, V; Bettini, J; Rego, LGC; Rocha, AR; Coura, PZ; Dantas, SO; Sato, F; Galvao, DS; Ugarte, D
Indication of unusual pentagonal structures in atomic-size Cu nanowires Journal Article
In: Physical Review Letters, vol. 93, no. 12, pp. 126103, 2004.
@article{gonzalez2004indication,
title = {Indication of unusual pentagonal structures in atomic-size Cu nanowires},
author = {Gonzalez, JC and Rodrigues, V and Bettini, J and Rego, LGC and Rocha, AR and Coura, PZ and Dantas, SO and Sato, F and Galvao, DS and Ugarte, D},
url = {http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.126103},
year = {2004},
date = {2004-01-01},
journal = {Physical Review Letters},
volume = {93},
number = {12},
pages = {126103},
publisher = {APS},
abstract = {We present a study of the structural and quantum conductance properties of atomic-size copper nanowires generated by mechanical stretching. The atomistic evolution was derived from time-resolved electron microscopy observations and molecular dynamics simulations. We have analyzed the quantum transport behavior by means of conductance measurements and theoretical calculations. The results suggest the formation of an unusual and highly stable pentagonal Cu nanowire with a diameter of ∼0.45 nm and ∼4.5 conductance quanta.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Otero, Roberto; Hummelink, Frauke; Sato, Fernando; Legoas, Sergio B; Thostrup, Peter; Lægsgaard, Erik; Stensgaard, Ivan; Galvao, Douglas S; Besenbacher, Flemming
Lock-and-key effect in the surface diffusion of large organic molecules probed by STM Journal Article
In: Nature Materials, vol. 3, no. 11, pp. 779–782, 2004.
@article{otero2004lock,
title = {Lock-and-key effect in the surface diffusion of large organic molecules probed by STM},
author = {Otero, Roberto and Hummelink, Frauke and Sato, Fernando and Legoas, Sergio B and Thostrup, Peter and Lægsgaard, Erik and Stensgaard, Ivan and Galvao, Douglas S and Besenbacher, Flemming},
url = {http://www.nature.com/nmat/journal/v3/n11/full/nmat1243.html},
year = {2004},
date = {2004-01-01},
journal = {Nature Materials},
volume = {3},
number = {11},
pages = {779--782},
publisher = {Nature Publishing Group},
abstract = {A nanoscale understanding of the complex dynamics of large molecules at surfaces is essential for the bottom-up design of molecular nanostructures1, 2, 3, 4, 5, 6, 7, 8. Here we show that we can change the diffusion coefficient of the complex organic molecule known as Violet Lander (VL, C108H104) on Cu(110) by two orders of magnitude by using the STM at low temperatures to switch between two adsorption configurations that differ only in the molecular orientation with respect to the substrate lattice. From an interplay with molecular dynamics simulations, we interpret the results within a lock-and-key model similar to the one driving the recognition between biomolecules: the molecule (key) is immobilized only when its orientation is such that the molecular shape fits the atomic lattice of the surface (lock); otherwise the molecule is highly mobile.
Introduction
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Introduction
Coura, Pablo Z; Legoas, Sergio B; Moreira, Anderson S; Sato, Fernando; Rodrigues, Varlei; Dantas, Socrates O; Ugarte, Daniel; Galvao, Douglas S
On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching Journal Article
In: Nano Letters, vol. 4, no. 7, pp. 1187–1191, 2004.
@article{coura2004structural,
title = {On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching},
author = {Coura, Pablo Z and Legoas, Sergio B and Moreira, Anderson S and Sato, Fernando and Rodrigues, Varlei and Dantas, Socrates O and Ugarte, Daniel and Galvao, Douglas S},
url = {http://pubs.acs.org/doi/abs/10.1021/nl049725h},
year = {2004},
date = {2004-01-01},
journal = {Nano Letters},
volume = {4},
number = {7},
pages = {1187--1191},
publisher = {American Chemical Society},
abstract = {Metallic nanowires (NWs) have been intensily investigated in the past years, but details on
their formation are still not completely understood. In this work we report high resolution
transmission electron microscopy data and molecular dynamics simulation results for gold
NW elongation. Our results show that different initial crystallographic orientations lead to
very differentiated linear atomic suspended chain (LAC) formations and strongly support that
kinetic aspects are the dominant mechanisms determining the LAC morphologies.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
their formation are still not completely understood. In this work we report high resolution
transmission electron microscopy data and molecular dynamics simulation results for gold
NW elongation. Our results show that different initial crystallographic orientations lead to
very differentiated linear atomic suspended chain (LAC) formations and strongly support that
kinetic aspects are the dominant mechanisms determining the LAC morphologies.
Legoas, Sergio B; Giro, Ronaldo; Galvao, Douglas S
Molecular dynamics simulations of C6) nanobearings Journal Article
In: Chemical physics letters, vol. 386, no. 4, pp. 425–429, 2004.
@article{legoas2004molecular,
title = {Molecular dynamics simulations of C6) nanobearings},
author = {Legoas, Sergio B and Giro, Ronaldo and Galvao, Douglas S},
url = {http://www.sciencedirect.com/science/article/pii/S000926140400168X},
year = {2004},
date = {2004-01-01},
journal = {Chemical physics letters},
volume = {386},
number = {4},
pages = {425--429},
publisher = {Elsevier},
abstract = {Recently was reported an ultra-lubricated system based on C60 molecules deposited over graphite layers. In that work a stick-slip rolling model for C60 molecules was proposed to explain the observed ultra-low friction force. In this Letter, we report the first molecular dynamics studies for these systems. Our results show that the AB stacking is not observed and the main experimental features can be explained without invoking stick-slip motions.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
VR Coluci SB Legoas, SF Braga
Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators Journal Article
In: Physical Review Letters, vol. 90, no. 5, pp. 055504, 2003.
@article{legoas2003molecularb,
title = {Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators},
author = {SB Legoas, VR Coluci, SF Braga, PZ Coura, SO Dantas, DS Galvao},
year = {2003},
date = {2003-01-01},
journal = {Physical Review Letters},
volume = {90},
number = {5},
pages = {055504},
abstract = {Recently, Zheng and Jiang [Phys. Rev. Lett. 88, 045503 (2002)] have proposed that multiwalled carbon nanotubes could be the basis for a new generation of nano-oscillators in the several gigahertz range. In this Letter, we present the first molecular dynamics simulation for these systems. Different nanotube types were considered in order to verify the reliability of such devices as gigahertz oscillators. Our results show that these nano-oscillators are dynamically stable when the radii difference values between inner and outer tubes are of ∼3.4 Å. Frequencies as large as 38 GHz were observed, and the calculated force values are in good agreement with recent experimental investigations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
S Ramasesha ZG Soos, DS Galvao
In: Physical Review Letters, vol. 71, no. 10, pp. 1609, 1993.
@article{soos1993band,
title = {Band to correlated crossover in alternating Hubbard and Pariser-Parr-Pople chains: Nature of the lowest singlet excitation of conjugated polymers},
author = {ZG Soos, S Ramasesha, DS Galvao},
url = {http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.1609},
doi = {10.1103/PhysRevLett.71.1609},
year = {1993},
date = {1993-01-01},
journal = {Physical Review Letters},
volume = {71},
number = {10},
pages = {1609},
publisher = {American Physical Society},
abstract = {The evolution with increasing Coulomb correlations of a semiconductor to a magnetic insulator is related to an excited-state crossover in π-electron models for conjugated polymers. We associate strong fluorescence with a lowest singlet excitation S1 that is dipole allowed, on the band side, while S1 becomes two-photon allowed on the correlated side. S1/S2 crossovers in Hubbard, Pariser-Parr-Pople, or other chains with electron-hole symmetry and alternating transfer integrals t(1±δ) are based on exact results at δ=0 and 1, on molecular exciton theory at large δ, and on oligomer calculations up to twelve sites.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sorry, no publications matched your criteria.
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ