Arpan; Gumaste Rout, Anurag; Pandey
Bio-inspired Aluminum Composite reinforced with Soft polymer with enhanced strength and plasticity (under review) Journal Article
In: 2019.
@article{Rout2019,
title = {Bio-inspired Aluminum Composite reinforced with Soft polymer with enhanced strength and plasticity (under review)},
author = {Rout, Arpan; Gumaste, Anurag; Pandey, Praful; Oliveira, Eliezer; Demiss,
Solomon; P., Mahesh; Bhatt, Chintan; Raphael, Kiran; Ayyagari, Ravi; Autreto, Pedro;
Palit, Mithun; Femi, Olu Emmanuel; Galvao, Douglas; Arora, Amit; Tiwary, Chandra},
year = {2019},
date = {2019-03-30},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Routa, Arpan; Pandeyb, Praful; Oliveira, Eliezer Fernando; da Silva Autreto, Pedro Alves; Gumastea, Anurag; Singha, Amit; Galvao, Douglas Soares; Aroraa, Amit; Tiwary, Chandra Sekhar
Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction Journal Article
In: Polymer, vol. 169, pp. 148-153, 2019.
@article{Routa2019,
title = {Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction},
author = {Arpan Routa and Praful Pandeyb and Eliezer Fernando Oliveira and Pedro Alves da Silva Autreto and Anurag Gumastea and Amit Singha and Douglas Soares Galvao and Amit Aroraa and Chandra Sekhar Tiwary},
year = {2019},
date = {2019-02-23},
journal = {Polymer},
volume = {169},
pages = {148-153},
abstract = {Joining different parts is one of a crucial component of designing/engineering of materials. The current energy, low efficiency weight automotive and aerospace components commonly consist of different class of materials, such as metal, polymer, and ceramics, etc. Joining these components remains a challenge. Here, we demonstrate joining of metal (aluminum) and polymer (PP) using mechanical friction. The detailed characterisation demonstrates that atomically locked interfaces are formed in such joining without the presence of any chemical bond at the interfaces. The waterproof and strong interface is formed in such process. Fully atomistic molecular dynamics simulations were also carried out to provide further insights on these mechanisms.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Marco AE Maria Celina M Miyazaki, Daiane Damasceno Borges
Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt Journal Article
In: Journal of Materials Science, vol. 53, no. 14, pp. 10049-10056, 2018.
@article{Miyazaki2018,
title = {Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt},
author = {Celina M Miyazaki, Marco AE Maria, Daiane Damasceno Borges, Cristiano F Woellner, Gustavo Brunetto, Alexandre F Fonseca, Carlos JL Constantino, Marcelo A Pereira-da-Silva, Abner de Siervo, Douglas S Galvao, Antonio Riul Jr},
url = {https://link.springer.com/article/10.1007/s10853-018-2325-1},
doi = {https://link.springer.com/article/10.1007/s10853-018-2325-1},
year = {2018},
date = {2018-04-19},
journal = {Journal of Materials Science},
volume = {53},
number = {14},
pages = {10049-10056},
abstract = {The production of large-area interfaces and the use of scalable methods to build up
designed nanostructures generating advanced functional properties are of high
interest for many materials science applications. Nevertheless, large-area coverage
remains a major problem even for pristine graphene, and here we present a hybrid,
composite graphene-like material soluble in water that can be exploited in many
areas such as energy storage, electrodes fabrication, selective membranes and
biosensing. Graphene oxide (GO) was produced by the traditional Hummers’
method being further reduced in the presence of poly(styrene sulfonate) sodium salt
(PSS), thus creating stable reduced graphene oxide (rGO) nanoplatelets wrapped by
PSS (GPSS). Molecular dynamics simulations were carried out to further clarify the
interactions between PSS molecules and rGO nanoplatelets, with calculations
supported by Fourier transform infrared spectroscopy analysis. The intermolecular
forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material
(GPSS) stabilized by van der Waals forces, allowing the fabrication of high-quality
layer-by-layer (LbL) films with poly(allylamine hydrochloride) (PAH). Raman and
electrical characterizations corroborated the successful modifications in the electronic
structures from GO to GPSS after the chemical treatment, resulting in (PAH/
GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
designed nanostructures generating advanced functional properties are of high
interest for many materials science applications. Nevertheless, large-area coverage
remains a major problem even for pristine graphene, and here we present a hybrid,
composite graphene-like material soluble in water that can be exploited in many
areas such as energy storage, electrodes fabrication, selective membranes and
biosensing. Graphene oxide (GO) was produced by the traditional Hummers’
method being further reduced in the presence of poly(styrene sulfonate) sodium salt
(PSS), thus creating stable reduced graphene oxide (rGO) nanoplatelets wrapped by
PSS (GPSS). Molecular dynamics simulations were carried out to further clarify the
interactions between PSS molecules and rGO nanoplatelets, with calculations
supported by Fourier transform infrared spectroscopy analysis. The intermolecular
forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material
(GPSS) stabilized by van der Waals forces, allowing the fabrication of high-quality
layer-by-layer (LbL) films with poly(allylamine hydrochloride) (PAH). Raman and
electrical characterizations corroborated the successful modifications in the electronic
structures from GO to GPSS after the chemical treatment, resulting in (PAH/
GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).
Miyazaki, Celina M; Maria, Marco AE; Borges, Daiane Damasceno; Woellner, Cristiano F; Brunetto, Gustavo; Fonseca, Alexandre F; Constantino, Carlos JL; Pereira-da-Silva, Marcelo A; de Siervo, Abner; Galvao, Douglas S; Riul Jr., Antonio
2017, (preprint arXiv:1702.00250).
@online{Miyazaki2017,
title = {Synthesis, characterization and computational simulation of graphene nanoplatelets stabilized in poly (styrene sulfonate) sodium salt},
author = {Miyazaki, Celina M and Maria, Marco AE and Borges, Daiane Damasceno and Woellner, Cristiano F and Brunetto, Gustavo and Fonseca, Alexandre F and Constantino, Carlos JL and Pereira-da-Silva, Marcelo A and de Siervo, Abner and Galvao, Douglas S and Riul Jr., Antonio},
url = {https://arxiv.org/abs/1705.10673},
year = {2017},
date = {2017-05-30},
abstract = {The production of large area interfaces and the use of scalable methods to build-up designed nanostructures generating advanced functional properties are of high interest for many materials science applications. Nevertheless, large area coverage remains a major problem for pristine graphene and here we present a hybrid, composite graphene-like material soluble in water, which can be exploited in many areas, such as energy storage, electrodes fabrication, selective membranes and biosensing. Graphene oxide (GO) was produced by the traditional Hummers method being further reduced in the presence of poly(styrene sulfonate) sodium salt (PSS), thus creating stable reduced graphene oxide (rGO) nanoplateles wrapped by PSS (GPSS). Molecular dynamics simulations were carried out of further clarify the interactions between PSS molecules and rGO nanoplatelets, with calculations supported by FTIR analysis. The intermolecular forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material (GPSS) stabilized by van der Waals forces, allowing the fabrication of high quality layer-by-layer (LbL) films with polyalillamine hydrochloride (PAH). Raman and electrical characterizations corroborated the successful modifications in the electronic structures from GO to GPSS after the chemical treatment, resulting in (PAH/GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).
},
note = {preprint arXiv:1702.00250},
keywords = {},
pubstate = {published},
tppubtype = {online}
}
Alves, Ana Paula P; Koizumi, Ryota; Samanta, Atanu; Machado, Leonardo D; Singh, Abhisek K; Galvao, Douglas S; Silva, Glaura G; Tiwary, Chandra S; Ajayan, Pulickel M
One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance Journal Article
In: Nano Energy, vol. 31, pp. 225-232, 2017.
@article{Alves2017,
title = {One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance},
author = {Alves, Ana Paula P and Koizumi, Ryota and Samanta, Atanu and Machado, Leonardo D and Singh, Abhisek K and Galvao, Douglas S and Silva, Glaura G and Tiwary, Chandra S and Ajayan, Pulickel M},
url = {http://www.sciencedirect.com/science/article/pii/S221128551630502X},
doi = {10.1016/j.nanoen.2016.11.018},
year = {2017},
date = {2017-01-01},
journal = {Nano Energy},
volume = {31},
pages = {225-232},
abstract = {Supercapacitor electrodes consisting of conjugated polymers (CP), metal oxides and graphene nanosheets have been explored as a strategy to achieve high specific capacitance, power, energy density, and stability. In this work, we synthesized a 3D structure composed of zirconia oxide nanoparticles (ZrO2), reduced graphene oxide (rGO) and polypyrrole (PPy), using a simple and easily scalable one-step chronopotentiometry method. Detailed characterization revealed that the addition of rGO and ZrO2 modified the morphology of the electrode material. The capacitance of the resulting architecture improved by up to a 100%. The ternary composite featured high stability, with an increase of 5% in capacitance after a thousand cycles. DFT and MD simulations were carried out in order to provide further insight on the role of zirconia.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Dong, Pei; Chipara, Alin Cristian; Loya, Phillip; Yang, Yingchao; Ge, Liehui; Lei, Sidong; Li, Bo; Brunetto, Gustavo; Machado, Leonardo Dantas; Hong, Liang; others,
A Solid-liquid Self-adaptive Polymeric Composite Journal Article
In: ACS Applied Materials & Interfaces, vol. 8, no. 3, pp. 2142–2147, 2016.
@article{Dong2016,
title = {A Solid-liquid Self-adaptive Polymeric Composite},
author = {Dong, Pei and Chipara, Alin Cristian and Loya, Phillip and Yang, Yingchao and Ge, Liehui and Lei, Sidong and Li, Bo and Brunetto, Gustavo and Machado, Leonardo Dantas and Hong, Liang and others},
url = {http://pubs.acs.org/doi/abs/10.1021/acsami.5b10667},
doi = {10.1021/acsami.5b10667},
year = {2016},
date = {2016-01-01},
journal = {ACS Applied Materials & Interfaces},
volume = {8},
number = {3},
pages = {2142–2147},
abstract = {A solid–liquid self-adaptive composite (SAC) is synthesized using a simple mixing–evaporation protocol, with poly(dimethylsiloxane) (PDMS) and poly(vinylidene fluoride) (PVDF) as active constituents. SAC exists as a porous solid containing a near equivalent distribution of the solid (PVDF)–liquid (PDMS) phases, with the liquid encapsulated and stabilized within a continuous solid network percolating throughout the structure. The pores, liquid, and solid phases form a complex hierarchical structure, which offers both mechanical robustness and a significant structural adaptability under external forces. SAC exhibits attractive self-healing properties during tension, and demonstrates reversible self-stiffening properties under compression with a maximum of 7-fold increase seen in the storage modulus. In a comparison to existing self-healing and self-stiffening materials, SAC offers distinct advantages in the ease of fabrication, high achievable storage modulus, and reversibility. Such materials could provide a new class of adaptive materials system with multifunctionality, tunability, and scale-up potentials.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2019
Arpan; Gumaste Rout, Anurag; Pandey
Bio-inspired Aluminum Composite reinforced with Soft polymer with enhanced strength and plasticity (under review) Journal Article
In: 2019.
BibTeX | Tags: Metal, Molecular Dynamics, Polymers
@article{Rout2019,
title = {Bio-inspired Aluminum Composite reinforced with Soft polymer with enhanced strength and plasticity (under review)},
author = {Rout, Arpan; Gumaste, Anurag; Pandey, Praful; Oliveira, Eliezer; Demiss,
Solomon; P., Mahesh; Bhatt, Chintan; Raphael, Kiran; Ayyagari, Ravi; Autreto, Pedro;
Palit, Mithun; Femi, Olu Emmanuel; Galvao, Douglas; Arora, Amit; Tiwary, Chandra},
year = {2019},
date = {2019-03-30},
keywords = {Metal, Molecular Dynamics, Polymers},
pubstate = {published},
tppubtype = {article}
}

Routa, Arpan; Pandeyb, Praful; Oliveira, Eliezer Fernando; da Silva Autreto, Pedro Alves; Gumastea, Anurag; Singha, Amit; Galvao, Douglas Soares; Aroraa, Amit; Tiwary, Chandra Sekhar
Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction Journal Article
In: Polymer, vol. 169, pp. 148-153, 2019.
Abstract | BibTeX | Tags: Composites, Metal, Molecular Dynamics, Polymers
@article{Routa2019,
title = {Atomically locked interfaces of metal (Aluminum) and Polymer (Polypropylene) using mechanical friction},
author = {Arpan Routa and Praful Pandeyb and Eliezer Fernando Oliveira and Pedro Alves da Silva Autreto and Anurag Gumastea and Amit Singha and Douglas Soares Galvao and Amit Aroraa and Chandra Sekhar Tiwary},
year = {2019},
date = {2019-02-23},
journal = {Polymer},
volume = {169},
pages = {148-153},
abstract = {Joining different parts is one of a crucial component of designing/engineering of materials. The current energy, low efficiency weight automotive and aerospace components commonly consist of different class of materials, such as metal, polymer, and ceramics, etc. Joining these components remains a challenge. Here, we demonstrate joining of metal (aluminum) and polymer (PP) using mechanical friction. The detailed characterisation demonstrates that atomically locked interfaces are formed in such joining without the presence of any chemical bond at the interfaces. The waterproof and strong interface is formed in such process. Fully atomistic molecular dynamics simulations were also carried out to provide further insights on these mechanisms.},
keywords = {Composites, Metal, Molecular Dynamics, Polymers},
pubstate = {published},
tppubtype = {article}
}
2018

Marco AE Maria Celina M Miyazaki, Daiane Damasceno Borges
Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt Journal Article
In: Journal of Materials Science, vol. 53, no. 14, pp. 10049-10056, 2018.
Abstract | Links | BibTeX | Tags: Molecular Dynamics, Polymers
@article{Miyazaki2018,
title = {Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt},
author = {Celina M Miyazaki, Marco AE Maria, Daiane Damasceno Borges, Cristiano F Woellner, Gustavo Brunetto, Alexandre F Fonseca, Carlos JL Constantino, Marcelo A Pereira-da-Silva, Abner de Siervo, Douglas S Galvao, Antonio Riul Jr},
url = {https://link.springer.com/article/10.1007/s10853-018-2325-1},
doi = {https://link.springer.com/article/10.1007/s10853-018-2325-1},
year = {2018},
date = {2018-04-19},
journal = {Journal of Materials Science},
volume = {53},
number = {14},
pages = {10049-10056},
abstract = {The production of large-area interfaces and the use of scalable methods to build up
designed nanostructures generating advanced functional properties are of high
interest for many materials science applications. Nevertheless, large-area coverage
remains a major problem even for pristine graphene, and here we present a hybrid,
composite graphene-like material soluble in water that can be exploited in many
areas such as energy storage, electrodes fabrication, selective membranes and
biosensing. Graphene oxide (GO) was produced by the traditional Hummers’
method being further reduced in the presence of poly(styrene sulfonate) sodium salt
(PSS), thus creating stable reduced graphene oxide (rGO) nanoplatelets wrapped by
PSS (GPSS). Molecular dynamics simulations were carried out to further clarify the
interactions between PSS molecules and rGO nanoplatelets, with calculations
supported by Fourier transform infrared spectroscopy analysis. The intermolecular
forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material
(GPSS) stabilized by van der Waals forces, allowing the fabrication of high-quality
layer-by-layer (LbL) films with poly(allylamine hydrochloride) (PAH). Raman and
electrical characterizations corroborated the successful modifications in the electronic
structures from GO to GPSS after the chemical treatment, resulting in (PAH/
GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).},
keywords = {Molecular Dynamics, Polymers},
pubstate = {published},
tppubtype = {article}
}
designed nanostructures generating advanced functional properties are of high
interest for many materials science applications. Nevertheless, large-area coverage
remains a major problem even for pristine graphene, and here we present a hybrid,
composite graphene-like material soluble in water that can be exploited in many
areas such as energy storage, electrodes fabrication, selective membranes and
biosensing. Graphene oxide (GO) was produced by the traditional Hummers’
method being further reduced in the presence of poly(styrene sulfonate) sodium salt
(PSS), thus creating stable reduced graphene oxide (rGO) nanoplatelets wrapped by
PSS (GPSS). Molecular dynamics simulations were carried out to further clarify the
interactions between PSS molecules and rGO nanoplatelets, with calculations
supported by Fourier transform infrared spectroscopy analysis. The intermolecular
forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material
(GPSS) stabilized by van der Waals forces, allowing the fabrication of high-quality
layer-by-layer (LbL) films with poly(allylamine hydrochloride) (PAH). Raman and
electrical characterizations corroborated the successful modifications in the electronic
structures from GO to GPSS after the chemical treatment, resulting in (PAH/
GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).
2017

Miyazaki, Celina M; Maria, Marco AE; Borges, Daiane Damasceno; Woellner, Cristiano F; Brunetto, Gustavo; Fonseca, Alexandre F; Constantino, Carlos JL; Pereira-da-Silva, Marcelo A; de Siervo, Abner; Galvao, Douglas S; Riul Jr., Antonio
2017, (preprint arXiv:1702.00250).
Abstract | Links | BibTeX | Tags: Graphene, Molecular Dynamics, Polymers
@online{Miyazaki2017,
title = {Synthesis, characterization and computational simulation of graphene nanoplatelets stabilized in poly (styrene sulfonate) sodium salt},
author = {Miyazaki, Celina M and Maria, Marco AE and Borges, Daiane Damasceno and Woellner, Cristiano F and Brunetto, Gustavo and Fonseca, Alexandre F and Constantino, Carlos JL and Pereira-da-Silva, Marcelo A and de Siervo, Abner and Galvao, Douglas S and Riul Jr., Antonio},
url = {https://arxiv.org/abs/1705.10673},
year = {2017},
date = {2017-05-30},
abstract = {The production of large area interfaces and the use of scalable methods to build-up designed nanostructures generating advanced functional properties are of high interest for many materials science applications. Nevertheless, large area coverage remains a major problem for pristine graphene and here we present a hybrid, composite graphene-like material soluble in water, which can be exploited in many areas, such as energy storage, electrodes fabrication, selective membranes and biosensing. Graphene oxide (GO) was produced by the traditional Hummers method being further reduced in the presence of poly(styrene sulfonate) sodium salt (PSS), thus creating stable reduced graphene oxide (rGO) nanoplateles wrapped by PSS (GPSS). Molecular dynamics simulations were carried out of further clarify the interactions between PSS molecules and rGO nanoplatelets, with calculations supported by FTIR analysis. The intermolecular forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material (GPSS) stabilized by van der Waals forces, allowing the fabrication of high quality layer-by-layer (LbL) films with polyalillamine hydrochloride (PAH). Raman and electrical characterizations corroborated the successful modifications in the electronic structures from GO to GPSS after the chemical treatment, resulting in (PAH/GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).
},
note = {preprint arXiv:1702.00250},
keywords = {Graphene, Molecular Dynamics, Polymers},
pubstate = {published},
tppubtype = {online}
}

Alves, Ana Paula P; Koizumi, Ryota; Samanta, Atanu; Machado, Leonardo D; Singh, Abhisek K; Galvao, Douglas S; Silva, Glaura G; Tiwary, Chandra S; Ajayan, Pulickel M
One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance Journal Article
In: Nano Energy, vol. 31, pp. 225-232, 2017.
Abstract | Links | BibTeX | Tags: Molecular Dynamics, Polymers, supercapacitors, Zirconia
@article{Alves2017,
title = {One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance},
author = {Alves, Ana Paula P and Koizumi, Ryota and Samanta, Atanu and Machado, Leonardo D and Singh, Abhisek K and Galvao, Douglas S and Silva, Glaura G and Tiwary, Chandra S and Ajayan, Pulickel M},
url = {http://www.sciencedirect.com/science/article/pii/S221128551630502X},
doi = {10.1016/j.nanoen.2016.11.018},
year = {2017},
date = {2017-01-01},
journal = {Nano Energy},
volume = {31},
pages = {225-232},
abstract = {Supercapacitor electrodes consisting of conjugated polymers (CP), metal oxides and graphene nanosheets have been explored as a strategy to achieve high specific capacitance, power, energy density, and stability. In this work, we synthesized a 3D structure composed of zirconia oxide nanoparticles (ZrO2), reduced graphene oxide (rGO) and polypyrrole (PPy), using a simple and easily scalable one-step chronopotentiometry method. Detailed characterization revealed that the addition of rGO and ZrO2 modified the morphology of the electrode material. The capacitance of the resulting architecture improved by up to a 100%. The ternary composite featured high stability, with an increase of 5% in capacitance after a thousand cycles. DFT and MD simulations were carried out in order to provide further insight on the role of zirconia.
},
keywords = {Molecular Dynamics, Polymers, supercapacitors, Zirconia},
pubstate = {published},
tppubtype = {article}
}
2016

Dong, Pei; Chipara, Alin Cristian; Loya, Phillip; Yang, Yingchao; Ge, Liehui; Lei, Sidong; Li, Bo; Brunetto, Gustavo; Machado, Leonardo Dantas; Hong, Liang; others,
A Solid-liquid Self-adaptive Polymeric Composite Journal Article
In: ACS Applied Materials & Interfaces, vol. 8, no. 3, pp. 2142–2147, 2016.
Abstract | Links | BibTeX | Tags: Adhesives, Modelling, Polymers
@article{Dong2016,
title = {A Solid-liquid Self-adaptive Polymeric Composite},
author = {Dong, Pei and Chipara, Alin Cristian and Loya, Phillip and Yang, Yingchao and Ge, Liehui and Lei, Sidong and Li, Bo and Brunetto, Gustavo and Machado, Leonardo Dantas and Hong, Liang and others},
url = {http://pubs.acs.org/doi/abs/10.1021/acsami.5b10667},
doi = {10.1021/acsami.5b10667},
year = {2016},
date = {2016-01-01},
journal = {ACS Applied Materials & Interfaces},
volume = {8},
number = {3},
pages = {2142–2147},
abstract = {A solid–liquid self-adaptive composite (SAC) is synthesized using a simple mixing–evaporation protocol, with poly(dimethylsiloxane) (PDMS) and poly(vinylidene fluoride) (PVDF) as active constituents. SAC exists as a porous solid containing a near equivalent distribution of the solid (PVDF)–liquid (PDMS) phases, with the liquid encapsulated and stabilized within a continuous solid network percolating throughout the structure. The pores, liquid, and solid phases form a complex hierarchical structure, which offers both mechanical robustness and a significant structural adaptability under external forces. SAC exhibits attractive self-healing properties during tension, and demonstrates reversible self-stiffening properties under compression with a maximum of 7-fold increase seen in the storage modulus. In a comparison to existing self-healing and self-stiffening materials, SAC offers distinct advantages in the ease of fabrication, high achievable storage modulus, and reversibility. Such materials could provide a new class of adaptive materials system with multifunctionality, tunability, and scale-up potentials.
},
keywords = {Adhesives, Modelling, Polymers},
pubstate = {published},
tppubtype = {article}
}
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ