Autreto, PAS; Galvao, Douglas S; Santos, Ricardo PB; Legoas, SB
Graphene to Fluorographene: A Reactive Molecular Dynamics Study Journal Article
In: Physicæ Proceedings, vol. 1, no. 1, pp. 3, 2012.
@article{autreto2012graphene,
title = {Graphene to Fluorographene: A Reactive Molecular Dynamics Study},
author = {Autreto, PAS and Galvao, Douglas S and Santos, Ricardo PB and Legoas, SB},
url = {http://physicae.ifi.unicamp.br/phyproceedings/article/view/physicae.proceedings.XIYRM.11},
year = {2012},
date = {2012-01-01},
journal = {Physicæ Proceedings},
volume = {1},
number = {1},
pages = {3},
abstract = {We have investigated, using fully reactive molecular dynamics methodology, the structural and dynamical aspects of the fluorination of graphene membranes leading to fluographene formation. The strong and fast chemical reactivity processes involving fluorine produce distinct aspects of the observed in the case of the hydrogenation of graphene (the so called graphane formation). Fluorination tends to produce significant defective areas on the graphene membrane with alteration on the typical carbon-carbon distances, sometimes with the presence of large holes due to carbon losses. This may explain the broad distribution of values of lattice parameter experimentally observed.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Flores, Marcelo ZS; Autreto, Pedro AS; Legoas, Sergio B; Galvao, Douglas S
Graphene to graphane: a theoretical study Journal Article
In: Nanotechnology, vol. 20, no. 46, pp. 465704, 2009.
@article{flores2009graphene,
title = {Graphene to graphane: a theoretical study},
author = {Flores, Marcelo ZS and Autreto, Pedro AS and Legoas, Sergio B and Galvao, Douglas S},
url = {http://iopscience.iop.org/0957-4484/20/46/465704},
year = {2009},
date = {2009-01-01},
journal = {Nanotechnology},
volume = {20},
number = {46},
pages = {465704},
publisher = {IOP Publishing},
abstract = {Graphane is a two-dimensional system consisting of a single layer of fully saturated (sp3 hybridization) carbon atoms. In an ideal graphane structure C–H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using ab initio and reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms' up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process leading to membrane shrinkage and extensive membrane corrugations. These results also suggest that large domains of perfect graphane-like structures are unlikely to be formed, as H frustrated domains are always present.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2012

Autreto, PAS; Galvao, Douglas S; Santos, Ricardo PB; Legoas, SB
Graphene to Fluorographene: A Reactive Molecular Dynamics Study Journal Article
In: Physicæ Proceedings, vol. 1, no. 1, pp. 3, 2012.
Abstract | Links | BibTeX | Tags: Graphanes, Graphene, Molecular Dynamics
@article{autreto2012graphene,
title = {Graphene to Fluorographene: A Reactive Molecular Dynamics Study},
author = {Autreto, PAS and Galvao, Douglas S and Santos, Ricardo PB and Legoas, SB},
url = {http://physicae.ifi.unicamp.br/phyproceedings/article/view/physicae.proceedings.XIYRM.11},
year = {2012},
date = {2012-01-01},
journal = {Physicæ Proceedings},
volume = {1},
number = {1},
pages = {3},
abstract = {We have investigated, using fully reactive molecular dynamics methodology, the structural and dynamical aspects of the fluorination of graphene membranes leading to fluographene formation. The strong and fast chemical reactivity processes involving fluorine produce distinct aspects of the observed in the case of the hydrogenation of graphene (the so called graphane formation). Fluorination tends to produce significant defective areas on the graphene membrane with alteration on the typical carbon-carbon distances, sometimes with the presence of large holes due to carbon losses. This may explain the broad distribution of values of lattice parameter experimentally observed.
},
keywords = {Graphanes, Graphene, Molecular Dynamics},
pubstate = {published},
tppubtype = {article}
}
2009

Flores, Marcelo ZS; Autreto, Pedro AS; Legoas, Sergio B; Galvao, Douglas S
Graphene to graphane: a theoretical study Journal Article
In: Nanotechnology, vol. 20, no. 46, pp. 465704, 2009.
Abstract | Links | BibTeX | Tags: Functionalization, Graphanes, Graphene, Hydrogenation
@article{flores2009graphene,
title = {Graphene to graphane: a theoretical study},
author = {Flores, Marcelo ZS and Autreto, Pedro AS and Legoas, Sergio B and Galvao, Douglas S},
url = {http://iopscience.iop.org/0957-4484/20/46/465704},
year = {2009},
date = {2009-01-01},
journal = {Nanotechnology},
volume = {20},
number = {46},
pages = {465704},
publisher = {IOP Publishing},
abstract = {Graphane is a two-dimensional system consisting of a single layer of fully saturated (sp3 hybridization) carbon atoms. In an ideal graphane structure C–H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using ab initio and reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms' up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process leading to membrane shrinkage and extensive membrane corrugations. These results also suggest that large domains of perfect graphane-like structures are unlikely to be formed, as H frustrated domains are always present.
},
keywords = {Functionalization, Graphanes, Graphene, Hydrogenation},
pubstate = {published},
tppubtype = {article}
}
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ