Autreto, PAS; Lagos, MJ; Sato, F; Bettini, J; Rocha, AR; Rodrigues, V; Ugarte, D; Galvao, DS
Intrinsic Stability of the Smallest Possible Silver Nanotube Journal Article
In: Physical Review Letters, vol. 106, no. 6, pp. 065501, 2011.
@article{autreto2011intrinsic,
title = {Intrinsic Stability of the Smallest Possible Silver Nanotube},
author = {Autreto, PAS and Lagos, MJ and Sato, F and Bettini, J and Rocha, AR and Rodrigues, V and Ugarte, D and Galvao, DS},
url = {http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.065501},
year = {2011},
date = {2011-01-01},
journal = {Physical Review Letters},
volume = {106},
number = {6},
pages = {065501},
publisher = {American Physical Society},
abstract = {Recently, Lagos et al. [Nature Nanotech. 4, 149 (2009)] reported the discovery of the smallest possible Ag nanotube with a square cross section. Ab initio density functional theory calculations strongly support that the stability of these hollow structures is structurally intrinsic and not the result of contamination by light atoms. We also report the first experimental observation of the theoretically predicted corrugation of the hollow structure. Quantum conductance calculations predict a unique signature of 3.6G0 for this new family of nanotubes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Autreto, PAS; Legoas, SB; Flores, MZS; Galvao, DS
Carbon nanotube with square cross-section: An ab initio investigation Journal Article
In: The Journal of chemical physics, vol. 133, no. 12, pp. 124513, 2010.
@article{autreto2010carbon,
title = {Carbon nanotube with square cross-section: An ab initio investigation},
author = {Autreto, PAS and Legoas, SB and Flores, MZS and Galvao, DS},
url = {http://scitation.aip.org/content/aip/journal/jcp/133/12/10.1063/1.3483237},
year = {2010},
date = {2010-01-01},
journal = {The Journal of chemical physics},
volume = {133},
number = {12},
pages = {124513},
publisher = {AIP Publishing},
abstract = {Recently, Lagos et al. [Nat. Nanotechnol.4, 149 (2009)] reported the discovery of the smallest possible silver square cross-section nanotube. A natural question is whether similar carbon nanotubes can exist. In this work we report ab initio results for the structural, stability, and electronic properties for such hypothetical structures. Our results show that stable (or at least metastable) structures are possible with metallic properties. They also show that these structures can be obtained by a direct interconversion from SWNT(2,2). Large finite cubanelike oligomers, topologically related to these new tubes, were also investigated.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, VR; dos Santos, RPB; Galvao, DS
Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes Journal Article
In: Journal of Nanoscience and Nanotechnology, vol. 10, no. 7, pp. 4378–4383, 2010.
@article{coluci2010topologically,
title = {Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes},
author = {Coluci, VR and dos Santos, RPB and Galvao, DS},
url = {http://www.ingentaconnect.com/content/asp/jnn/2010/00000010/00000007/art00040},
year = {2010},
date = {2010-01-01},
journal = {Journal of Nanoscience and Nanotechnology},
volume = {10},
number = {7},
pages = {4378--4383},
publisher = {American Scientific Publishers},
abstract = {We propose and theoretically investigated a new class of topologically closed macromolecules built using single walled carbon nanotubes. These macromolecules are based on the fullerene architecture. Classical molecular dynamics simulations were used to predict their stability, thermal, vibrational, and mechanical properties. These macromolecules, named 'super'-fullerenes, present high porosity, low density (∼1 g/cm3), and high surface area (≅2500 m2/g). Our results predict gas phase specific heat of about 0.4 Jg−1K−1 at room temperature and high flexibility under compressive strains. These properties make these hypothetical macromolecules good candidates for gas storage material and biomolecular sieves.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lagos, MJ; Sato, Fernando; Bettini, Jeferson; Rodrigues, Varlei; Galvao, Douglas S; Ugarte, Daniel
Observation of the smallest metal nanotube with a square cross-section Journal Article
In: Nature Nanotechnology, vol. 4, no. 3, pp. 149–152, 2009.
@article{lagos2009observation,
title = {Observation of the smallest metal nanotube with a square cross-section},
author = {Lagos, MJ and Sato, Fernando and Bettini, Jeferson and Rodrigues, Varlei and Galvao, Douglas S and Ugarte, Daniel},
url = {http://www.nature.com/nnano/journal/v4/n3/abs/nnano.2008.414.html},
year = {2009},
date = {2009-01-01},
journal = {Nature Nanotechnology},
volume = {4},
number = {3},
pages = {149--152},
publisher = {Nature Publishing Group},
abstract = {Understanding the mechanical properties of nanoscale systems requires a range of measurement techniques and theoretical approaches to gather the relevant physical and chemical information. The arrangements of atoms in nanostructures and macroscopic matter can be different, principally due to the role of surface energy, but the interplay between atomic and electronic structure in association with applied mechanical stress can also lead to surprising differences. For example, metastable structures such as suspended chains of atoms1, 2, 3 and helical wires4, 5 have been produced by stretching metal junctions. Here, we report the spontaneous formation of the smallest possible metal nanotube with a square cross-section during the elongation of silver nanocontacts. Ab initio calculations and molecular simulations indicate that the hollow wire forms because this configuration allows the surface energy to be minimized, and also generates a soft structure capable of absorbing a huge tensile deformation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lagos, M; Sato, F; Bettini, J; Rdrigues, V; Galvao, D; Ugarte, D
Atomic-size Silver Nanotube Book Section
In: EMC 2008 14th European Microscopy Congress 1--5 September 2008, Aachen, Germany, pp. 493–494, Springer Berlin Heidelberg, 2008, (Book Chapter).
@incollection{lagos2008atomic,
title = {Atomic-size Silver Nanotube},
author = {Lagos, M and Sato, F and Bettini, J and Rdrigues, V and Galvao, D and Ugarte, D},
url = {http://link.springer.com/chapter/10.1007%2F978-3-540-85156-1_247},
year = {2008},
date = {2008-01-01},
booktitle = {EMC 2008 14th European Microscopy Congress 1--5 September 2008, Aachen, Germany},
pages = {493--494},
publisher = {Springer Berlin Heidelberg},
abstract = {The atomic arrangement of nanosystems may be quite different from the traditional materials; surface energy minimization plays a dominant role in this size range, and accounts for many of these new structures. Graphitic nanotubes [1] represent the best example, being fromed by a rolled the graphitic layer, which is tradionally flat. Subsequently the rolling of the compact (111) atomic planes was reported for gold nanowires (NW) generated by mechanical stretching [2]. But, we may expect many more surprises from the interplay between atomic and electronic structure.},
note = {Book Chapter},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Braga, Scheila Furtado; Galvao, Douglas Soares
Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression Journal Article
In: Journal of Computational Chemistry, vol. 28, no. 10, pp. 1724–1734, 2007.
@article{braga2007molecular,
title = {Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression},
author = {Braga, Scheila Furtado and Galvao, Douglas Soares},
url = {http://onlinelibrary.wiley.com/store/10.1002/jcc.20684/asset/20684_ftp.pdf?v=1&t=i52l5iyb&s=94cda082eed01cd61890fffe50aad5e26cdda7d1},
year = {2007},
date = {2007-01-01},
journal = {Journal of Computational Chemistry},
volume = {28},
number = {10},
pages = {1724--1734},
publisher = {Wiley Subscription Services, Inc., A Wiley Company},
abstract = {Single wall carbon nanotubes (SWCNTs) often aggregate into bundles of hundreds of weakly interacting
tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical
and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous
theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes
as the explanation to the experimental measurements of structural changes during tube compression. We report here
results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under
compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and
rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter
ones (around 5 Å) polymerize even at room temperature. Other interesting results are the observation of the appearance
of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more
than a decade ago},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical
and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous
theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes
as the explanation to the experimental measurements of structural changes during tube compression. We report here
results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under
compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and
rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter
ones (around 5 Å) polymerize even at room temperature. Other interesting results are the observation of the appearance
of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more
than a decade ago
2011

Autreto, PAS; Lagos, MJ; Sato, F; Bettini, J; Rocha, AR; Rodrigues, V; Ugarte, D; Galvao, DS
Intrinsic Stability of the Smallest Possible Silver Nanotube Journal Article
In: Physical Review Letters, vol. 106, no. 6, pp. 065501, 2011.
Abstract | Links | BibTeX | Tags: DFT, Mechanical Properties, Metallic Nanowires, New Structures, top20
@article{autreto2011intrinsic,
title = {Intrinsic Stability of the Smallest Possible Silver Nanotube},
author = {Autreto, PAS and Lagos, MJ and Sato, F and Bettini, J and Rocha, AR and Rodrigues, V and Ugarte, D and Galvao, DS},
url = {http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.065501},
year = {2011},
date = {2011-01-01},
journal = {Physical Review Letters},
volume = {106},
number = {6},
pages = {065501},
publisher = {American Physical Society},
abstract = {Recently, Lagos et al. [Nature Nanotech. 4, 149 (2009)] reported the discovery of the smallest possible Ag nanotube with a square cross section. Ab initio density functional theory calculations strongly support that the stability of these hollow structures is structurally intrinsic and not the result of contamination by light atoms. We also report the first experimental observation of the theoretically predicted corrugation of the hollow structure. Quantum conductance calculations predict a unique signature of 3.6G0 for this new family of nanotubes.},
keywords = {DFT, Mechanical Properties, Metallic Nanowires, New Structures, top20},
pubstate = {published},
tppubtype = {article}
}
2010

Autreto, PAS; Legoas, SB; Flores, MZS; Galvao, DS
Carbon nanotube with square cross-section: An ab initio investigation Journal Article
In: The Journal of chemical physics, vol. 133, no. 12, pp. 124513, 2010.
Abstract | Links | BibTeX | Tags: Carbon Nanotubes, DFT, New Structures, square tubes
@article{autreto2010carbon,
title = {Carbon nanotube with square cross-section: An ab initio investigation},
author = {Autreto, PAS and Legoas, SB and Flores, MZS and Galvao, DS},
url = {http://scitation.aip.org/content/aip/journal/jcp/133/12/10.1063/1.3483237},
year = {2010},
date = {2010-01-01},
journal = {The Journal of chemical physics},
volume = {133},
number = {12},
pages = {124513},
publisher = {AIP Publishing},
abstract = {Recently, Lagos et al. [Nat. Nanotechnol.4, 149 (2009)] reported the discovery of the smallest possible silver square cross-section nanotube. A natural question is whether similar carbon nanotubes can exist. In this work we report ab initio results for the structural, stability, and electronic properties for such hypothetical structures. Our results show that stable (or at least metastable) structures are possible with metallic properties. They also show that these structures can be obtained by a direct interconversion from SWNT(2,2). Large finite cubanelike oligomers, topologically related to these new tubes, were also investigated.
},
keywords = {Carbon Nanotubes, DFT, New Structures, square tubes},
pubstate = {published},
tppubtype = {article}
}

Coluci, VR; dos Santos, RPB; Galvao, DS
Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes Journal Article
In: Journal of Nanoscience and Nanotechnology, vol. 10, no. 7, pp. 4378–4383, 2010.
Abstract | Links | BibTeX | Tags: Fullerenes, New Structures, Super Carbons, Super Fullerenes
@article{coluci2010topologically,
title = {Topologically Closed Macromolecules Made of Single Walled Carbon Nanotubes—'Super'-Fullerenes},
author = {Coluci, VR and dos Santos, RPB and Galvao, DS},
url = {http://www.ingentaconnect.com/content/asp/jnn/2010/00000010/00000007/art00040},
year = {2010},
date = {2010-01-01},
journal = {Journal of Nanoscience and Nanotechnology},
volume = {10},
number = {7},
pages = {4378--4383},
publisher = {American Scientific Publishers},
abstract = {We propose and theoretically investigated a new class of topologically closed macromolecules built using single walled carbon nanotubes. These macromolecules are based on the fullerene architecture. Classical molecular dynamics simulations were used to predict their stability, thermal, vibrational, and mechanical properties. These macromolecules, named 'super'-fullerenes, present high porosity, low density (∼1 g/cm3), and high surface area (≅2500 m2/g). Our results predict gas phase specific heat of about 0.4 Jg−1K−1 at room temperature and high flexibility under compressive strains. These properties make these hypothetical macromolecules good candidates for gas storage material and biomolecular sieves.},
keywords = {Fullerenes, New Structures, Super Carbons, Super Fullerenes},
pubstate = {published},
tppubtype = {article}
}
2009

Lagos, MJ; Sato, Fernando; Bettini, Jeferson; Rodrigues, Varlei; Galvao, Douglas S; Ugarte, Daniel
Observation of the smallest metal nanotube with a square cross-section Journal Article
In: Nature Nanotechnology, vol. 4, no. 3, pp. 149–152, 2009.
Abstract | Links | BibTeX | Tags: Metallic Nanowires, New Structures, Smallest nanotube, TEM, top20
@article{lagos2009observation,
title = {Observation of the smallest metal nanotube with a square cross-section},
author = {Lagos, MJ and Sato, Fernando and Bettini, Jeferson and Rodrigues, Varlei and Galvao, Douglas S and Ugarte, Daniel},
url = {http://www.nature.com/nnano/journal/v4/n3/abs/nnano.2008.414.html},
year = {2009},
date = {2009-01-01},
journal = {Nature Nanotechnology},
volume = {4},
number = {3},
pages = {149--152},
publisher = {Nature Publishing Group},
abstract = {Understanding the mechanical properties of nanoscale systems requires a range of measurement techniques and theoretical approaches to gather the relevant physical and chemical information. The arrangements of atoms in nanostructures and macroscopic matter can be different, principally due to the role of surface energy, but the interplay between atomic and electronic structure in association with applied mechanical stress can also lead to surprising differences. For example, metastable structures such as suspended chains of atoms1, 2, 3 and helical wires4, 5 have been produced by stretching metal junctions. Here, we report the spontaneous formation of the smallest possible metal nanotube with a square cross-section during the elongation of silver nanocontacts. Ab initio calculations and molecular simulations indicate that the hollow wire forms because this configuration allows the surface energy to be minimized, and also generates a soft structure capable of absorbing a huge tensile deformation.},
keywords = {Metallic Nanowires, New Structures, Smallest nanotube, TEM, top20},
pubstate = {published},
tppubtype = {article}
}
2008

Lagos, M; Sato, F; Bettini, J; Rdrigues, V; Galvao, D; Ugarte, D
Atomic-size Silver Nanotube Book Section
In: EMC 2008 14th European Microscopy Congress 1--5 September 2008, Aachen, Germany, pp. 493–494, Springer Berlin Heidelberg, 2008, (Book Chapter).
Abstract | Links | BibTeX | Tags: Metallic Nanowires, New Structures, Silver Nanotubes, TEM
@incollection{lagos2008atomic,
title = {Atomic-size Silver Nanotube},
author = {Lagos, M and Sato, F and Bettini, J and Rdrigues, V and Galvao, D and Ugarte, D},
url = {http://link.springer.com/chapter/10.1007%2F978-3-540-85156-1_247},
year = {2008},
date = {2008-01-01},
booktitle = {EMC 2008 14th European Microscopy Congress 1--5 September 2008, Aachen, Germany},
pages = {493--494},
publisher = {Springer Berlin Heidelberg},
abstract = {The atomic arrangement of nanosystems may be quite different from the traditional materials; surface energy minimization plays a dominant role in this size range, and accounts for many of these new structures. Graphitic nanotubes [1] represent the best example, being fromed by a rolled the graphitic layer, which is tradionally flat. Subsequently the rolling of the compact (111) atomic planes was reported for gold nanowires (NW) generated by mechanical stretching [2]. But, we may expect many more surprises from the interplay between atomic and electronic structure.},
note = {Book Chapter},
keywords = {Metallic Nanowires, New Structures, Silver Nanotubes, TEM},
pubstate = {published},
tppubtype = {incollection}
}
2007

Braga, Scheila Furtado; Galvao, Douglas Soares
Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression Journal Article
In: Journal of Computational Chemistry, vol. 28, no. 10, pp. 1724–1734, 2007.
Abstract | Links | BibTeX | Tags: Carbon Nanotubes, Mechanical Properties, Molecular Dynamics, New Structures, Polymerization
@article{braga2007molecular,
title = {Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression},
author = {Braga, Scheila Furtado and Galvao, Douglas Soares},
url = {http://onlinelibrary.wiley.com/store/10.1002/jcc.20684/asset/20684_ftp.pdf?v=1&t=i52l5iyb&s=94cda082eed01cd61890fffe50aad5e26cdda7d1},
year = {2007},
date = {2007-01-01},
journal = {Journal of Computational Chemistry},
volume = {28},
number = {10},
pages = {1724--1734},
publisher = {Wiley Subscription Services, Inc., A Wiley Company},
abstract = {Single wall carbon nanotubes (SWCNTs) often aggregate into bundles of hundreds of weakly interacting
tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical
and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous
theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes
as the explanation to the experimental measurements of structural changes during tube compression. We report here
results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under
compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and
rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter
ones (around 5 Å) polymerize even at room temperature. Other interesting results are the observation of the appearance
of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more
than a decade ago},
keywords = {Carbon Nanotubes, Mechanical Properties, Molecular Dynamics, New Structures, Polymerization},
pubstate = {published},
tppubtype = {article}
}
tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical
and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous
theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes
as the explanation to the experimental measurements of structural changes during tube compression. We report here
results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under
compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and
rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter
ones (around 5 Å) polymerize even at room temperature. Other interesting results are the observation of the appearance
of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more
than a decade ago
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ